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Notas e Discussões

Change of entropy in the spontaneous thermalization
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When two blocks with distinct initial temperatures are placed in thermal contact, heat flows from the hotter
block to the cooler until thermal equilibrium is reached. Given the initial temperatures, it is easy to predict the
final temperature and, for identical blocks, to find a closed-form expression for the overall change of entropy,
showing that it is a positive quantity. The change of entropy in the more general case of distinct blocks, however,
is not mentioned in the introductory physics textbooks, which sounds as an indication of very complex mathe-
matics underlying the problem. In this shortnote, I show that this is not the case by deriving a simple expression
for the change of entropy and developing an elementary proof, at one-variable calculus level, that this change is
a positive quantity.
Keywords: heat transfer, thermal equilibrium, entropy change.

Quando dois blocos com temperaturas iniciais distintas são postos em contato térmico, o calor passa do
bloco mais quente para o mais frio até que o equiĺıbrio térmico seja atingido. Dadas as temperaturas iniciais,
é fácil prever a temperatura final e, para blocos idênticos, encontrar uma fórmula simples para a variação da
entropia do sistema, mostrando que ela é positiva. A variação de entropia no caso mais geral de blocos distintos,
entretanto, não é mencionada nos livros-texto de f́ısica básica, o que soa como um indicativo de que há aspectos
matemáticos muito complexos por trás do problema. Nesta nota, eu mostro que isto não ocorre e o faço deter-
minando uma expressão simples para a variação da entropia e exibindo uma demonstração elementar, ao ńıvel
de cálculo diferencial de uma variável, de que tal variação é positiva.
Palavras-chave: transferência de calor, equiĺıbrio térmico, variação da entropia.

When all parts of a material system are at the
same temperature, the system is in thermal equili-
brium. Otherwise, heat will flow from the hotter parts
to the cooler via conduction, convection, and radiation.
Although spontaneous thermalization is a common phe-
nomenon in our everyday experience, as well as a topic
covered in introductory physics courses, some questi-
ons are not addressed in textbooks. For instance, for
distinct blocks, there would be a simple expression for
the change of entropy? Could it be proved that it is a
positive quantity? The absence of these discussions in
introductory physics textbooks has bothered me since
my own undergraduate times because heat exchange
between two blocks is a central paradigm in thermody-
namics, underlying the definition of temperature itself
when we adopt the macroscopic point of view [1]. For-
tunately, on teaching introductory physics for a class
of devoted students, last year, I was asked just about

those questions, which has motivated me to search for
an elementary approach, presentable to first year un-
dergraduates with knowledge of calculus of a single va-
riable only, without mentioning partial derivatives.

Take into account two distinct blocks with initial
(absolute) temperatures T1 > T2 > 0, kept inside an
insulated container, initially separated each other by
a partition, as seen in Fig. 1(a). At time t = 0, the
partition is removed and the blocks are put in thermal
contact, see Fig. 1(b). Heat then will flow from the hot-
ter block to the cooler until thermal equilibrium to be
reached, at some final temperature Teq. Given the (in
general, distinct) thermal capacities C1 and C2 of our
blocks, the final temperature Teq is easily determined
as follows. On neglecting any heat exchange other than
that between the blocks, all heat that leaves block 1 is
absorbed by block 2, i.e. Q1 + Q2 = 0. On assuming
that both C1 and C2 are independent of temperature,
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C with T , which is a good approximation for most pure solids beyond the low-temperature regime, according to the Dulong-Petit law
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one has C1 (Teq − T1) + C2 (Teq − T2) = 0,2 so

Teq =
C1 T1 + C2 T2

C1 + C2
, (1)

a well-known result (see, e.g., Sec. 18-8 of Ref. [2]).3

Figura 1 - Our system is an insulated container within which
there are two blocks with distinct initial temperatures T1 > T2.
Panel (a): initially, the blocks are separated apart by an adiaba-
tic partition. Panel (b): At t = 0 the partition is removed and
the blocks are put in thermal contact. Heat will flow from block
1 to block 2, as indicated by the arrow, until thermal equilibrium
to be reached, at a final temperature Teq .

With the result for Teq in hands, let us determine
the overall change of entropy in our system – i.e., its va-
riation from the initial nonequilibrium state (at t = 0)
to the final equilibrium state, in which the blocks attain
the same temperature Teq.

4 We begin with the simpler
case of identical blocks, for which C1 = C2 ≡ C. From
Eq. (1), it promptly follows that Teq = (T1 + T2)/2.
As this spontaneous heat transfer involves an internal
thermal irreversibility, with an equilibrium state only
in the final state, we cannot directly replace the actual
irreversible process with a reversible one because the
initial state itself is not an equilibrium state. For block
1, imagine that it is put in contact successively with a
series of reservoirs ranging in temperature from T1 to
Teq. We then have a very great number N of almost
reversible processes and then the change of entropy can
be determined by adding δQ/T for all these processes
and taking the limits N → ∞ and δQ → 0. The result
is

∆S1 =

∫
R1

δQ

T
=

∫ Teq

T1

C dT

T
= C ln

(
Teq

T1

)
= −C ln

(
T1

Teq

)
, (2)

where R1 is the sequence of reversible processes des-

cribed above. Analogously, for block 2 one has

∆S2 =

∫
R2

δQ

T
=

∫ Teq

T2

C dT

T
= C ln

(
Teq

T2

)
. (3)

From Eqs. (2) and (3), one has

∆Ssystem = ∆S1 +∆S2 = C [2 lnTeq − ln (T1 T2)]

= 2C
(
lnTeq − ln

√
T1 T2

)
. (4)

For identical blocks, Teq = (T1 + T2)/2, which is the
arithmetic mean of T1 and T2. It is easy to see that,
for any positive numbers T1 ̸= T2, the arithmetic
mean is greater than the geometric mean

√
T1 T2 (by

squaring both means), then lnTeq > ln
√
T1 T2 , so

∆Ssystem > 0. As our system is isolated from its
neighborhood, the change of entropy of the universe
∆Suniv equals ∆Ssystem and then ∆Suniv > 0, in
agreement to the entropic version of the 2nd law of
thermodynamics. This proof of increase of entropy
can be found in some introductory physics textbooks
(e.g., Sec. 20-3 of Ref. [2]), though not in the general
form given here, for their authors prefer to attribute
numerical values for the initial temperatures and then
compute ∆Ssystem.

For distinct blocks, our rigorous analysis of the
change of entropy demands the following result.

Theorem 1 (A positive function) Given a real
constant α > 0, let

f(x) ≡ (1 + α) ln

(
x+ α

1 + α

)
− lnx

be a real function defined for all x ≥ 1. Then f(x) > 0
for all x > 1.

Proof. The derivative of the given function f(x) is

f ′(x) =
1 + α

x+ α
− 1

x
=

α (x− 1)

x (x+ α)
,

so f(x) is a differentiable (hence continuous) function
for all x ≥ 1. Being α > 0, then f ′(x) = 0 for x = 1
only, and f ′(x) > 0 for all x > 1. This implies that
f(x) is an increasing function for all x ≥ 1, therefore
f(x) ≥ f(1) = 0 for all x ≥ 1. Now, assume (towards
a contradiction) that there is some x > 1 for which
f(x) = 0. From Rolle’s theorem,5 this would imply the
existence of at least one point c, 1 < c < x, such that
f ′(c) = 0, which contradicts the fact that f ′(x) > 0
for all x > 1. Then, f(x) > 0 for all x > 1.

�
(see Sec. 9.8 of Ref. [1]).

3Since Teq is a weighted mean of T1 and T2 (with statistical weights C1 and C2 , respectively), then T2 < Teq < T1.
4Note that at any time t < 0 the system is assumed to be composed by two insulated subsystems with distinct temperatures which

are kept, each, in thermodynamic equilibrium. Of course, this demands the partition itself to be adiabatic.
5This theorem establishes that, given a real function f(x) that is continuous on an interval [a, b] and differentiable on the open

(a, b), if f(a) = f(b) then there is at least one number c in (a, b) such that f ′(c) = 0. See, e.g., Sec. 3.2 of Ref. [3].
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By following the same strategy employed for identi-
cal blocks – i.e., to divide the actual irreversible ther-
malization process into an infinity of reversible stages
–, one has

∆S1 +∆S2 =

∫ Teq

T1

C1 dT

T
+

∫ Teq

T2

C2 dT

T

= C2 ln

(
Teq

T2

)
− C1 ln

(
T1

Teq

)
. (5)

From the expression for Teq in Eq. (1), one finds

∆Ssystem = C2 (lnTeq − lnT2)− C1 (lnT1 − lnTeq)

= C2 ln

(
C1x+ C2

C1 + C2

)
+ C1 ln

(
C1 + C2/x

C1 + C2

)
= C2 ln

(
C1 x+ C2

C1 + C2

)
+ C1 ln

(
C1x+ C2

(C1 + C2)x

)
= (C1 + C2) ln

(
C1x+ C2

C1 + C2

)
− C1 lnx, (6)

where x ≡ T1/T2. On dividing both sides by C1, one
has

∆Ssystem

C1
=

(
1 +

C2

C1

)
ln

(
x+ C2/C1

1 + C2/C1

)
− lnx . (7)

Finally, on putting α = C2/C1, which is of course a
positive constant, Eq. (7) reduces to

∆Ssystem

C1
= (1 + α) ln

(
x+ α

1 + α

)
− lnx , (8)

From Theorem 1, we know that the function at
the right-hand side is positive for any x > 1, so
∆Ssystem/C1 > 0 whenever T1 > T2, which implies
that ∆Ssystem > 0. I could not find a such proof in
literature.

For those interested in approaching this topic in a
deeper mathematical level, e.g. by analyzing other irre-
versible processes (or paths) with the same initial and
final states, in a more advanced course (e.g., Classi-
cal Thermodynamics for physicists or Heat and Mass
Transfer for engineers), a recent paper by Stilck and
Brum (see Ref. [4]) would be more appropriate.
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