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In the present work we present a didactic reconstruction of de Broglie’s demonstration of the equivalence
between two fundamental physical concepts: action minimization and entropy maximization. The demonstration
was first developed in de Broglie’s Thermodynamics of the Isolated Particle (an attempt to develop a causal
interpretation of Quantum Theory in the 1960s). In this work, de Broglie argues from a particle in a hypothetical
sub-quantum medium, which operates as a kind of hidden thermostat exchanging energy with the particle. In
the discussion about the action minimization and entropy maximization, however, there is not any reference to
the quantum nature of the system. So, it is a demonstration valid for any system in a thermal bath in some
usual thermostat. Louis de Broglie concludes that the “natural” trajectory of a particle is not only the one
that minimizes the action of the particle but also maximizes the entropy of the thermostat. Our objective is
to reconstruct and restructure de Broglie’s original demonstration in order to rescue an historical debate, that
has not been addressed in the literature, and that is of interest to contemporary fields such as non-equilibrium
thermodynamics.
Keywords: Hidden Thermodynamics, Louis de Broglie, relativistic entropy and action, history of science.

1. Introduction

During the whole history of Thermodynamics, its rela-
tion to Mechanics was a matter of debate. Joule (1818–
1889), in the nineteenth century, was one of the few
scientists to defend the idea that heat could be consid-
ered a form of energy, according to Kelvin’s (1824–1907)
reports [1]. Since heat and work are not completely inter-
changeable in a reversible cycle, Carnot (1796–1832) also
assumed that they should have a different nature [2].
Fourier (1788–1830) starts his famous Analytical Theory
of Heat [3] defending that thermal phenomena cannot
be explained by mechanical laws. And, finally, Clausius’
(1822–1888) studies on entropy and the recognition of
irreversible processes reinforced the conception of an
abyss between thermodynamics and mechanics [4].

It is well known that Statistical Physics as we know it
today is a result from Boltzmann’s (1844–1906) efforts
to pave the way for a different direction: it relies on
the fact that a macroscopic system, described by the
laws of thermodynamics, is composed of particles subject
to mechanical laws. Boltzmann’s H-theorem and his
explanation of the entropy increase and irreversibility in
terms of probability is perhaps the clearest enunciation
of the reduction of thermodynamics into mechanics.

*Correspondence email address: awernerdarosa@gmail.com

This conception became hegemonic in Physics in the
twentieth century Physics. Callen’s [5] famous textbook
on Thermodynamics exemplifies this perspective when
he defines thermodynamics as a theory of macroscopic
systems, characterized by rough temporal and spatial
measurements in relation to the atomic scale.

Scientists working in non-equilibrium thermodynam-
ics, though, have challenged such conception [6]. In
far from equilibrium systems, emergent properties are
observed and their description satisfies specific relations
established by non-equilibrium thermodynamics. In this
context, again, the relation between mechanics and
thermodynamics seems fuzzy.

Along this history, there are some resurgent questions:
is there a relation between the laws of thermodynamics
and the laws of mechanics? Is it possible to re-write
the theorem of entropy increase as a least action prin-
ciple? Which one is the most fundamental principle?
Many recent works have presented reflections on this
subject [7–10].

Considering the contemporary importance of such a
topic, we aim to introduce a historical discussion of an
episode that has not been addressed in the literature yet.
In this paper, our goal is to recover a discussion proposed
by Louis de Broglie (1892–1987) in 1964 about the
equivalence between relativistic action minimization and
entropy maximization’s principles. This demonstration
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is presented in his book called Thermodynamics of the
Isolated Particle, which has been rarely discussed by
historians of Physics. A first paper on the subject was
published by Lima and Chaib [11] in Revista Brasileira
de Ensino de Física, where the main idea of the book
was discussed. Aiming to go further on the discussion
about de Broglie’s idea, this paper dives into a specific
section of the book with special interest to contemporary
Physics.

In his presentation, Louis de Broglie shows that the
path that minimizes the action of a system in a thermal
bath is the one that maximizes the entropy of the
thermal bath. An interesting feature of this discussion
is that it allows one to connect entropy and action
specifically from the standpoint of Special Theory of
Relativity.

Starting from relativistic mechanics and thermody-
namics, Louis de Broglie shows an interesting derivation
of the interconnection between these two principles.
This paper has, thus, two contributions: the first one is
historical, since we recover an element of Louis de Broglie
late works that has not been addressed yet; secondly, we
call the attention of the Physics Education community
to an important contemporary topic in the relativistic
formalism, which is not usually done too. In this sense,
we reconstruct de Broglie’s original discussion, introduc-
ing all the important concepts necessary to understand
the derivation before its presentation.

2. Context of de Broglie’s Discussion

In the scenario of the development of Quantum
Mechanics in the decade of 1920’s, Louis de Broglie’s
proposal of wave-like aspects of the matter was an
important achievement. In fact, de Broglie received a
Nobel prize in 1929 for such a contribution. He further
proposed an interpretation to quantum phenomena in
terms of a particle associated with a guide wave, or
pilot wave, by his double solution theory [12]. However,
after the 5th Solvay meeting and the establishment of
Bohr, Heisenberg and Born’s interpretative1 line, de
Broglie’s interpretation was, in some way, abandoned;
this led de Broglie to become away from the discussions
on the interpretation of quantum theory in the next few
years [11].

From the early discussion on the interpretation of
quantum mechanics, in the decade of 1920’s, until the
end of the 1950’s, de Broglie was retired from the hot
discussions on the topic. During this time, de Broglie
taught courses in Wave Mechanics at the Poincare
Institute and published some notes on the fundamentals
of the theory in the French academy of science Comptes
Rendus.

1 Although it is very common to speak about a “Copenhagen
Interpretation”, it is well known that their representatives diverged
about specific aspects of the interpretation of the theory. All of
them, though, moved away from the materialist dualist interpre-
tation of de Broglie’s original texts.

De Broglie’s interpretation was revived in a new
form in the decade of 1950’s by David Bohm’s [13]
Causal Interpretation of Quantum Mechanics. Bohm’s
ideas motivated the work of different research groups,
especially in France with Jean Pierre Vigier. With this
new movement, de Broglie retakes some of his early
ideas on the double solution theory that, add to those
developments, led him to propose the thermodynamics
of the isolated particle [14]

In this new theory, de Broglie describes the movement
of an elementary particle (an electron, for instance) as
a result of its interaction with a sub-quantum medium
which takes the form of a kind of fluid. That fluid per-
meates the whole space and exchanges energy with the
usual particles, as suggested by Bohm and Vigier [15]. In
this sense, de Broglie argues that it is possible to describe
quantum phenomena in terms of a particle in a thermic
bath. In this case, on the one hand we have the mechan-
ical description of the particle movement. On the other
hand, the possible microstates assumed by the particle
are described by thermodynamics and statistical physics.
This situation allows one to analyze the relation between
the action of the particle and the entropy of the system.

Although the main theme of de Broglie’s work is
the isolated particle in a subquantum medium, his
discussion of the equivalence between relativistic entropy
maximization and action minimization principles do not
rely in the quantum feature of the system, as we will
discuss.

3. Conceptual Review

De Broglie’s original demonstration involves concepts
from relativistic mechanics and thermodynamics. Thus,
in order to understand his proposal we present a brief
review on the concepts articulated before presenting his
original proposal.

3.1. Hamilton’s Principle of Least Action

The Principle of Hamilton, also known as the Principle
of Least Action, is a variational principle in which
the dynamics of a system is described in terms of
the variation of a functional based on the Lagrangian
function. In this description, the system has a set of n
generalized coordinates q and n generalized velocities
q′. The n generalized coordinates corresponds to a
particular point in the cartesian hyperspace, this space
has n dimensions and we call it configuration space.
In this sense, a system’s movement corresponds to the
movement of a massive point describing a path in the
configuration space.

In contemporary Physics’ language, Hamilton’s prin-
ciple is described as follows: The motion of the system
from time t1 to time t2 is such that the line integral
(called the action or the action integral)

A =
∫ t1

t0

L dt, (1)
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where L = T − V , has a stationary value for the actual
path of the motion [16]. Thus, the action variable, A,
changes through the path; we can suggest any trajectory
to the particle; however, the real trajectory will be the
one that minimizes the value of A. That is, any other
trajectory that we imagine to the particle will lead to a
value of A bigger than to the real one.

The term “stationary value” means that the integral
has the same value at the real path as well as all
neighboring paths that differ from the real one by an
infinitesimal displacement. Therefore, the variation of
the integral A is zero for fixed t1 and t2:

δA = δ

∫ t2

t1

L dt = 0. (2)

By solving equation (2)

δ

∫ t2

t1

L dt =
∫ t2

t1

n∑
i=1

(
∂L

∂qi
δqi + ∂L

∂q′
i

δq′
i

)
dt (3)

with

q′ = d

dt
q; δq′ = d

dt
δq, (4)

substituting the above (4) in equation (3) and integrat-
ing, one obtains

δ

∫ t2

t1

L dt =
∫ t2

t1

n∑
i=1

[
∂L

∂qi
− d

dt

(
∂L

∂q′
i

)]
δqidt. (5)

Since the right-hand side must be zero in order to
remains stationary,

∂L

∂qi
− d

dt

(
∂L

∂q′
i

)
= 0, (6)

and, thus,
d

dt

(
∂L

∂q′
i

)
= ∂L

∂qi
, (7)

which is the Euler-Lagrange equation.
We can therefore define the generalized momentum as

p = ∂L

∂q′
i

. (8)

Since the relativistic momentum is equal to

p = mv√
1 − β2

, (9)

then
∂L

∂q′
i

= mq′√
1 − β2

. (10)

By integration, one obtains that the relativistic
Lagrangian is

L = −mc2
√

1 − β2, (11)

and Hamilton’s action integral

A = mc2
∫ t2

t1

√
1 − β2 dt. (12)

3.2. Entropy in statistical physics

In classical thermodynamics, the entropy of a system is
defined as an extensive state function. A characteristic
of the entropy function is that The values assumed by
the extensive parameters in the absence of an internal
constraint are those that maximize the entropy over the
manifold of constrained equilibrium states [5]. In any
isolated system, the entropy maximization principle tells
us in which sense the natural process must occur; that is,
in a sense that the entropy of the final equilibrium state
is a maximum. If we have two systems with different
temperatures interacting, for instance, there will be a
heat exchange from the high temperature system to the
smaller one. When both systems reach the same tem-
perature, and thus become in equilibrium, the entropy
of the composed system will be the maximum possible.

By statistical mechanics, a thermodynamic system is
described in terms of a set of particles interacting with
each other. Its fundamental postulate states that, in a
microcanonical ensemble, all the possible microscopic
states in a closed system are equally probable. The
number of microscopic states, Ω, in such a system is
a function of its internal energy, U , volume, V , and the
amount of particles N [17]: Ω(U, V, N).

Now, in the context of the second law of thermody-
namics, one could say that the entropy of a system is
a function of its microstates, S(Ω). If we let the above
system, with entropy SA(ΩA), interact with some other
system, with SB(Ωb), the composed system will reach
equilibrium when

ST (ΩT ) = SA(ΩA) + SB(Ωb), (13)

in which ΩT = ΩA · ΩB , then

ST (ΩA · ΩB)= SA(ΩA) + SB(Ωb). (14)

One can suggests, by adding an additional constant,
kB , that

S = kB ln Ω. (15)

The above tells us that the entropy of an isolated
system is equal to the Boltzmann constant times the
logarithm of the number of possible microstates. On the
one hand, in the cases when one has discrete values,
entropy is a count of microstates. In continuous cases,
on the other hand, entropy is defined as a volume in
phase space.

In the relativistic domain, one can easily verify that
entropy is an invariant in the discrete case. That is
because a numerical count remains the same in any refer-
ence system. In continuous cases, Liouvile’s theorem [18]
indicates that the volume in phase space is also invariant.
Thus, according to the Special Theory of Relativity,
entropy is defined as an invariant physical quantity.
Finally, since entropy is associated with the number of
microstates, the entropy maximization principle means
that the equilibrium state is the most probable state.
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4. Louis de Broglie on Relativistic
Thermodynamics

In Relativistic thermodynamics, usual thermodynamic
concepts as heat, temperature and entropy Are not nec-
essarily absolute values but must described accordingly
to the inertial reference frame they are observed.

Since this topic is not frequently approached in under-
graduate courses on Physics, we will review de Broglie’s
approach to it, as he presented in his book [19].

First, de Broglie argues that entropy is a fundamental
invariant of thermodynamics, so as the Hamiltonian
action is to mechanics. That is to say, the entropy does
not vary between different reference systems. However,
that is not the same with temperature and heat. Accord-
ing to the author, deducing the relativistic variance of
temperature demands some very delicate reasoning.

Imagine a body, C, at rest in the reference system
R0, being heated by an external source. In a second
reference system R′, the body C is observed in a uniform
movement with velocity v = βc; the amount of heat
transferred to the body in this reference system is Q.
These systems can be observed in the following Figure 1.

Since in R the body remains with constant velocity, an
amount of work, A, must be done over the body while it
receives heat (since its mass is increasing). We can write
the energy of the body, in the system R, as2,

E = M0c2√
1 − β2

. (16)

The internal energy of the body can increase, as a
result of the heat, Q, and work, A, received: from M0 to
M0 + ∆M0.

In other words, the heat and work that is
absorbed by the body C in motion will have

Figure 1: Representation of a body receiving heat. The phe-
nomenon is observed in two inertial reference systems.

2 Although, nowadays, rest, or proper, mass is not used, [21], we
will follow de Broglie’s original notation.

increased its internal energy, which must
make its proper mass increase, from the
principle of inertia for energy [19].

From the first law of thermodynamics, or the principle
of conservation of energy, we can write

∆M0c2√
1 − β2

= Q + W, (17)

that is, the variation in the internal energy of the system
results from the received heat and work – in accordance
with the conservation of energy. It is important to notice
that to change its mass, the body C must have some
kind of internal structure, so the energy is distributed
into internal bonds or vibration modes [20].

Now, an amount of work A done over the body C
means that a force F was performed so that this work
was communicated to the body in the reference system R
(with velocity v = βc in relation to R0). By integrating
the force in respect to time we obtain, for the changes
in momentum,∫

dp = (M0 + ∆M0)v√
1 − β2

− M0v√
1 − β2

=
∫

Fdt. (18)

Since the velocity v is constant,

(M0 + ∆M0)v√
1 − β2

− M0v√
1 − β2

= 1
v

∫
Fvdt, (19)

and taking W =
∫

Fdt we have

1
v

∫
Fvdt = W

v
. (20)

Thus, one obtains

W = v2 ∆M0√
1 − β2

. (21)

That is, the work done on the body leads to an
increase in its pseudo-kinetic3 energy. This increase, the
right hand of eq. (16), is equal to twice of the pseudo-
kinetic energy. By combining (17) and (21),

W = Q
β2

1 − β2 , (22)

and then combine (21) in (22), we obtain

Q = ∆M0c2
√

1 − β2. (23)

That is the expression for the transformation of
the heat received by the body when passing from the

3 The expression is called pseudo vis-viva because it resembles the
classical kinetic energy mv2/2, while the relativistic kinetic energy

is mc2

(
1√

1− v2
c2

− 1
)

.
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reference frame R0 to R. Comparting (11) and (23), we
obtain

Q = −∆L. (24)

That is, the relativistic heat is the negative of the
variation in the Lagrangian when the body’s proper mass
varies in some reference system. In other words, when
the body’s proper mass varies in some reference system,
with v = βc, its Lagrangian varies equals to the negative
of the heat ceded. This is an important relation in de
Broglie’s arguments on the equivalence between entropy
and action.

Also, the mass variation is equal to

∆M0 =
√

1 − β2

c2 (W + Q) = Q

c2
√

1 − β2
. (25)

From the above, according to de Broglie:

One sees that all of these considerations
finally describe the principle of the energy of
inertia, which permits one to envision varia-
tions of the proper mass of a body that result
from the variation of its internal energy [19].

Now, in relation to the reference system R0, the
transformation of heat follows

Q = Q0
√

1 − β2. (26)

Since the entropy is invariant, and dS = δQ/T , the
absolute temperature transforms according to,

T = T0
√

1 − β2, (27)

and that is the temperature when one pass from the
system R0 to R.

5. De Broglie’s Description of the
Movement of a Particle in the
Presence of a Thermostat

Suppose a very small particle in a thermal bath. The
particle is very small in relation to the macroscopic
system, but it still has some sort of internal structure, so
its mass can vary when it receives heat. If the particle’s
mass change due to heat, its Hamiltonian will also
change and, thus, we may find what will be its new
trajectory.

The main idea of de Broglie’s demonstration is the
following: classically g, a particle moves in a trajectory
that minimizes the action; if it receives a quantity of
heat, its mass changes. From the variation in mass, the
particle has a new trajectory. However, by the heat
exchange, the entropy of the thermostat is reduced.
Thus, the most probable trajectory must be the one that
not only minimizes the action of the particle but also
maximizes the entropy of the thermostat. Now, we show
how de Broglie describes mathematically the situation.

In a thermostat-particle system, the total entropy of
the thermostat, S, is equal to an amount of entropy
coming from the thermostat S0 which is independent of
the variations in mass, plus an amount of entropy of the
thermostat that is subject to the particle mass variation
S(M0).

S = S0 + S(M0), (28)

using the thermodynamic definition of entropy and the
relativistic heat we have that the change in entropy is

δM0S = −δQ

T
= δM0L

T
. (29)

The minus sign that appears in (29) is due to the fact
that de Broglie defines entropy for the thermostat and
not for the particle, while the heat Q is the heat that the
particle receives. Thus, the entropy of the thermostat is
reduced when the particle’s mass increase.

Now, suppose that the particle describes a minimum
action, or ‘natural’, trajectory, C, between A, at t0,
and B, at t1. One can then imagine a ‘varied’ fictitious
trajectory, C ′, that is close to the ‘natural’ one, in a sense
that the points A and B, and the time t0 and t1 remains
equal to the one of the ‘natural’ motion. In the graph
below one can identify the initial ‘natural’ movement of
the particle and its varied movement.

Considering, at first, the trajectory C, in which the
particle does not change its mass (that is, where M0
is equivalent to m0, the regular value of the particle),
and that the changes in the lagrangian are [δL]M0 , by
Hamilton’s principle one can then write∫ t1

t0

[δL]M0dt = 0. (30)

Recalling the conditions of global minimums of inte-
gral differential calculus, a condition for guaranteeing
that the minimum of the functional is global is∫ t1

t0

[δ2L]M0dt > 0, (31)

because the second variation of L has to be greater
than zero in order to guarantee the minimization of the
trajectory.

Following, an important step is given by de Broglie.
If one assumes that the proper mass of a particle is
subject to fluctuations in its value, then one can consider
a varied motion, as is C ′ in which both space and
time intervals are equal to the ‘natural’ one, that is no
longer imaginary, or fictitious, but with a real physical
meaning. In this sense, one can assume, by instantaneous
fluctuations in the proper mass during the interval of
time t0 → t1, that the fictitious, or varied, motions
are physically real. By such hypothesis, we can write
the motion AC’B (Figure 2), according to Hamilton’s
Principle, as∫ t1

t0

δ(L + δL)dt =
∫ t1

t0

(δL + δ2L)dt = 0. (32)
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Figure 2: The body executing two different trajectories.

As the proper mass is no longer constant, and each
term in (32) is a sum of two terms, one then obtains

δL = [δL]M0
+ δM0L. (33)

And

δ2L = [δ2L]M0
+ δ2

M0
L, (34)

where δ2
M0L represents the terms in δ2L that depends

on the changes in mass and, as in the previous case,
[δ2L]M0 represent the terms that do not depend on the
changes. Therefore, by substituting the above relations
in eq. (32) one gets∫ t1

t0

{[δL]M0 + δM0L + [δ2L]M0 + δ2
M0L}dt = 0. (35)

De Broglie assumes that the term related to the
second-order variation in mass, δ2

M0L, can be neglected
and thus equation (35) becomes∫ t1

t0

{[δL]M0 + δM0L + [δ2L]M0}dt = 0, (36)

and, according to Hamilton’s principle, the first integral
is zero ∫ t1

t0

δM0L dt +
∫ t1

t0

[δ2
L]M0dt = 0, (37)

and thus,

−
∫ t1

t0

δM0L dt =
∫ t1

t0

[δ2L]M0dt. (38)

As the right side must be > 0, according to (31), we
know that the left side must also be > 0. The absolute
value of the left side can be written as∫ t1

t0

δM0L dt < 0. (39)

We can also write the above equation as

−
∫ t1

t0

δM0L dt = −(t1 − t0)δM0L =
∫ t1

t0

[δ2L]M0dt > 0.

(40)

t1 − t0 is always positive, then

−δM0L > 0. (41)

And, according to (29), one has

δM0S < 0, (42)

which means that the entropy of the thermostat has
reduced. Thus, “the natural trajectory”, without receiv-
ing any energy fluctuation, is associated to the maximum
entropy. As we have discussed, entropy is associated to
the probability of a determinate state. So, the natural
path, without being heated by the thermostat, is the
most probable path. In this sense, de Broglie shows that
the classical path is not obtained from an absolute law
but it is simply the most probable path.

According to de Broglie,

It then results that the entropy S is reduced
in mean when one passes from the motion
ACB to the motion AC′B. The entropy is
therefore maximal on the natural trajectory
with respect to the fluctuations, subject to
the conditions of the Hamiltonian variation,
and one can say that the natural motion
is more probable than the varied motion.
A very remarkable relation between the prin-
ciple of least action and the second law of
thermodynamics can thus appear [19].

Also, the author tries to provide a comparison between
Action minimization and entropy maximization by refer-
ring to the concept of “negentropy”: In figurative terms,
one can say that the natural trajectory follows a curve
along the bottom of a valley of negentropy [19].

An interesting historical question is how important
this result was to Louis de Broglie. It is important to
notice that his contribution in the early 1920s with the
wave-particle duality was a result of his unification of
Maupertuis and Fermat’s Principles (“unifying particle
mechanics and Wave Theory). Now, Louis de Broglie is
trying to build Quantum Theory upon a new unification,
now between Mechanics and Thermodynamics:

In its beginnings, wave mechanics had to
establish a relationship between the action
of a corpuscle and the phase of its associated
wave that would permit one to identify the
principle of Maupertuis with Fermat’s princi-
ple. Pursuing the same type of identification,
the preceding theory attaches the principle of
least action to the second law of thermody-
namics and the increase in entropy [19].

6. Final Remarks

In this paper, we have reconstructed de Broglie’s demon-
stration of the equivalence between the relativistic prin-
ciple of least action and maximum entropy. The demon-
stration is presented in the book The Thermodynamics
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of the Isolated Particle as an essential point in his new
theory.

This discussion is especially interesting nowadays,
when the discussion of the relation between mechanics
and thermodynamics is still a matter of debate. The
didactic reconstruction that we proposed allows the
theme to be discussed in undergraduate courses, for
students that have already studied thermodynamics and
special theory of relativity.

Moreover, this paper has an important historical con-
tribution, since we recall an interesting result obtained
by de Broglie in the context of the development of a
causal interpretation for Quantum Theory in the 1960s –
which has been rarely explored in the literature. We hope
that the paper contributes to the motivation of news
studies on this important work.
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