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More on the quantum harmonic oscillator via unilateral
Fourier transform
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The stationary states of the quantum harmonic oscillator are properly determined by means of the unilateral
Fourier transform without having to recourse to the properties of the confluent hypergeometric functions. This
simpler procedure is reminiscent of the algebraic method based on the ladder operators and depends on the value
of just one tabulated definite integral related to the ground state.
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1. Introduction

Ordinarily the unilateral Fourier transform is a useful
tool for solving problems involving absolutely integrable
functions defined over a semi-infinite interval. A proper
use of the unilateral Fourier transform, though, takes
into account the adequate homogeneous boundary con-
ditions at the origin. The convenience of using the
Fourier sine transform or the Fourier cosine transform
is dictated by the Dirichlet boundary condition or
Neumann boundary condition, respectively. Those small
details have been many times overlooked in the literature
[1–10] (see Ref. [11] for criticisms).
The unilateral Fourier transform has proved to be a

straightforward and efficient manner to deal with a few
bound-state solution problems in nonrelativistic quan-
tum mechanics [12–14]. In recent times, the quantum
harmonic oscillator has also been approached by the
Laplace transform [15–18], by the exponential Fourier
transform [19–22], and also by the unilateral Fourier
transform [12]. In Ref. [12], the quantum harmonic
oscillator was approached by the unilateral Fourier
transform method and the eigenfunctions were obtained
by recurring to a few properties of the sometimes clumsy
confluent hypergeometric function (Kummer’s function).
In the present paper we will show that the eigenfunctions
can be obtained by an unlimited sequence of functions
generated by that one related to the ground state. This
process is reminiscent of the algebraic method based on
the ladder operators (see, e.g. [23]), and depends on the
calculation of just one definite integral easily found in
math tables.

2. The Unilateral Fourier Transform

Let us begin with a brief description of the unilat-
eral Fourier transform and a few of its properties.
* Correspondence email address: antonio.castro@unesp.br

The unilateral Fourier transform can be obtained from
the real form of the Fourier integral theorem [24].
It is worthwhile to note that once the unilateral
Fourier transform and their inverse are established, the
behaviour of f(ζ) and its transform on the other side
of the axis does not matter. The direct Fourier sine and
cosine transforms of f(ξ) are denoted by Fs{f(ξ)} =
Fs(k) and Fc{f(ξ)} = Fc(k), respectively, and are
defined by the integrals (see, e.g. [24–26])

Fs(k) = Fs{f(ξ)} =
√

2
π

∫ ∞
0

dξ f(ξ) sin kξ,

Fc(k) = Fc{f(ξ)} =
√

2
π

∫ ∞
0

dξ f(ξ) cos kξ.

(1)

The original function f(ξ) can be recovered by the
inverse unilateral Fourier transforms F−1

s {Fs(k)} and
F−1
c {Fc(k)} expressed as

f(ξ) = F−1
s {Fs(k)} =

√
2
π

∫ ∞
0

dk Fs(k) sin kξ,

f(ξ) = F−1
c {Fc(k)} =

√
2
π

∫ ∞
0

dk Fc(k) cos kξ.

(2)

We now observe that f(ξ) retrieved by Fs(k) must satisfy
the homogeneous Dirichlet boundary condition at the
origin, whereas f(ξ) retrieved by Fc(k) must satisfy
the homogeneous Neumann boundary condition at the
origin:

Fs(k)⇒ f(ξ)|ξ=0 = 0,

Fc(k)⇒ df(ξ)
dξ
|ξ=0 = 0.

(3)

It immediately follows that

Fs(k)|k=0 = dFc(k)
dk

∣∣∣∣
k=0

= 0. (4)
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Those often overlooked boundary conditions are essen-
tial in applications that include the origin as an implicit
boundary condition [1–10]. Moreover, they allow that
the direct and the inverse unilateral Fourier transform
can be extended continuously to the other side of the
semiaxis. It is clear from (1) and (2) that the only
difference between the direct and the inverse unilateral
Fourier transform is the exchange of ξ by k. In addition,
the functions and their respective transforms, if they
are square integrables, are related by the Parseval’s
formulas: ∫ ∞

0
dξ |f(ξ)|2 =

∫ ∞
0

dk |Fs(k)|2,

(5)∫ ∞
0

dξ |f(ξ)|2 =
∫ ∞

0
dk |Fc(k)|2.

The usefulness of the unilateral transform method for
solving problems depends of course on the mutual inver-
sion process for the pairs (f(ξ), Fs(k)) and (f(ξ), Fc(k))
with the proper boundary conditions at the origin. In
the following development we assume that the conditions
for the existence of the inverses are satisfied in all the
circumstances. The unilateral Fourier transforms have
the following derivative properties

Fs
{
d 2f(ξ)
dξ2

}
= −k2Fs(k),

(6)

Fc
{
d 2f(ξ)
dξ2

}
= −k2Fc(k),

and

Fs
{
ξ
df(ξ)
dξ

}
= −Fs(k)− kdFs(k)

dk
,

(7)

Fc
{
ξ
df(ξ)
dξ

}
= −Fc(k)− kdFc(k)

dk
.

Differentiating Fs(k) and Fc(k) and assuming that
ξnf(ξ), with n = 0, 1, 2, . . ., is well behaved, one obtains

d 2nFs(k)
dk2n = (−1)nFs{ξ2nf(ξ)},

d 2n+1Fs(k)
dk2n+1 = (−1)nFc{ξ2n+1f(ξ)},

(8)
d 2nFc(k)
dk2n = (−1)nFc{ξ2nf(ξ)},

d 2n+1Fc(k)
dk2n+1 = (−1)n+1Fs{ξ2n+1f(ξ)}.

This last group of formulas establishes a connection
between the existence of the unilateral Fourier transform
of ξnf(ξ) and the existence of the n-th derivatives of
Fs{f(ξ)} and Fc{f(ξ)}.

3. The Unilateral Fourier Transform
Applied to the Harmonic Oscillator

We are now ready to address the one-dimensional quan-
tum harmonic oscillator delineated by the boundary
problem for the characteristic pair (ε, ψ):

d 2ψ(x)
dx2 + (2ε− x2)ψ(x) = 0,

+∞∫
−∞

dx |ψ(x)|2 <∞.
(9)

The differential equation in this eigenvalue problem is
nothing more than the time-independent Schrödinger
equation. The normalization condition is there for con-
sistency of the probability interpretation of quantum
mechanics. As a matter of fact, the normalization
condition demands ψ(x) → 0 as |x| → ∞ in such
a way that ψ(x) tends to e−x

2/2 for sufficiently large
|x|. Because the differential equation is invariant under
reflection through the origin (x → −x) and x = 0 is a
regular point, eigenfunctions and their first derivatives
continuous on the whole line with well-defined parities
can be constructed by taking symmetric and antisym-
metric linear combinations of ψ defined on the positive
side of the x-axis, by imposing additional boundary
conditions on ψ at the origin: the homogeneous Dirichlet
boundary condition (ψ(x)|x=0 = 0) for odd-parity
eigenfunctions, and the homogeneous Neumann condi-
tion (dψ(x)/dx|x=0 = 0) for even-parity eigenfunctions.
Thus, it suffices to concentrate attention on the positive
half-line (ξ = |x|). The imposed behaviour of ψ(ξ)
and dψ(ξ)/dξ at the origin, besides the behaviour at
infinity, allows us to use the unilateral Fourier transform
like a shot into (9). However, this is an ineffective
action because the transformed equation and trans-
formed boundary conditions have the same form. In
other words, the eigenvalue problem for ψ(x) is invariant
with respect to the unilateral Fourier transform. Indeed,
using (6) and the first and the third lines of (8), one finds

d 2Ψ(k)
dk2 + (2ε− k2)Ψ(k) = 0, (10)

where Ψ(k) is the unilateral transform of ψ(ξ). Further-
more, ∫ ∞

0
dξ |ψ(x)|2 =

∫ ∞
0

dk |Ψ(k)|2. (11)

Nevertheless, Ponomarenko’s trick [20]

ψ(ξ) = φ(ξ)eξ
2/2, (12)

is able to accomplish the purpose. The factorization
prescribed by (12) dictates that φ(ξ) obeys the equation

d 2φ(ξ)
dξ2 + 2ξ dφ(ξ)

dξ
+ (2ε+ 1)φ(ξ) = 0. (13)
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Note that Ponomarenko’s trick [20] is nothing more than
the elimination of the first-derivative term of a second-
order differential equation in reverse gear. Notice that
φ(ξ) and dφ(ξ)/dξ have the same behaviour as ψ(ξ) and
dψ(ξ)/dξ at the origin, and tend to e−ξ2 for sufficiently
large ξ. Therefore, φ(ξ) is amenable to unilateral Fourier
transforms and is also square integrable. Using (6) and
(7), with Φ(k) denoting the unilateral Fourier transform
of φ(ξ), one obtains

dΦ(k)
dk

+
(
k

2 −
ε− 1/2

k

)
Φ(k) = 0, (14)

with ∫ ∞
0

dξ |φ(ξ)|2 =
∫ ∞

0
dk |Φ(k)|2. (15)

The boundary conditions on φ(ξ) and Φ(k) plus (15)
establish the equivalence of the eigenvalue problem for
φ(ξ) and that one for Φ(k). The transformed first-order
differential equation (14) has a singularity at k = 0
so that the solution could exhibit some pathological
behaviour at the singular point. The general solution
of Eq. (14) is expressed as

Φ(k) = Akε−1/2e−k
2/4, (16)

where A is an arbitrary constant and ε is as yet unde-
termined. From the definition of the unilateral Fourier
transform, one sees that the acceptable behaviour at
the origin restricts ε to ε > 1/2 if one considers the
sine Fourier transform, and to ε = 1/2 or ε > 3/2 if
one considers the cosine Fourier transform. Parseval’s
formula (15) only requires ε > 0. A more strong
condition on ε follows from the existence of the unilateral
Fourier transform of ξnφ(ξ), with n = 0, 1, 2, . . .,
requiring in this way infinitely differentiable unilateral
Fourier transforms for all values of k as can be seen
from (8). Coming back to (16), one observes that Φ(k)
is infinitely differentiable at k = 0 only if ε− 1/2 = n in
such a way that

εn = n+ 1
2 . (17)

We now proceed to the inversion of the unilateral Fourier
transform. Let φ(+)

n (ξ) and φ
(−)
n (ξ) denote F−1

c {Φ(k)}
and F−1

s {Φ(k)}, respectively. They are expressed as

φ(+)
n (ξ) = A(+)

n

∫ ∞
0

dk kne−k
2/4cos kξ,

(18)

φ(−)
n (ξ) = A(−)

n

∫ ∞
0

dk kne−k
2/4sin kξ,

with

φ
(∓)
n+1(ξ) = ∓

A
(∓)
n+1

A
(±)
n

d

dξ
φ(±)
n (ξ). (19)

Here, the operator d
dξ is seen as a raising operator

because it brings into existence, from φ
(±)
n (ξ) associated

with εn, new solutions associated with εn+1. Using the
definite integral labelled as 3.896.4 in Ref. [26], viz.

I(ξ) =
∫ ∞

0
dk e−k

2/4cos kξ =
√
πe−ξ

2
, (20)

one finds∫ ∞
0

dk k2ne−k
2/4 cos kξ = (−1)n d

2nI(ξ)
dξ2n ,∫ ∞

0
dk k2n+1e−k

2/4sin kξ = (−1)n+1 d
2n+1I(ξ)
dξ2n+1 ,

(21)

so that

φ
(+)
2n (ξ) = A2n

d 2n

dξ2n e
−ξ2

, with

dφ
(+)
2n (ξ)
dξ

∣∣∣∣∣
ξ=0

= 0,

(22)

φ
(−)
2n+1(ξ) = A2n+1

d 2n+1

dξ2n+1 e
−ξ2

, with

φ
(−)
2n+1(ξ)|ξ=0 = 0.

Then, combining these results with (12), one obtains
ψ2n(ξ) = φ

(+)
2n (ξ)eξ2/2 and ψ2n+1(ξ) = φ

(−)
2n+1(ξ)eξ2/2.

Explicitly, ψ2n(ξ) and ψ2n+1(ξ) are

ψ2n(ξ) = A2ne
ξ2/2 d

2n

dξ2n e
−ξ2

, with

dψ2n(ξ)
dξ

∣∣∣∣
ξ=0

= 0,

(23)

ψ2n+1(ξ) = A2n+1e
ξ2/2 d

2n+1

dξ2n+1 e
−ξ2

, with

ψ2n+1(ξ)|ξ=0 = 0.

Taking symmetric and antisymmetric linear combina-
tions of ψ(ξ), as discussed before, one finds the eigen-
functions defined on the whole x-axis:

ψ2n(x) = ψ2n(ξ) + ψ2n(−ξ)
2

= A2ne
x2/2 d

2n

dx2n e
−x2

,

(24)

ψ2n+1(x) = ψ2n+1(ξ)− ψ2n+1(−ξ)
2

= A2n+1e
x2/2 d

2n+1

dx2n+1 e
−x2

.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0038 Revista Brasileira de Ensino de Física, vol. 44, e20220038, 2022



e20220038-4 More on the quantum harmonic oscillator via unilateral Fourier transform

Then, using Rodrigues’s formula for the Hermite poly-
nomial (see, e.g. 8.950.1 in Ref. [26])

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
, (25)

one finds

ψn(x) = Ane
−x2/2Hn(x). (26)

4. Final Remarks

We have shown that the complete solution of the
one-dimensional quantum harmonic oscillator can be
approached via the unilateral Fourier transform method
without having to recourse to the properties of the
confluent hypergeometric function as in Ref. [12]. Pono-
marenko approached the quantum harmonic oscillator
with the exponential Fourier transform grounded on
the normalizability and parity of the eigenfunctions
as necessary and sufficient conditions for solving the
problem. Nevertheless, Ponomarenko used the solution
of (−1)z = ±1 without perceiving that this equation
has many more solutions than those with z expressed
by integer numbers. In the present work we have used
Ponomarenko’s trick [20] and the unilateral Fourier
transform method including properly the boundary con-
dition at the origin. Square-integrable eigenfunctions
have been taken into account demanding the existence
of the unilateral Fourier transform of ξne−ξ2/2ψ(ξ), with
n = 0, 1, 2, . . ., with the use of the unilateral Fourier
transform properties grouped in (8).
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