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How to simulate a semiconductor quantum dot laser: general description
(Como simular um laser de pontos quânticos semicondutores)
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Semiconductor quantum dot laser is a recent class of laser sources which is an alternative to the conventional
bulk and quantum well lasers. In the development of laser sources an important step concerns the modeling
of the devices to be realized, and this requires the use of good methods able to incorporate various physical
phenomena present in real devices. In this paper we show in details the implementation of a quantum dot laser
simulator and apply it to simulate the switching-on behavior and other characteristics of a real quantum dot
laser source. The description here presented intends to be a help for teaching or even basic-research in that
particular field of optoelectronics.
Keywords: quantum dots laser, simulator, device modelling.

Laser de pontos quânticos semicondutores é uma recente classe de fontes laser que se apresenta como alterna-
tiva aos lasers de poços quânticos. Durante o desenvolvimento de fontes laser um passo importante consiste na
modelagem dos dispositivos a serem realizados, e isto requer o uso de bons métodos, capazes de incorporar vários
fenômenos f́ısicos presentes em dispositivos reais. Neste artigo mostramos em detalhes a implementação de um
simulador de laser de pontos quânticos e o aplicamos na simulação do comportamento de switching-on e outras
caracteŕısticas de uma fonte laser de pontos quânticos real. A descrição aqui apresentada pretende auxiliar o
ensino ou mesmo a pesquisa básica nessa sub-área da optoeletrônica.
Palavras-chave: laser de pontos quânticos, simulador, modelamento de dispositivo.

1. Introduction

Semiconductor lasers (SL) had their origin in 1962,
when Robert N. Hall and his co-workers from General
Electric demonstrated for the first time the coherent
emission of light from a semiconductor diode [1], only a
few years after the first demonstration of the stimulated
emission in hydrogen spectra [2] in 1947, the propo-
sition of the concept of light amplification by stimu-
lated emission of radiation by Gordon Gould [3, 4] in
1959, the experimental realizations of a working laser
(which was a solid-state flashlamp-pumped synthetic
ruby crystal emitting only in pulsed regime at 694 nm)
by Maiman in 1960 [5], and the realization of the first
gas laser (using helium and neon) by Javan and col-
leagues [6] in the same year.

The device demonstrated by Hall was made by
gallium-arsenide and emitted at 850 nm (near infrared).
At that time, much research started to be done aiming
to show the semiconductor lasing phenomenon in differ-
ent wavelengths, achievable through the use of different
material alloys. However, the still unpractical thresh-
old current densities, Jth, of more than 50 kA/cm2 was

one of the main factors that limited the room temper-
ature operation of the devices. The performance of SL
was improved a lot after the proposition (in 1963) of
the concept of heterostructure [7, 8], which consists in
the union of two semiconductor materials having differ-
ent energy gaps, causing a discontinuity in the resulting
energy band diagram and, thus providing carrier con-
finement in the growth direction. In fact, room temper-
ature operation of semiconductor lasers was possible in
1969, in pulsed mode [9], and in 1970, in CW regime
[10]. Then, the next step of the progress was the reduc-
tion of Jth to about 0.5 kA/cm2, an acceptable value
that put the semiconductor laser as a good technology
for coherent light generation in many applications.

In 1974 a paper of Dingle and Henry changed a
lot the scenario of SL technology [11]. In that work
they presented the idea of exploiting quantum effects
in heterostructure SL as a way to obtain wavelength
tunability and achieve lower threshold lasing than in
conventional (bulk) lasers. This was a seminal paper in
the field of optoelectronics because it showed the ad-
vantages of quantum well (QW) lasers over the conven-
tional (bulk) ones, and moreover, it also gave a clear
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indication of the improved lasers that could be fab-
ricated by further exploiting the reduced dimension-
ality of the devices, which later would be referred to
as quantum wires (2D-confinement) and quantum dots
(3D-confinement). The first important advantage of
QW lasers is the possibility to vary the lasing wave-
length by only changing the width of the quantum well
width during the growth process. Secondly, quantum
well lasers can deliver more gain per injected carrier
(that is, the differential gain, dg/dN is higher, thus
providing higher speed) than bulk lasers; this implies
that a lower threshold current density is required and,
as a first consequence of the lower current injection,
the internal losses, αi, are diminished in these devices.
This means higher efficiency; the second consequence is
that the refractive index change is smaller in QW lasers,
which means lower frequency chirp and, consequently,
narrower linewidth than in bulk lasers. These advan-
tages in size-quantized heterostructures come mainly
from the density of states profile (DOS) for carriers
near the band-edges, summarized in Fig. 1. The point
is that the narrowing of the DOS distribution (as the
size-quantization is increased from no-confinement up
to 3D-confinement) results in confinement of carrier en-
ergy distribution to narrower spectral regions. Another
ingredient is that, as known from quantum mechanics
[12], a high gain requires population inversion in en-
ergy levels with a high density of states. In bulk lasers
this takes place only after the filling of the lower lying
energy levels, whereas in QW devices the peak gain is
associated with energy levels at the bottom of the bands
(for a complete description, see e.g. Ref. [12, chap. 10]
or Ref. [13, chap. 4]). This positive effect is enhanced
in QD materials, as it has ideal delta of Dirac-like den-
sity of states, thus providing very high optical gain, in
theory.
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Figura 1 - Density of states versus energy profile in semiconduc-
tor materials. In a) bulk material, b) quantum wells, c) quantum
wires and d) quantum dots.

Indeed, in the early 80’s the increased gain of quan-
tum dots was one of the motivations to researchers
looking for still higher performance lasing devices. In
1986, Asada [14] theoretically demonstrated material
gain in a QD up to 104 cm−1, a value much higher if
compared to the QW case. Despite of the pessimistic
projections that the non-uniformity of dots size in the
growth process would be crucial to the failure of QD
lasers, the first experimental demonstration of lasing in
self-organized dots [15] opened the way to use quan-
tum dots in the active layer of SL. Low-threshold cur-
rent injection was demonstrated in 1994 [16] and it was
temperature-insensitive up to 150 K. In what followed,
some techniques were proposed to improve the device
performance, especially for what concerned the tem-
perature stability of the threshold and its reduction,
the room-temperature of the device and the CW power
levels achievable. These techniques were the stacking
of QD layers [17], the insertion of QD in a QW [18],
the use of a matrix material having higher band-gap
energy [19] and the seeding of QDs [20]. The evolution
on the growth processes associated to the benefits car-
ried on by those fundamental enhancement techniques
allowed for the increased research on the use of quan-
tum dot devices in a wide range of applications, from
telecommunications to medicine (see, e.g., Ref. [21]).
During the design of the lasers, an important and in-
dispensable step concerns the modeling of the lasing
properties through some computer tool (often based in
a set of rate equations [22]) able to give predictions of
the expected behavior of the real device, in order to
check whether the specifications are matched.

In this context, in view of the increasing research
interest in this field and of its relevance, in this work it
is presented in details a procedure to be followed in the
development of a quantum dot laser simulator. This
work is organized as follows: in the next section it is
made a review of a didactic and systematic procedure
to easily write down the rate equations for a quantum
dot laser. After that, in section 3 we describe in details
the implementation of our simulator, which can be eas-
ily implemented in class. To illustrate the use of the
simulator, in section 4 some basic results obtained with
the simulator are discussed. At last, the conclusions.

2. Rate equations description

As in any other semiconductor light source, also in
quantum dot lasers the well-known electronic transi-
tions between conduction (CB) and valence band (VB)
carriers summarized in Fig. 2 take place. In that figure
they are reported the spontaneous emission, the stimu-
lated absorption, the stimulated emission and the non-
radiative transitions, as well. Single levels on both the
conduction and valence band are considered only for the
sake of simplicity. The first of the processes represents
a spontaneous recombination of an electron in the CB
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and a hole in the VB, resulting in the generation of a
photon having no-correlation with other photons propa-
gating in the cavity and, because of that, called incoher-
ent emission. The second process represents the pho-
ton absorption by the active material, promoting the
generation of an electron-hole pair, which increases the
carrier density in both the CB and VB. The third tran-
sition is the responsible by the optical gain inside the
cavity; it represents the emission of a photon (by means
of an electron-hole recombination) after the stimulus of
another photon already present in the cavity. It is usu-
ally said this process provides optical gain because it
starts with one photon and ends with two photons. Fi-
nally, the non-radiative transitions represent a class of
interactions for which no-photon emission is observed.
As examples of such process it can be cited recombi-
nation due to semiconductor defects (and impurities),
surface and interface recombination and, at last, the
Auger recombination (see, e.g., Ref. [13, chaps. 1 and
4]).

Growth direction
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Figura 2 - Simplified diagram of the electronic transitions in
a semiconductor material: (a) spontaneous recombination; (b)
stimulated absorption; (c) stimulated emission; (d) non-radiative
recombination. The dashed region in (d) represents the non-
radiative recombination, such those due to semiconductor impu-
rities; the circled-dotted process seen in (d) represents an Auger
recombination.

In the literature of semiconductor lasers and opti-
cal amplifiers those phenomena are often represented
by means of time constants. Then, every transition
described above can be included in a rate equations
model (see, e.g., Refs. [13, 22, 23]). In this formal-
ism the device to be studied is mathematically repre-
sented by a set of time-differential equations for car-
rier and photon densities; the time constants of every
transition are included in these equations and they say
the number of carriers (or photons) involved in each
process in the time unit. This allows one to study, along
time, the balance between electron-hole pairs genera-
tion/recombination and photon generation/absorption.

These quantities will then be used to calculate the char-
acteristics of interest in the design of a real device as, for
instance, the output power, the laser spectrum, the net
modal gain, etc. In its simplest form, the rate equations
procedure consists of representing the system through
a set of, at least, 2 coupled equations. One of them re-
gards the carrier density, whereas the other regards the
photon density, the coupling being responsible by the
balance between photon and carrier number inside the
cavity. For the sake of simplicity, let us explain the bal-
ance by assuming a constant current injection rate (this
means that at each unit time a very precise amount of
electron is injected into the laser active region). This
pumping process increases the number of electron-hole
pairs in the device (electrons in the conduction band
and holes in the valence band). Besides this phenom-
enon, also the photon absorption in the semiconduc-
tor material increases the number of electron-hole pairs
(please, refer to Fig. 2b). On the other side, the num-
ber of electron-hole pairs is reduced by non-radiative
recombination and photon-emitting processes, as well.
By non-radiative recombination we mean a recombi-
nation between one electron in the conduction band
and a hole in the valence band, satisfying the selec-
tion rules [13, 23], for which no photon emission is ob-
served. The photon-emitting processes are those which
generate photons through spontaneous recombination
and stimulated emission. As it can be noticed, these
processes altogether contribute to an increase or a de-
crease in the carrier number in a time interval ∆t, de-
pending whether the contribution from electron-hole
generation terms is higher than that from the recombi-
nation ones. The description here reviewed allows one
to write the time variation of the number of carriers as

dN

dt
= (Pump) + (Stim Abs)− (StimEmis) −
(Non - radiative rec)− (Spont rec) . (1)

For the photon number the idea is quite similar;
from the processes cited above, one must have in mind
that the stimulated emitted photons and the sponta-
neous recombination processes will contribute to in-
crease the photon density, because these processes are
producing light inside the device, whereas the photons
involved in the stimulated absorption processes cause
the opposite effect, thus decreasing the fluctuation of
photon number in a time interval ∆t. Besides the stim-
ulated absorption, also the material optical loss will
reduce the photon density; this parameter is usually
expressed in units of cm−1 and expresses how many
photons are lost as they propagate at each centimeter
of the cavity and as they impinge on the cavity end
mirrors. From these phenomena one can easily write
down an equation for the photon number variation
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dS

dt
= − (StimAbs) + (StimEmis)−

(Opt loss)− (Spont rec) . (2)

The Eqs. (1) and (2), after have the terms in paren-
thesis replace by the real ones, constitute the set of rate
equations of a bulk laser. In the case of a QD laser,
the equations for carriers must be separated into dif-
ferent equations accounting for carriers confined in the
fundamental state (ground state, GS) and for carriers
confined in the excited states (ES). Furthermore, in the
literature it is often taken into account the contribution
of the carriers at higher energies (for example, those in
the wetting layer, WL, or in the barrier region). For
the purposes of the present work, the quantum dots of
the laser active region are considered to have one fun-
damental confined state and the first excited state only,
hereafter referred GS and ES. A typical representation
of these dots, with the various processes commonly con-
sidered in the modeling of quantum dot lasers is seen in
the simplified diagram of Fig. 3, which shows the con-
duction band profile and the various scattering events
taken into account here. As a consequence of choosing
the excitonic approximation to describe the interaction
between electrons and holes, also in the valence band
the carriers can be either in the GS or ES. This is the
reason why we simply refer to one of the bands, because
according to the excitonic model what happens to elec-
trons in the CB happens to holes in the VB, too (see,
for instance, Refs. [13, 24]).
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Figura 3 - Energy diagram of a simplified quantum dot laser ac-
tive region. They are shown the average times of the processes
which the carriers are subject to.

From the picture we conclude that each electron of
the current, I/e is directly injected into the quantum
dot and become confined in the ES for a time τGS

ES , after
which it will relax into the ground state. Besides the
possibility to relax into the GS, an electron in the ES
can either spontaneously recombine with a hole of the
valence band (this happens every τES

sp seconds) or un-
dergo a stimulated emission process, generating a pho-
ton of energy hυ equal to the energy of the incident
photon. Furthermore, there is the possibility of escape

into the continuum, which happens every τesc seconds;
the electrons which get out of the dot do not contribute
to the lasing. For the electrons which relax into the
ground state there are practically the same processes
but with different rates; the escape from the GS implies
a confinement in the ES, which happens every τES

GS sec-
onds, in average. Based on this description our model
assumes the following form

dNES

dt
=

I

e
+ NGSρES

1
τES
GS

−NESρGS
1

τGS
ES

−

NES(1− ρES)
1

τES
sp

−NES
1

τesc
− vgΓgESS

dNGS

dt
= NESρGS

1
τGS
ES

−NGSρES
1

τES
GS

−

NGS(1− ρGS)
1

τGS
sp

− vgΓgGSS

dS

dt
= vgΓgGSS + vgΓgESS − S

τph
+ βsp

NGS

τGS
sp

+

βsp
NES

τES
sp

(3)

In these equations I is the injected current, e is the
unity electrical charge, ρES(GS) is the probability of
finding an empty state in the excited (ground) state, Γ
is the optical confinement factor (see, e.g., Refs. [13,
23]), gES(GS) is the material gain for carriers in the ex-
cited (ground) state (Ref. [25, chap. 12]), vg is the
group velocity, βsp is the spontaneous emission factor
(gives the amount of spontaneous emission which cou-
ples to the cavity optical mode), τ

GS(ES)
sp are the spon-

taneous recombination times of carriers in the ground
(excited) state, τph is the cavity photon lifetime, τES

GS

is the carrier escape time from the ground state into
the excited state and τGS

ES is the carrier relaxation time
from the excited state into the ground state. At last,
τesc is the average time after which an electron escapes
from the dot into the continuum.

Since our purpose is mainly didactic we neglected
the existence of the wetting layer, therefore avoiding
including a fourth equation for carrier balance in the
set (3). Even knowing the wetting layer limits the gain
performance of 1D-devices (Ref. [26]) - and this could
be an indication of a possible limitation for the gain in
0D-devices, and also knowing that the presence of the
wetting layer will affect the dynamical behavior (Ref.
[27]) of the device, the general procedure to implement
a quantum dot laser simulator does not depend on the
presence of this 2D-reservoir of carriers. The set of
rate equations presented here differs to a model de-
scribing a quantum well laser mainly by the presence
of excited states and by the Pauli Exclusion Principle.
While in quantum well lasers people are interested in
having only one emission wavelength, which takes place
when only the fundamental confined state is present
(this is, in turn, achievable by controlling the width
of the well), in quantum dot lasers, the excited states
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are inevitably present, consequence of the self-assembly
growth process [21]. Besides, in quantum dots, due to
the 3D-spatial confinement, there is a limitation in the
number of carriers that can occupy a given confined
state. This means that a carrier can become captured
in the ES of a given dot if, and only if there is some
microstate (set of quantum numbers) available at that
level (Pauli Exclusion Principle). The same happens
for carriers relaxing in the GS. The consequence is that
the scattering events illustrated in Fig. 3 (and, thus,
the time constants) are dependent on the average car-
rier occupation in the confined states. On the contrary,
in QW lasers carriers are free to move in a plane, and
then in practice there will always be a microstate avail-
able to be occupied by an “incoming” carrier, in a given
confined state.

From the material point of view, this difference be-
tween QW and QD lasers makes the performance of
the last one higher if compared to the first one, be-
cause, as mentioned before, QD lasers will require lower
levels of current injection to reach threshold and to
keep operating, and the threshold current will be ideally
temperature-insensitive (to better understand the role
of the delta of Dirac-like density of states in quantum
dots, think of an ideal, isolated quantum dot with only
one confined electron and one confined hole state; in
this case carrier injection occurs only into these states
- therefore, the population inversion is easily achiev-
able - and no thermal excitation is possible - therefore,
the carrier configuration in the dots is not changed by
thermal effects. The result is an extremely low and
temperature-insensitive threshold current). For what
concerns the presence of excited states in QDs, an in-
teresting consequence is that two-wavelength lasing (or
more) is possible in these devices, making the emission
spectrum broader and, therefore, advantageous for ap-
plications like optical coherence tomography [21, 28].
Exploiting two-wavelength lasing switching in QD was
demonstrated in [29] and discussed in pulse-mode in
[30].

3. Numerical solution

The set of Eqs. (3) can be solved to obtain the sta-
tionary conditions by using any well-known technique
based on finite difference method; in the literature it is
commonly used the MATLAB solver ODE15. In this
paper we show in details our implementation, which
was based on a fourth-order Runge-Kutta method and
showed good solvability. Let us briefly review the im-
plementation of this method.

Given a differential equation of the form

dy

dx
= f(x, y). (4)

one is interested in obtaining the function y(x) start-

ing from its derivative. The Runge-Kutta method
(which is an improvement of the Euler method), in its
4th-order form states that the function evaluated at a
step i+1 depends on the function evaluated at the step
i and a weighted average of the function evaluated at
intermediate steps between i and i+1. In the following
we list this result in an appropriate way (see, e.g., Ref.
[31, chap. 17])

yi+1 = yi + h
6 (f0 + 2f1 + 2f2 + f3)

f0 = f(x0, y0)
f1 = f(x0 + h

2 , y0 + h
2 f0)

f2 = f(x0 + h
2 , y0 + h

2 f1)
f3 = f(x0 + h, y0 + hf2)

(5)

Now these equations have to be translated into our
set of equations for carriers and photons to allow for
a numerical implementation. In our problem y must
be read as S, NGS and NES ; h is the time step dt be-
cause our equations are time-dependent (thus, x must
be translated to t). The values f0, f1, f2 and f3 are
calculated for each of the state variables and represent
the differential rate equations in Eq. (3); this means
the program will solve 3 × 4 = 12 equations per itera-
tion. The fourth-order Runge-Kutta routine developed
is based on the equations below

h = dt ; x = t

f0 =




fES(ti, yi)
fGS(ti, yi)
fS(ti, yi)


 ,

f1 =




fES(ti + dt
2 , yi + dt

2 · f0)
fGS(ti + dt

2 , yi + dt
2 · f0)

fS(ti + dt
2 , yi + dt

2 · f0)


 ,

f2 =




fES(ti + dt
2 , yi + dt

2 · f1)
fGS(ti + dt

2 , yi + dt
2 · f1)

fS(ti + dt
2 , yi + dt

2 · f1)


 ,

f3 =




fES(ti + dt, yi + dt · f2)
fGS(ti + dt, yi + dt · f2)
fS(ti + dt, yi + dt · f2)


 ,

yi+1 = yi + dt
6 (f0 + 2f1 + 2f2 + f3) ,

yi =




NES(ti)
NGS(ti)

S(ti)


 .

(6)

As it can be seen in Eqs. (6) our data structure for
the output variable y consists on a matrix having 3 rows
(1st for carriers in ES, 2nd for carriers in GS and 3rd

for photons) and as many columns as the time vector
is long (because our implementation is fixed-step-like).
The variables assigned to f0. . . f 3 are column-vectors
because they contain the solution of every rate equa-
tion; these variables are supposed to be cleared after
the end of each step (only after being computed in the
output y). In Eq. (6) the notation fES(GS,S) stands
for the solution of the rate equation for carriers in the
ES (carriers in the GS, photons S).
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4. Results

In order to motivate readers to develop this simulator
for teaching and research purposes, in this section we
generate a couple of results which can be used to illus-
trate typical problems in optoelectronics lectures. We
also point to a common research problem in the field of
semiconductor lasers and present the use of the simu-
lator as a tool to investigate it.

4.1. Laser switch-on

The first result concerns the laser response to an elec-
trical current step injection in its active region. This
is, in fact, one of the first pictures presented in a typi-
cal course of optoelectronics, because it is useful to in-
troduce the concept of relaxation oscillations and their
origin, as well as to highlight the peak and stationary
powers achievable and how they depend on the injected
current, device geometry, etc. The use of the simulator
provides a practical way to illustrate these dependences
by only changing some parameters (e.g., those reported
in the Appendix) in the program or defining them as
input data. In Fig. 4 we report the switch-on for an
injected current constant and equal to 24 mA. In this
figure, the relaxation oscillations seen represent the in-
terplay between the filling of the GS and ES energy
levels with carriers and the generated photons in the
cavity, thus, are related to the dynamic of carriers in-
side the dots (see, e.g., Ref. [32]). Besides, readers
should notice that the laser simulated in Fig. 4 reached
the stationary condition at the time instant t ∼ 3.5 ns
(hence a 5 ns-long simulation could be avoided). In a
lecture should also be highlighted that even if the out-
put reaches a peak near 40 mW, the stationary power
is only 5.6 mW. This is an important fact concerning
the application in which the device will be used; the ap-
plication does determine whether these two parameters
(peak power and stationary power) are acceptable.
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Figura 4 - Laser response to a current step of 24 mA.

4.2. P-I curve

Another much popular laser feature seen very often in
laser textbooks is the P-I characteristic. In the Fig. 5 is
plotted the P-I of the simulation having the data pre-
sented in the Appendix. The P-I curve tells one the
output power of a laser when a DC current is injected
into its active region, and it is drawn by taking the sta-
tionary output power of different simulations, each one
for a given input DC current. The P-I is indispensable
in the modeling of a laser because it allows one to ob-
tain the threshold current of the device to be designed,
which is a very important parameter since it is strictly
related to the power consumption of the laser. From
the P-I one can get the threshold current by checking
the current value from which the output power starts
an increasing linear behavior, therefore Ith = 12 mA in
Fig. 5. Another important laser feature which can be
extracted from the P-I is the slope efficiency, dP/dI,
used to quantify the amount of emitted power varia-
tion observed when the injected current variation is dI,
above the threshold. This parameter estimates some-
how the power efficiency of the device, once higher slope
efficiencies means a capability to emit more power as a
response to lower current injection levels. In the simu-
lation presented in Fig. 5 the slope efficiency is approx-
imately 0.5 mW/mA.
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Figura 5 - Simulated P-I of a quantum dot laser whose parame-
ters are given in Appendix. Note the threshold current equal to
12 mA.

4.3. Switch-on delay time

Readers interested in using the simulator here presented
as a tool to do research in modeling topics of quantum
dot lasers could think of using it to study also some dy-
namic properties, which obviously would require some
improvements on the basis of the rate equations mod-
eled. Only to illustrate the potential use of the simu-
lator for this purpose, we choose here to consider the
switch-on time of the device as a parameter to analyze.
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It was calculated as done in Ref. [33], which means we
say the lasing starts (i.e., it switches-on) when the out-
put power reaches 50% of the first peak value (please,
refer to parameter τ in Fig. 6).
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Figura 6 - The switch-on time is defined as the time the laser
takes to reach half the maximum power. In the figure it is repre-
sented by τ .

As reported in the literature (Ref. [33 and references
therein]) the switch-on time is inversely proportional to
the injected current and this dependence is expected to
have an exponential shape; therefore the higher is the
applied current over threshold, the earlier starts the las-
ing. This can be seen in Fig. 7, in which the current
is taken in the range [2; 4; 6; 8] ∗ Ith. In the simula-
tions the current is always injected at t = 0. Besides,
in Fig. 8 the expected behavior for the switch-on time
versus injected current is reported for currents ranging
from 2 ∗ Ith until 12 ∗ Ith.
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Figura 7 - Laser time response for different values of injected
current over threshold, putting in evidence that the higher is the
current, the lower is the switch-on time, as known from the liter-
ature (Ref. [33]).

1100

900

700

500

300

100

T
im

e 
(p

s)

Current (mA)

20 40 60 80 100 120 140 160

Figura 8 - Switch-on time versus current. This picture collects
the parameter τ for different values of injected DC current. The
threshold is 12 mA and this exponential behavior agrees with the
literature (Ref. [33]).

Obviously, additional investigation which goes over
the scope of this work can be done from this point as,
for instance, the influence of relaxation time into the
parameter τ , or even the influence of the geometry of
the device into the switch-on time. This last, being
suitable for academic purposes is reserved for a future
work.

It must be emphasized that the present tool provides
a simple way to study the effects of these parameters on
the performance of the device and on its geometry, be-
cause only a change in the input data is enough to gen-
erate the output accordingly. Finally, from the imple-
mentation point-of-view, the development of the sim-
ulator using a fixed-step method like the fourth-order
Runge-Kutta here presented is more suitable than using
a variable-step one like the ODE15 of Matlab because
the post-processing routines usually needed to analyze
additional features of the laser output are easier to deal
with in the first case.

5. Conclusions

A quantum dot laser simulator based on the rate equa-
tions formalism was presented with an academic focus.
Starting from the basic concepts of electronic transi-
tions, we wrote a very simplified set of 3 rate equa-
tions to allow for the simulation of QD lasers. The dots
were considered to have 2 confined energy levels, la-
beled excited and ground state. Then, we presented in
details the steps to be followed in order to solve the rate
equations through the 4th order Runge-Kutta method.
To illustrate the applicability of the simulator we pre-
sented as results the switch-on behavior of a particular
QD laser, the typical P-I characteristics, and the depen-
dence of the switch-on time on the injected DC current.
These results make in evidence the fact that various im-
portant concepts, typical of courses of optoelectronics
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can be explored and easily illustrated with the help of
such kind of simulator.

Appendix

Table containing some of the data used in the simula-
tions.

Parameter Value
Device length 3 mm
Active region width 4 µm
Optical confinement factor 0.059
Effective refractive index 3.332
Material loss 1.5 cm−1

Dot height 6 nm
Dot radius 15.5 nm
Dot density 400 µm−2

Relaxation time ES into GS 7 ps
Spontaneous recombination GS 1.2 ns
Spontaneous recombination ES 1.2 ns
Spontaneous emission factor 10−5

Right/Left reflectivity 0.03/0.95
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