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When a circular loop composed by a RLC circuit begins to oscillate, the oscillation will eventually vanish as
an exponentially decaying current, even considering superconducting wires, due to the emission of electric and
magnetic dipole radiations. In this work we propose a modification of the Kirchhoff’s voltage law by adding
the radiative contributions to the energy loss as effective resistances, whose values are relatively small when
compared to typical resistance values, but are fundamental to describe real circuits correctly. We also analyse
the change in the pattern of the radiation spectra emitted by the circuit as we vary the effective and electric
resistances.
Keywords: oscillating circuits, Kirchhoff’s voltage law.

Quando uma espira circular formada por um circuito RLC começa a oscilar, a oscilação irá desaparecer,
com uma corrente decaindo exponencialmente, mesmo considerando fios supercondutores, devido à emissão de
radiações de dipolos eléctricos e magnéticos. Neste trabalho, propomos uma modificação da lei da voltagem de
Kirchhoff, adicionando as contribuições radiativas associadas à perda de energia, através de resistências efetivas,
cujos valores são relativamente pequenos quando comparados com os valores de resistências t́ıpicas, mas que são
fundamentais para descrever circuitos reais de forma correta. Nós também analisamos as mudanças no espectro
de radiação emitida pelo circuito à medida que se variam as resistências elétricas reais e efetivas.
Palavras-chave: circuitos oscilantes, lei das malhas de Kirchhoff.

1. Introduction

The Kirchhoff law of voltage is a simple yet powerful
rule that is presented in virtually all Electromagnetism
books. This law is a direct application of the energy
conservation, yet there are other assumptions that are
not normally discussed. Most of the literature argue
that the typical size of circuit must be much smaller
than the wavelength of the emitted radiation [1], as a
condition for the validity of this law but some other
assumptions have to be taken into account.

One of them is based on Faraday’s law that states
that the electromotive force, defined as the line inte-
gral of the electric field vector around the circuit closed
loop, is proportional to the time rate of change of the
magnetic flux through the loop, and can be written as
the following:

E =

∮
E · dl = − d

dt

∫∫
B · ds , (1)

and if the current varies in the time the electromotive
force is not zero, leading to an additional term in the

Kirchhoff law. This can be circumvented by assuming
the area of the circuit, as well as the variation of the
magnetic field, are small enough or by assuming that
the current is slowly varying [1]. The second assump-
tion, not normally stated but related to the first one,
assumes that the energy radiated by the circuit is negli-
gible when compared with other energy scales involved
in the problem.

In this work we intend to overcome these hypotheses
and present a simple model that hopefully clarifies the
situation to some extent. We consider a simple LC cir-
cuit. If we assume ideal capacitor, inductor and wires
in the classical description, one obtains a perpetually
oscillating current. However, intuitively we known that
this result is not very realistic. If we consider a circular
(or a square) mesh (see Fig. 1), on the other hand, we
could add into the recipe a term related to the magnetic
and electric dipole radiations, given by the Larmor for-
mula [2]. In doing so, we obtain an effective resistance,
which depends basically on the geometry of the mesh,
of its natural frequency and the inductor geometry. The
overall electric effective resistance is related to all sort
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of loss of energy, by the mechanical work done over the
current carrying electrons and by the energy that flows
out in an irreversible way in the form of radiation, as
stated by the Poynting’s theorem.

We have analysed elsewhere [4] the problem of the
two capacitors, the discharge of a capacitor associated
with an identical and initially discharged, where the fi-
nal state of equilibrium as well as the energy dissipated
in the process are always the same, regardless the pre-
sence of a resistor in the system. We have made clear
how this system reaches equilibrium, and we have dis-
cussed the dissipation mechanisms and the role played
by both the Joule effect and radiation. In this sense
the present paper generalize the former one and goes
beyond in order to complement the Kirchhoff’s circuit
law.

What motivate us to write this article is the fact
that most of the students do not well understand the
fact that when the electric circuit radiates the tradi-
tional equation of the RLC circuit is no longer valid
and must undergo correction. Here we try to give a di-
rection for how to understand the problem and how to
approach it, giving a support for students and teachers
in this subject that can be quite tricky [3].

Figura 1 - A circular loop with radius a composed by a RLC cir-
cuit showing the capacitor radiating as electric dipole. The loop
and the inductor also radiate (not shown) as magnetic dipole.

2. Usual description of the RLC circuit

The Kirchhoff’s circuit law states that for a structure
such as a mesh or a circuit loop, starting from a point
and adding voltages difference across the circuit ele-
ments, after describing a complete loop the same po-
tential as that of the starting point is obtained, and its
mathematical formulation is written as∑

Vi = 0 , (2)

where Vi is the potential difference between the termi-
nals of an element in the circuit.

This result can be derived from the general energy
balance. We can think in terms of the Poynting’s theo-
rem, related to the conservation of energy in the system
formed by the electromagnetic field and matter. In its
integral form this theorem can be written as [2]∫

V

J ·E dV +

∮
A

S ·dA = − d

dt

∫
V

1

2
(E ·D+H ·B) dV ,

(3)
where J is the current density vector, E and B the elec-
tric and magnetic fields, S the Poynting’s vector, and D
and H are, respectively, the electric displacement and
auxiliar magnetic field vectors.

This equation states that the time variation of elec-
tromagnetic energy in the field, the right hand side,
is due to the work carried out on the charges, repre-
sented here by the Joule effect and by the work done
over the charges by the battery, the first term in the
left-hand side of Eq. (3), and the energy that flows to
the outside, represented by the surface integral of the
Poynting vector, that represents the energy radiated by
the circuit. This last term is normally neglected in or-
der to calculate the current flowing in the circuit, as an
approximation.

For an RLC circuit forced by a battery, for example,
with the assumption that the system do not radiates,
the Poynting theorem can be cast in following form

−RI2 − d

dt

(
LI2

2

)
− d

dt

(
Q2

2C

)
+ EI = 0 , (4)

where EI is the power supplied by the battery, LI2/2
is the magnetic energy stored in the inductor, Q2/2C
is the electric energy stored in the capacitor and RI2 is
the power dissipated in the resistor. Using the defini-
tion of current I = dQ/dt we get the standard circuit
law

RI + L
dI

dt
+

Q

C
= E . (5)

In the derivation of the above equation the hypothe-
sis that the system does not radiate is implicit, and
there is only one mechanism of energy dissipation due
to the Joule effect. This assumption is not so bad when
the electrical resistance is large enough, that is, much
greater than the radiation loss from the circuit, but
when we are dealing with a circuit without electric re-
sistance such as an LC circuit, we are induced to think
that the current never stops, even without a battery
source.

In order to clarify this discussion we could remem-
ber a curious fact about superconducting (i.e., with no
Joule dissipation at all) current carrying wires, which is
somewhat related to the issues discussed in this work.
A steady electric current flowing in a superconducting
circular loop does not radiate, thus maintaining this
current constant. One could believe that due to the
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presence of accelerated charges this system would ra-
diate, but the fact is that stationary currents do not
radiate (for a detailed proof for the case of a supercon-
ducting circular loop see, for instance, Ref. [5]).

However, for the case of an LC circuit formed by su-
perconducting wires we find that the current I(t) slowly
decays as the time passes, and therefore is not statio-
nary. Even more, we find a slowly decaying oscillating
current, in a similar way as one can see in an RLC
circuit with small electrical resistance. As we will see
later, this current leads to oscillating magnetic and elec-
tric dipoles. As a consequence, even an ideal LC circuit
radiates, which means that the current eventually va-
nishes. The main question to be addressed here is what
sort of changes we have to make in the Kirchhoff’s law
in order to include radiation from the circuit, and de-
rive a differential equation that allows us to solve and
get the circuit current as a function of time.

3. Dissipation mechanisms

There are some different mechanisms for dissipation
that could be included in an RLC circuit aside the
Joule effect, like the magnetic and electric dipole ra-
diations. The electric dipole radiation would be due to
the oscillating charge in capacitor, and the magnetic
counterpart would be due to the geometry of the mesh
and to the inductor, both behaving like an oscillating
magnetic dipole. These terms are very similar, as we
will see on the next subsections.

3.1. Joule effect

The first contribution that we could take into account
is due to the Joule effect. As stated by the law that
bears the same name, when an electric current I pas-
ses through a conductor, there is an irreversible energy
transfer from the conductor to the medium in which it
is embedded, whose power is given by PR = RI2, where
R is the electric resistance of the conductor.

This contribution is well understood and esta-
blished, and leads, in the case of an RLC circuit, to
an electric current that decays exponentially.

3.2. Electric dipole radiation

Here we go into another well understood dissipation
mechanism, although not frequently included in circuit
analysis. Considering the accumulated charge on the
capacitor plates, we have an electric dipole which is gi-
ven by

p(t) = q(t)d , (6)

where d is the distance between the plates of the capa-
citor (we consider a simple capacitor of parallel plates).
As the current varies the electric dipole p is also mo-
dified, and we could include a dissipated power due to
this electric dipole for the radiation zone (r ≫ a, where

a is the radius of the RLC mesh), which is given by
the Larmor formula. The total radiated power is given
by [2]

PE =
µ0

6πc

[
p̈(t)

]2
. (7)

Since p(t) varies harmonically, this quantity can be ea-
sily calculated.

3.3. Magnetic dipole radiation

For the magnetic dipole radiation, there are two dif-
ferent sources. First, we can consider that the circular
loop constitutes a magnetic dipole mM (t), which inten-
sity is given by

mM = I(t)A , (8)

where A = πa2 is the area of the circular loop.
But there is also a magnetic dipole due to the in-

ductor, that would be given by

mI = NI(t)A
′
, (9)

where N is the number of turns of the inductor and A
′

is the area of each one of the turns. Depending on the
ratio between NA

′
and A, one of the terms could be

more important than the other. However, for both of
them, we can calculate the emitted radiation power by
using Larmor formula, given in this case by [2]

PM =
µ0

6πc3
[
m̈(t)

]2
. (10)

With Eqs. (7) and (10) we can extend the Kirchhoff
law of voltage, which is derived in the next section.

4. Generalization of Kirchhoff’s Law

As previously discussed, the usual RLC circuit leads
to an exponentially decaying current. If, in the other
hand, we consider an LC circuit, one obtains a per-
petual oscillating current. However, this last result is
somewhat artificial. In order to clarify this question, as
pointed previously, one could consider a circular loop of
radius a (and a corresponding area A = πa2). Related
to this circuit, the rate of energy dissipation, due to
the electric and magnetic dipole radiations, is given by
Eqs. (7) and (10) (this latter has two terms, see Eq. (8)
and Eq. (9)),

Prad =
µ0

6πc3
[
m̈I(t)

]2
+

µ0

6πc3
[
m̈M (t)

]2
+

µ0

6πc

[
p̈(t)

]2
,

(11)
in SI units.

If we require energy conservation again, by adding
this time the power formula given by Eq. (11) we obtain

RI2 +
d

dt

(LI2
2

)
+

d

dt

(Q2

2C

)
= EI − Prad . (12)

It is important to remark that we are neglecting re-
tardation effect of the emitted field over the electric
current dynamics in the circuit. This is a reasonable
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assumption since the circuit is much greater than the
emitted wavelength, as stated before.

If we assume that the current in the circuit still os-
cillate in the form I(t) = I0 e

−γt cosωt, where ω is the
frequency of the external electromotive force, and γ is
the damping term, all terms in Eq. (11) leads to

Prad ∝
[
Ï(t)

]2 ∝ I2. (13)

This means that both, the electric and magnetic
terms are responsible for the circuit’s radiation, and
are very similar to the typical dissipated power due to
an electric resistance. With this in mind, albeit the
radiative terms appear to be much more complicated,
from the form of the radiative power, we again obtain
an exponentially decaying current, and we can put all
types of dissipation together in just one term in the
differential equation.

Actually, in antenna theory, this is very well known
subject, since antennas are designed to radiate [6]. In
this context, one needs to consider a radiation resis-
tance Rrad, due to the energy loss in Eq. (13). Besides,
in order to correctly describe radiating circuits we also
need to modify the Kirchhoff’s voltage law, which is
somehow new for physicists.

In the next section we perform a comparison
between the contributions of each of these terms. For
now, all we can say is, although we have followed
the same steps normally used on the derivation of the
Kirchhoff Law of Voltage, if one includes the radia-
tion terms the perpetually oscillating current no longer
holds, giving rise to an exponential decaying current.

5. Comparison of dissipative contribu-
tions

To perform a comparison between each of radiative
terms and the Joule effect contribution itself, first we
need to obtain an expression for the effective resistance
due to the radiation terms. So, we need to write the
dissipated power in terms of RefI

2. The Ref constant
would be the effective resistance.

For the Eq. (7), one finds that

PE =
µ0

6πc

[
p̈(t)

]2
=

µ0

6πc
d2ω2I2 , (14)

since p(t) = q(t)d and we have assumed that I(t) =
I0 e

−γt cosωt. This leads to the following effective elec-
tric radiation resistance,

RE
ef =

µ0

6πc
d2ω2 . (15)

Similarly, the Eq. (10) gives

RM
ef =

µ0ω
4

6πc3

[
(NA

′
)2 +A2

]
. (16)

As previously stated, the relative relevance of the
two terms of the magnetic dipole radiation depends on

the ratio between NA
′
and A. The ratio between RE

ef

and RM
ef is given by

RE
ef

RM
ef

=
(dc
ω

)2 1

(NA′)2 +A2
. (17)

We can perform some estimations for the parame-
ters that appears in Eqs. (15) and (16). Using S.I.
units we can also compare their contributions with ty-
pical values for the electric resistanceR, since all of then
would be measured in ohms. Under the following va-
lues (µ0 ∼ 4π× 10−7H m−1, c = 3× 108 m/s, d = 10−3

m, C = 9 × 10−13 F, L = 100 µH, A
′
= 0.002 m2 and

A = 0.05 m2) one finds

RE
ef ∼ 10−9Ω , RM

ef ∼ 10−7Ω. (18)

As expected, both effective radiating resistances are
small when compared to typical values of electric re-
sistance. However, appropriate choices for the para-
meters would make them comparable, enabling one to
observe experimentally a decaying current contribution
due to radiation in a superconducting circuit, or even
in a “real” suitable circuit. This is in fact what hap-
pens in an efficient antenna. The radiation resistance
are designed to be much greater than the ohmic resis-
tance [6]. An antenna has a more complicated geometry
and electric current on it is not uniform. Although, the
mechanism is essentially the same.

6. Time scales and spectrum

Given that the system heats and radiates it is interes-
ting to know the spectrum associated with these losses
and what the contribution of each event, that is, we
would like to calculate the total power dissipated by
Joule effect and radiation in a given frequency range.

The power spectrum, or the dissipated power per
unit frequency is given by the expression [7]

P (ω) = Re [(V (ω))∗I(ω)] =

Re [(Z(ω)I(ω))∗I(ω)] = RT I(ω)I(−ω) , (19)

where RT = R+Rrad is the total resistance present in
the circuit.

A particular solution of Eq. (5) can be obtained by
Fourier transform method. Setting the battery voltage
source as E(t) = V0 cosωt we get the following power
spectrum

P (ω) =
1
2RTV

2
0

R2
T + (ωL− 1/ωC)

2 , (20)

where V0 is the amplitude of battery voltage (see
Fig. 2).
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Figura 2 - The power spectrum showing its line width as function
of the total resistance that include magnetic and electric radia-
tion.

It is interesting to compare this spectrum for dif-
ferent loss mechanisms, when the Joule effect is more
important, and when the radiation is preponderant.

The width of the distribution is determined by the
resistance RT that is present in the circuit, and it be-
come very narrow when the electrical resistance is zero,
in which case the width of the spectral line is entirely
defined by the radiation resistance, as can be seen in
Fig. 2.

7. Conclusions

In this work we have made a modification in the Kir-
chhoff’s law of voltage, by including the Larmor power
formula for both electric and magnetic dipole radiati-
ons in the energy conservation law, that gives rise to
a differential equation for the current, which takes into
account both Joule and radiative dissipation effects.

It is interesting to note the similarity in the expressi-
ons associated with the Joule dissipation, and the dipole

radiation given by the Larmor formula, both proporti-
onal to the square of the current. It is precisely this
similarity that allows for a simple unified analysis for
dissipation.

It is also important to have some awareness of how
one can go beyond simple small antennas to compute
the radiation resistance for circuits of arbitrary comple-
xity. If we have used another radiation system, other
than a dipole that emits just in one frequency, we would
have a different equation for the current, and its solu-
tion would be not so simple, but in any case the pre-
sented change in the Kirchhoff’s voltage law would still
be valid. This is a challenge that we try to confront in
the next future.

Acknowledgments

We would like to acknowledge the financial support of
Brazilian agencies CAPES and CNPq, and for Nivaldo
Lemos who proofread the manuscript.

References

[1] A. Zozaya, Am. J. Phys. 75, 565 (2007).

[2] D.J. Griffiths, Introduction to Electrodynamics (Pear-
son Education, Inc., New York, 1999), 3rd ed.

[3] J.D. Jackson, Am. J. Phys. 74, 280 (2006).

[4] V. Lara, D.F. Amaral and K. Dechoum, Revista Bra-
sileira de Ensino de F́ısica 35, 2307 (2013).

[5] K.T. Mcdonald, Why Doesn’t a Steady Cur-
rent Loop Radiate? 1 Problem, (2001),
http://www.hep.princeton.edu/~mcdonald/examples/.

[6] C.A. Balanis, Antenna Theory - Analysis and Design
(John Wiley & Sons, New Jersey, 2005), 3rd ed.

[7] L. Mandel and E. Wolf, Optical Coherence and Quan-
tum Optics (Cambridge University Press, Cambridge,
1995), 1st ed.


