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As long we known, the non-relativistic Lagrangian definition, L = T − U with T and U as being, respectively,
kinetic and potential energy, it is not valid at the relativistic level. This issue partially obstructs the college
student’s comprehension of special theory of relativity from the Lagrangian formalism. Further, it is well known
that the space-time world demands essentials principles of special theory of relativity: four-vectors and Lorentz
invariance. In this work, we departure from these basics concepts of space-time world in order to get a relativistic
Lagrangian definition parallel to the non-relativistic one and, as a consequence, this can help the college student
to better understand special theory of relativity [1].
Keywords: Special Relativity, Lorentz Invariance, Four-vector in space-time, Lagrangian and Hamiltonian
formalism.

1. Introduction

It is well known that the Lagrangian formalism, as well
as, Hamiltonian one are important to describe classical
systems, because these formalisms reveal many impor-
tant features, symmetries [2, 3] for example, and allow
to quantize them through some quantization processes:
canonical [4] and path integral [5] quantization methods
for instance. However, when it is considered relativistic
systems, the usual non-relativistic Lagrangian definition
(L = T − U) is not extended to the relativistic one,
as the Hamiltonian formalism is, i.e., H = T + U .
It happens because, unlike Hamiltonian, Lagrangian is
defined in the configuration space. This issue embraces
some concepts that are difficulty to the college student
to understand. Among others things, this is a point that
we want to clarify in this work.

The relativistic Lagrangian formalism is usually pre-
sented, through fundamental books in college, in an
opaque way due to some assumptions considered and it
is not possible to do a parallel between non-relativistic
and relativistic Lagrangian definitions. Precisely, the
non-relativistic Lagrangian definition, L = T − U , is
not valid at the relativistic level. Consequently, this
obliterates the student to better comprehend the special
theory of relativity and, indeed, some gaps arise in the
student comprehension of the special theory of relativity
in the Lagrangian framework. In order to fill this gap
and to promote a better way to teach special theory
of relativity from the Lagrangian formalism, at college
level, we start to discuss the concepts and importance of
four-vector and Lorentz invariance. After that, we show
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how these concepts help to formulate the relativistic
Lagrangian in a straightforward and transparent way
in order to facilitate the college student to understand
special theory of relativity from the Lagrangian point
of view.

In order to get a self-contained work, it is organized
as follows: in section 2 the basics of four-vectors and
the importance of Lorentz invariance are reviewed.
After that, departing from this review, the relativistic
Lagrangian of the free particle is obtained in a very clean
and straightforward way. In section 3, the steps that
led us to obtain the relativistic Lagrangian of the free
particle given in the end of the section 2 are extended
to explore the dynamics of a generic interacting system.
In section 4, it is considered a particle in a background
electromagnetic field in order to illustrate how this pre-
viously alternative relativistic Lagrangian formulation
is more effective than the usual one. Consequently, it
is possible to explore a parallel between the relativistic
and non-relativistic Lagrangian definitions, indeed, it is
obtained a relativistic Lagrangian definition parallel to
L = T−U . At the end, some conclusions and discussions
are presented.

2. Basics on Four-Vectors of the Special
Relativity

We start this Section describing the notation used here.
The Greek indices indicate the four-dimensional space-
time with the coordinates xµ =

(
x0, xi

)
while the Latin

indices indicate the standard three-dimensional space
with i = 1, 2, 3. So the x0 and xi refer to the timelike
and the spacelike components, respectively.
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We would like to do a brief comment about the metric
definition. Consider a N -dimensional space (V N ) with
no special structure in which tensors play a role are
metric spaces, i.e., they possess a rule which assigns
“distances” to pairs of neighboring points. In particular,
one calls a space (pseudo-)Riemannian if there exists an
invariant quadratic differential form, namely,

ds2 = gabdx
adxb, (1)

with a, b = 1, 2, . . . , N and the g’s are generally func-
tions of position and are subject only to the following
restriction: det(gab) 6= 0. As it is required that ds2 is
invariant, it follows that gab must be a tensor, which
is called the metric tensor, while Eq. (1) is the metric.
In pseudo-Riemannian spaces such as Minkowski space,
the square of a vector, given in Eq. (1), can be a positive
or a negative real number and Eq. (1) is rewritten as

ds2 = ηµνdx
µdxν , (2)

with the metric tensor ηµν , that reflects the nature of
the space-time, as well as its inverse ηµν , reads as

ηµν = ηµν = diagonal (+,−,−,−), (3)

and, consequently, it is get the following identity,

ηµνηνλ = δµλ , (4)

with δµλ as the Kronecker delta.
The transformation law of a contravariant tensor,

in particular a component four-differential dxρ, from
one coordinate system {xµ} to another, {x′µ}, is
expressed by

dx′µ = Λµρdxρ, (5)

where, by the chain rule of differentiation, we have

Λµρ = ∂x′µ

∂xρ
. (6)

By using, again, the chain rule of differentiation, we can
take the following trivial identity

Λµρ
(
Λ−1)ρ

ν
= ∂x′µ

∂xρ
∂xρ

∂x′ν
= ∂x′µ

∂x′ν
= δµν . (7)

From which, we can read

∂xρ

∂x′ν
=
(
Λ−1)ρ

ν
. (8)

After the contraction of both sides of the Eq. (8) with the
four-derivative operator ∂

∂xρ
, we get the transformation

law of the four-derivative operator as being

∂

∂x′ν
=
(
Λ−1)ρ

ν

∂

∂xρ
or ∂′ν =

(
Λ−1T ) ρ

ν
∂ρ, (9)

where the superscript T means the transpose operation.

Whenever the motion of the particle is taken in
consideration, space-time comes into play, then we must
use the metric tensor ηµν . With the intervention of
the metric tensor, an additional condition for Λµν , or
for the corresponding transformation matrix Λ, can be
found in a way to provide invariant scalar forms in
four-dimensional space-time, like the distance in the
three-dimensional space. With the aim to simplify the
procedure, we can employ the usual notation in which
the space-time metric tensor (ηµν) and its inverse (ηµν)
can be used to lower or raise indices. Thus, using the
inverse of the metric tensor to write the four-differentials
on both sides of the Eq. (5) with their indices lowered,
as well as in dx′µ = ηµαdx′α, it can be verified that

dx′ν = (ηΛη−1) ρν dxρ. (10)

So that dx′ν is covariant four-differential, whose contrac-
tion with its contravariant partner dx′ν results in an
invariant scalar quantity, the transformation matrix in
Eq. (10) must be the same as that found for the four-
derivative operator in Eq. (9), therefore

ηΛη−1 = Λ−1T or ΛT ηΛ = η. (11)

The transformation of the four-differential performed by
the Λµν , which satisfies the Eq. (11), is called a Lorentz
transformation1. Therefore, it assures the invariance of
the quadratic form, i.e., the invariance of the metric,
namely:

dx′
µ
dx′µ = dxµdxµ = invariant. (12)

A generic contravariant four-vector must have the
transformation matrix satisfying the Eq. (11) and its
transformation law, as that of the four-differential in
Eq. (5), then

A′
µ = ΛµνAν . (13)

A generic covariant four-vector must have the transfor-
mation matrix satisfying the Eq. (11) and its transfor-
mation law, as that of the four-derivative in Eq. (9),

B′µ =
(
Λ−1)ρ

µ
Bρ. (14)

In such a way that the contraction of a contravariant
four-vector with other covariant one, and vice-versa,
results in a Lorentz invariant scalar:

A′
µ
B′µ = AνBν . (15)

Any four-vector can be split into timelike and spacelike
components and the metric tensor can be used to lower
the index as

Aµ =
(
A0, A

)
and Aµ = ηµνA

ν =
(
A0,−A

)
, (16)

1 Lorentz transformation encompasses a variety of transformations
like spatial rotations [3], Lorentz boosts [6], discrete symmetries
transformations, let it be said that not all Lorentz-invariant laws
are expressible as relations between 4-vectors and scalars; some
require 4-tensors and, in quantum mechanics, spinors transforma-
tions, which is a representation of Lorentz-invariant laws [7].
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where A0 is the timelike component and A is the vector
assembled with the spacelike components Ai. If we go
ahead and write that Aµ = (A0, Ai) then A0 = A0 and
Ai = −Ai. Thus, the invariant scalar of the Eq. (15)
takes the following form

A′
0
B′

0 −A′ ·B′ = A0B0 −A ·B. (17)

The four-derivative operator (∂µ) is split into time-
like and spacelike components according the identity
∂νx

µ = δµν , which can be verified without the interven-
tion of the metric tensor in a similar way to Eq. (7) with
the interchange of Λ and Λ−1. So, for the four-derivative
operator, it’s worth

∂µ = (∂0, ∇) and ∂µ = ηµν∂ν = (∂0,−∇) . (18)

Let dxµ to be the infinitesimal four-displacement of
the particle, which obviously behaves as a contravariant
vector under Lorentz transformation. Splitting dxµ into
timelike and spacelike components as follows

dxµ =
(
dx0, dr

)
, (19)

where dx0 = cdt, with c as being the speed of light in the
vacuum and dt as the infinitesimal time interval spent by
the particle to move along the infinitesimal displacement
dr, whose components are dxi. The time derivative of the
four-position of the particle will be represented by vµ,

vµ = dxµ

dt
= (c, v) , (20)

where v = dr/dt is the ordinary velocity of the particle;
vµ isn’t a four-vector because its contraction with its
partner vµ depends on v2 ≡ v ·v, that isn’t a Lorentz
invariant quantity:

vµvµ = c2 − v2 = c2
(

1− v2

c2

)
= c2

γ2 , (21)

where γ is the Lorentz factor

γ = 1√
1− v2

c2

. (22)

Obviously, a genuine four-vector with the dimension of
velocity which undergoes a Lorentz transformation like
a contravariant vector is γvµ, because its contraction
with its covariant partner, according to Eq. (21), yields
the Lorentz invariant quantity c2. So we can define the
four-velocity uµ as

uµ = γvµ ⇒ uµuµ = c2. (23)

Here, we would like to point out that the notation
for four-velocity follows two basic text books [3, 8].
Moreover, we would to explore the relation given in
Eq. (23). First, consider a particle in a reference frame
S with a non null arbitrary velocity v, then Eq. (23) is

obtained with the help of Eq. (20), Eq. (21) and Eq. (22).
Now, consider another reference frame S′, where this
particle is momentarily at rest(v′ = 0). In S′ the Lorentz
factor is γ′ = 1 and, due to Lorentz invariance of the
Eq. (23), the Einstein second postulate [1, 6], v0 = v0′ =
c, is justified.

The four-momentum of a free particle with rest mass
m is defined by

pµ = muµ = γmvµ. (24)

Similar to what happens to the four-velocity uµ, a
general Lorentz boost on the four-momentum pµ changes
from one reference frame S, where the particle has an
ordinary momentum p = γmv, to another S′, where the
particle is momentarily at rest p′ = 0.

Thus, we have at our disposal two different
four-vectors associated with the particle, the four-
displacement dxµ and the four-momentum pµ that can
be combined to form three Lorentz invariant scalars:
(i) dxµdxµ; (ii) pµpµ; (iii) pµdxµ.

We can assemble the first Lorentz invariant quadratic
scalar by combining the four-displacement dxµ = vµdt
with its covariant partner:

ds2 = dxµdxµ = vµvµdt
2 = c2dt2

γ2 , (25)

where it was used the identity given in Eq. (21). The
quantity ds is the infinitesimal interval [6], which can be
written as

ds = cdt

γ
= cdt

√
1− v2

c2
= cdτ. (26)

So, from the Lorentz invariance of ds, we get

dt

γ
= dt′

γ′
= dτ, (27)

where dτ is the infinitesimal time interval that is the
numerator of a supposed fraction whose denominator is
γ′′ = 1. Thus, this time interval was measured in the
reference frame where the particle is momentarily at rest.
So, dτ is called the infinitesimal proper time. As it can be
understood from Eq. (27), time intervals have different
values if measured in different reference frames, therefore
time is a relative quantity, that is the essence of the
special relativity.

After that, combining pµ = γmvµ with its covariant
partner, using the Eq. (21), we can write the second
Lorentz invariant quadratic scalar as

pµpµ = (mc)2
. (28)

The four-momentum of the particle split into timelike
and spacelike components can be read as

pµ =
(
Hfree

c
, p

)
, (29)
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where Hfree = γmc2 is the energy of the free particle.
So, we can get a Lorentz invariant quadratic scalar as

pµpµ = H2
free

c2
− p2. (30)

Then, by comparing Eq. (28) with Eq. (30), the energy-
momentum relation is obtained as being

H2
free

c2
− p2 = (mc)2. (31)

It has already been calculated the quadratic Lorentz
invariants by combining dxµ and pµ with their respective
covariant partners. The next task will be obtain the third
Lorentz invariant scalar by combining the two unique
different four-vectors available for the free particle,
pµ = muµ with dxµ = uµdτ . Then using the Eq. (23),
uµuµ = c2, and Eq. (26), expressed as ds = cdτ ,
we obtain

pµdxµ = mcds = −dSfree = −Lfreedt, (32)

where dSfree is the Lorentz invariant infinitesimal action
for the free particle [6], which means that the Physics
can not depend on the reference frame. The Lfree is the
corresponding Lagrangian for the free particle, which by
the use of dxµ = vµdt in Eq. (32), it renders to

Lfree = −pµvµ. (33)

Therefore, eliminating pµ in the expression for Lfree
in Eq. (33) through the use of the four-momentum of
the free particle given in Eq. (24), pµ = γmvµ, then
employing the Eq. (21), we get

Lfree = −mc
2

γ
. (34)

As γvµ = uµ and from Eq. (33), it is obtained that
γLfree = −pµuµ, which is a Lorentz invariant scalar
because both the four-momentum pµ and four-velocity
uµ are genuine four-vectors, the same result can be
verified from Eq. (34). So, Lfree changes with the
changing of the reference frame. This result is valid for
any relativistic Lagrangian, i.e., a relativistic Lagrangian
never will be a Lorentz invariant scalar. On the other
hand, a non-relativistic Lagrangian is always a Galilean
invariant scalar, because the time interval dt is a Galilean
invariant scalar.

3. Dynamics of Interacting System
by Four-Vectors I

In general, when we assemble a four-quantity in a naive
way, gathering the ordinary vector of three-dimensional
space in the simplest way, as an example, vµ = (v0, v),
where v is the ordinary three-dimensional velocity, this
one obviously will not transform like a Lorentz vector.
However, it can be useful for calculations, because we

can always express a genuine four-vector in terms of
“non-four-vectors”, namely: uµ = γvµ, where uµ is
an authentic four-velocity and they can evolve during
calculation in a way that, sometimes, is useful or subtle,
for example, as in the expression obtained in Eq. (33)
for the Lagrangian of the free particle.

The technique used here is to assume that the timelike
and spacelike components of vµ are variable quantities
and, in the end, to submit its timelike component to the
Einstein’s second postulate [1]: v0 = c = constant.

In order to extend the procedure described in the
previous section for an interacting system, it is con-
sidered a particle in a generic background field. This
interacting system has its dynamics governed by a
Lagrangian (L), which must have among its terms
the one that corresponds to the interaction in which
the particle is subjected. Therefore, the timelike and
spacelike components of the generalized four-momentum
Pµ of an interacting system [6] are defined by the
following operation2

P 0 = − ∂L
∂v0 and P = ∂L

∂v
. (35)

By inspection of Eq. (35) and with Pµ = (P 0, P ) and
vµ = (v0,−v), the generalized four-momentum of an
interacting system is written as

Pµ = − ∂L

∂vµ
. (36)

With the aim to approach the dynamics of interacting
system, we can start from the Legendre transformation
which, in general, links the Lagrangian L to the Hamil-
tonian H [6], namely,

H = ∂L

∂v
· v − L. (37)

From Eq. (29), it can be inferred the relation Hfree =
p0c and, consequently, the energy-momentum relation.
Then, based on covariance, in general, the Hamiltonian
of the interacting system can be defined as being

H = P 0c = P 0v0. (38)

Therefore, from Eq. (35) and Eq. (38), the Legendre
transformation in Eq. (37) can be expressed in a compact
way as

L = −P 0v0 + P · v, (39)

that is,

L = −Pµvµ. (40)

2 The symbol
∂L

∂v
represents the vector whose components are the

derivatives of L with respect to the corresponding components of
v [6].
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Therefore, with the use of the four-vectors, the relation
between the Lagrangian of the interacting system and
the generalized four-momentum takes a very simple
form, which resembles Lfree, given in Eq. (33). The vµ
derivative of both sides of the Eq. (40) is

∂L

∂vµ
= −

(
∂P ν

∂vµ

)
vν − Pµ. (41)

Then, in the relativistic case, the compatibility between
the formal definition of generalized four-momentum
given in Eq. (36) and the Legendre transformation in
the compact four-dimensional form given in Eq. (40) is
achieved through the validity of the following constraint(

∂P ν

∂vµ

)
vν = 0. (42)

Note that Eq. (36) is restored when Eq. (42) is replaced
in Eq. (41).

On the other hand, we can departure from the
compact Legendre transformation given in Eq. (40),
multiplying both its sides with the infinitesimal time
interval dt to obtain an expression, similar to the one
for the free particle given in Eq. (32), in this case for the
Lorentz invariant infinitesimal action of the interacting
system,

dS = Ldt = −Pµdxµ, (43)

where dxµ = vµdt is the infinitesimal four-displacement.
Note that the Lagrangian L is a non-Lorentz invariant
scalar, as well as the infinitesimal time interval dt. How-
ever the product of both provides a Lorentz invariant
scalar, because Ldt = (γL) dτ , where both γL and
proper time interval dτ are Lorentz invariant scalars.
Thus, from Eq. (43), the generalized four-momentum
can be also expressed in terms of the action functional
S as

Pµ = − ∂S

∂xµ
, (44)

whose timelike and spacelike components can be read as

P 0 = − ∂S

∂x0 and P = ∇S, (45)

which can be used together with the equation for
Hamiltonian, Eq. (38), to obtain the Hamilton-Jacobi
equation for an interacting system [6].

The recipe to obtain the relativistic Lagrangian L
through the Hamiltonian H is straightforward: by know-
ing that H = P 0c, we can identify P 0 as a function of v0

which, by the covariance of all the components, leads us
to Pµ as a function of vµ. The Lagrangian can then be
found through the expression given in Eq. (40), which
can be expressed in the usual shape after the use of the
identity given in Eq. (21).

4. Dynamics of Interacting System
by Four-Vectors II

In order to illustrate the previous proposed procedure,
an interacting system is assumed. Consider, as example,
a particle with rest mass (m) and electric charge (e) in
a background electromagnetic four-potential (Aµ) split
in timelike and spacelike component as

Aµ = (A0,A), (46)

in which A0 and A are, respectively, the scalar and
vector potentials, whose connection with the three-
dimensional electric (E) and magnetic (B) fields are
given by

E = −∇A0 − 1
c

∂A

∂t
and B = ∇×A, (47)

which can be explored in some basics references [3, 6–8].
The standard relativistic Hamiltonian for this system,

such as the one found in Ref. [6], is expressed in anal-
ogy to the non-relativistic Hamiltonian by adding the
contribution of potential energy (eA0) to the relativistic
Hamiltonian of free particle, namely:3

H = γmc2 + eA0, (48)

which can be interpreted as being energy only for static
situations4, i.e., electromagnetic field does not depend
on the time and, consequently, the Lagrangian for the
electric charge particle also does not depend explicitly
on the time and the energy is the Hamiltonian given in
Eq. (48).

With the intention to obtain the relativistic
Lagrangian for an interacting system, we must follow
the recipe described in the end of the Section 3; for an
interacting system the relativistic Hamiltonian is given
by H = P 0c, thus the division of both sides of Eq. (48)
by c results in

P 0 = γmc+ e

c
A0. (49)

As P 0 is the timelike component of the four-vector Pµ
and by the covariance of all the components of Pµ, it
can be induced that

Pµ = γmvµ + e

c
Aµ, (50)

3 On the relativistic Lagrangian L, which must always be expressed
in terms of the ordinary, time, position and velocity, we must use
the standard Lorentz factor given in Eq. (22). However, for the
Hamiltonian H to be well defined, it must always be expressed in
term of the ordinary, time, position and momentum; in this case,
the alternative form of the Lorentz factor, written in terms of the
momentum of a free particle (p), reads as

γ =

√
1 +

p2

(mc)2 .

4 Vide chapter 3, section 19, of Ref. [6] and for a nice discussion
about how Hamiltonian plays the role of energy, see chapter 2,
section 2 and 3, of Ref. [8].
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where Pµ is the generalized four-momentum of the
electromagnetic field. Note that the first term in the
right hand size of the previous expression is the four-
momentum pµ of the free particle. Inserting Eq. (50)
into Eq. (40), we get the relativistic Lagrangian for the
interacting particle,

L = −γmvµvµ −
e

c
Aµvµ. (51)

Note that γL is a Lorentz invariant scalar. The
Lagrangian in Eq. (51) can be simplified by using
Eq. (21), which renders to

L = −mc
2

γ
+ e

c
A · v − eA0. (52)

An alternative and simplest way to obtain the gener-
alized four-momentum via Lagrangian is to express the
Lagrangian with all its terms multiplied by the common
factor vµ, as in Eq. (51), and to obtain the generalized
four-momentum through the comparison with Eq. (40).
For the same task, we can also employ the derivative
in Eq. (36), which seems more familiar, but it can only
be done considering that v0 is a variable quantity, as it
was assumed in the beginning of the Section 3. With
the aim to justify the validity of these two procedures
to obtain the generalized four-momentum in the scope
of electromagnetism, it appears that from Eq. (50),
it is possible to get an equation similar to Eq. (32)
when interacting particle is considered; if there is an
electromagnetic field interacting with a particle, then

Pµdxµ = mcds+ e

c
Aµdxµ = −dS = −Ldt, (53)

where dS and L are, respectively, the infinitesimal action
and Lagrangian for the particle in the electromagnetic
field [6].

Next, to confirm the equivalence of both methods to
get the generalized four-momentum, one through the
Eq. (36) and the other by Eq. (40), the constraint given
in Eq. (42) can be verified in the case of the electro-
magnetic field, vide Appendix A. So, the compatibility
between the Eq. (36) and Eq. (40) is consolidated. There-
fore, both ways of proceeding are equally legitimate and
they provide the same result for Pµ, which is the one
that is induced by covariance in Eq. (50).

On the other hand, the kinetic energy T is known as
being

T = Hfree −mc2 = (γ − 1)mc2. (54)

In order to evidence the kinetic energy in the expression
of the Lagrangian in Eq. (52), we can write it as

L = −mc2 + (γ − 1)mc2

γ
+ e

c
A · v − eA0. (55)

So, the relativistic Lagrangian of the interacting particle
can be expressed in a similar way to the non-relativist

one as

L = −mc2 + T

γ
− U + eA · v

c
, (56)

where the potential energy was represented by U =
eA0. In contrast with the relativistic Hamiltonian of
interacting particle, given in Eq. (48), we get

H = mc2 + T + U. (57)

In the extreme non-relativistic regime, time is an abso-
lute quantity, as in Galilean relativity and Newtonian
Mechanics. Consequently, all the Lorentz factors in the
denominators of Eq. (27) must be always equal to one,
independently of the velocity (v). Therefore, from the
Eq. (27) and Eq. (22), we get5

γ = 1, c =∞ and T = 1
2mv2. (58)

In this case, we must perform an operation like a “renor-
malization” in order to eliminate the constant infinity
energy mc2, i.e., absorbing it into the Lagrangian,
Eq. (56), and Hamiltonian, Eq. (57), in such a way that
the corresponding redefined non-relativistic Lagrangian
and Hamiltonian can be written as [2]

L = T − U, (59)
H = T + U. (60)

We would like to emphasize that any relativistic
Lagrangian can never be presented in the simple shape
like that of the non-relativistic one in Eq. (59). In fact,
they have very different shapes, because in the latter, we
should subtract the rest energy, consider the extra factor
1/γ on the kinetic energy and add a term that consists of
a scalar product of vectors to make it equal to that of the
Eq. (56). On the other hand, the relativistic Hamiltonian
in Eq. (57), except for the addition of the rest energy,
has its shape very similar to the non-relativistic one in
Eq. (60).

5. Conclusion

It is well known that the Lagrangian, at the non-
relativistic level, is defined as being L = T − U .
However, this definition is not valid at the relativistic
level, indeed, it was shown in this work. According to
Eq. (56), the part of the relativistic Lagrangian that
corresponds to the non-relativistic one is T

γ
− U . Due

to this, it is also well known that this issue is not
so clear to the college student and, consequently, the
understanding of special theory of relativity from the
Lagrangian formalism is jeopardized. In this work it
was presented an alternative procedure, even when an

5 For the kinetic energy T vide Appendix B.
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interacting system is considered, to teach special theory
of relativity from the Lagrangian formalism based on
the four-vectors and Lorentz invariance. This demon-
strated, once again, the profound importance of these
fundamental concepts of special theory of relativity.
Here, it was explained in a detailed way the meaning
and the origin of proper time, the energy-momentum
relation and action; all of these three quantities are due
to the four-vector framework and Lorentz invariance.
In order to illustrate this procedure, it was considered
the free particle and a charged particle in a background
electromagnetic field. Consequently, it was possible to
make a parallel between the definitions of relativistic
and non-relativistic Lagrangian definitions.
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Supplementary material

A: The four-momentum of the
electromagnetic field

Starting from the standard generalized four-momentum
of the electromagnetic field

P ν = γmvν + e

c
Aν . (A1)

Knowing that the electromagnetic four-potential, Aν ,
depends only on the four-position, the vµ derivative of
the generalized four-momentum is

∂P ν

∂vµ
=
(
∂γ

∂vµ

)
mvν + γmηµν . (A2)

It follows that(
∂P ν

∂vµ

)
vν =

(
∂γ

∂vµ

)
mvνvν + γmvµ. (A3)

However, from Eq. (21) it is known that vνvν = c2

γ2 , thus(
∂P ν

∂vµ

)
vν =

(
∂γ

∂vµ

)
mc2

γ2 + γmvµ. (A4)

Since γ = c(vνvν)−1/2, then its vµ derivative can be
obtained as

∂γ

∂vµ
= −cvµ(vνvν)−3/2 = −γ3 v

µ

c2
. (A5)

Using the previous result in Eq. (A4),(
∂P ν

∂vµ

)
vν =

(
−γ3 v

µ

c2

)
mc2

γ2 + γmvµ. (A6)

Then, we get again, for the specific case of the electro-
magnetic field, the constraint of the Eq. (42),(

∂P ν

∂vµ

)
vν = 0. (A7)

B: The relativistic kinetic energy

The relativistic kinetic energy can be algebraically
manipulated as

T = (γ − 1) mc2 (A8)

=
(
γ2 − 1
γ + 1

)
mc2

=
(

γ2

γ + 1

)(
γ2 − 1
γ2

)
mc2

=
(

γ2

γ + 1

)(
1− 1

γ2

)
mc2

=
(

γ2

γ + 1

)[
1−

(
1− v2

c2

)]
mc2,

T =
(

γ2

γ + 1

)
mv2. (A9)

In the extreme non-relativistic regime, when we take
γ = 1 and mc2 = ∞ in Eq. (A8), it results in 0 · ∞,
which is a value that can’t be calculated. However, we
can change from this indeterminate form to a determined
one through the algebraic manipulation shown above.
Therefore, if we take γ = 1 in the equivalent Eq. (A9), we
will obtain the usual expression for the non-relativistic
kinetic energy.
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