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We study the well-known two-capacitor problem from a new perspective, focusing on the thermodynamic
aspects of the discharge process. The free electron gas model is used to describe the electrons’ energy levels in
both capacitors in the low temperature regime. We assume an isothermal heat exchange between the resistor
and the heat reservoir. Even in this limiting case, we obtain a positive entropy variation due to the discharge,
which points out the irreversibility of this process.
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Estudamos o problema bem conhecido dos dois capacitor através de uma nova perspectiva, com foco nos
aspectos termodindmicos do processo de descarga. O modelo de gas de elétrons livres é usado para descrever
os niveis de energia dos elétrons nos dois condensadores no regime de baixas temperaturas. Consideramos uma
troca de calor isotérmica entre o resistor e o reservatério térmico. Mesmo nesse caso limite, obtém-se uma
variagao positiva da entropia devido a descarga, apontando o carater irreversivel desse processo.
Palavras-chave: problema de dois capacitores, entropia.

1. Introduction

The concept of entropy is intrinsically related to the ar-
row of time: Ref. [0] at the microscopic level almost all
physical processes are time-symmetric, yet at the ma-
croscopic level irreversibility still emerges. Textbooks
illustrate this concept by means of a variety of exam-
ples, ranging from simple everyday physical processes
(such as coffee cooling or the melting of an ice cube)
to prototypical examples like the free expansion of an
ideal gas or the mixing of two gases. Reference [H],
however, thermodynamic descriptions of electrostatic
systems are less common. In this work, we consider a
simple electrostatic process that is analogous to the free
expansion of an ideal gas.

Consider a simple circuit composed of two identical
capacitors, each with capacitance C, and one resistor R,
all connected in series. Capacitor 1 has initial charge qo,
while capacitor 2 is initially uncharged. The circuit also
has a switch that prevents the flow of current, as shown
in Fig. O.
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Figura 1 - Illustration of the circuit described in the text. In (a)
the switch is open and there is no current flowing. In (b) the
switch has been closed and a sufficiently large time has elapsed
for the system to reach equilibrium.
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We know intuitively that the discharging process is
irreversible: when the switch is closed, the system spon-
taneously reaches the equilibrium configuration shown
in Fig. M(b) and will not go back to the initial confi-
guration without external interference. There is a sim-
ple analogy between this discharging process and the
isothermal expansion of an ideal gas (commonly used
to obtain the entropy change in a free expansion). In
both cases, there is a positive entropy change for the
system, due to the redistribution of particles. However,
here one must take into account that the relevant par-
ticles are fermions, thus obeying a different statistical
distribution, which is a fundamental difference between
the two processes.

There are many previous works that deal with this
simple system using a variety of approaches. In Refs.
[B,d], the authors focus on energy considerations, while
Refs. [B-@] discuss specifically the electromagnetic ra-
diation produced by the discharge process. Some of
those works neglect the circuit’s electrical resistance,
but include a self-inductance, while others include both
resistance and inductance.

In Ref. [B] the author measures experimentally the
entropy change of the capacitor-charging process. This
process is subdivided into n steps, with the voltage in-
cremented by V/n during each step. In the limit n — oo
there is an isothermal heat exchange between the re-
sistor and the heat reservoir, thus implying that the
entropy changes of the resistor and the heat reservoir
balance: ASg + ASyr = 0. However, the author ne-
glects the entropy change due to the rearrangement of
the charges in the capacitor plates.

In this work, we will use the free electron gas mo-
del [@] to evaluate the total entropy change during the
discharging process. As discussed in Ref. [[], the free
electron gas model provides some qualitative and quan-
titative features of metals at low temperature regime
(as compared to the Fermi temperature Tr). We pre-
sent a quasistatic scheme similar to the one shown in
Ref. [B]. As we will see, even considering this scheme we
obtain AS > 0, in agreement with our intuition about
the irreversibility of this process.

2. Entropy calculation

According to the second law of thermodynamics, any
process that occurs in an isolated system must have
AS > 0. So, to compute AS, we need the entropy
change of all components of our system: both capaci-
tors, the heat reservoir, and the resistor. First, we will
evaluate AS for the heat reservoir and the resistor.

In order to obtain the AS of the resistor we need
to figure out a quasistatic process which lead the re-
sistor and the heat reservoir from its initial to final
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states. To do this, we can subdivide the initial elec-
tric potential difference ¢o/C into n equal intervals,
each of them representing an electric potential reser-
voir (battery) which will be linked with each capaci-
tor and the resistor. This way, we make the capa-
citor 1 scroll to a sequence of equilibrium states th-
rough successive contact with each electric potential

e | @0(n=1) gqo(n—2) 90
reservou‘s{ e T g

going down a lad-

der of potential. The capacitor 2 follows the oppo-
site way, going up the ladder of electric potential re-
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Servoirs —} In the end both capacitors
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are at the same potential difference 2‘%. At each ladder
step that the capacitors pass through, we link the elec-
tric potential reservoir and the capacitor with the very
same resistor, that will be the one responsible for the
electric energy dissipation to the reservoir. An illustra-
tion of this quasistactic process is depicted in Fig. O
In this scheme, during the discharge process of the
capacitor 1 the resistor produces, at each step, an en-
tropy variation,

onT  20n2T°

Asg)

Analogously, the charge process of the capacitor 2 has
an entropy variation per step of,

Vo 4
onT  20n2T° (2)

Asg) =

Summing the entropy variation contribution of each
step and both capacitors, we obtain the total entropy
variation due to the resistor, which depends of how
many steps the difference potential is subdivided,

%
ASe = 2nCT’ ®)

So, if we take n — oo the entropy produced by the Joule
heating process vanishes and, even in this limiting case,
the discharge is irreversible due to the rearrangement
of the charges in the capacitors plates.

The free electron gas model was the first attempt at
a microscopic description of the properties of metals.
It was introduced by Drude [[M] and later modified by
Sommerfeld [B,0] to include the quantum nature of the
electrons. The model assumes that conduction elec-
trons are confined to a box with impenetrable walls.
Inside the box the electrons are subject to a uniform
background potential. Although this model is very sim-
ple, it describes qualitatively some important features
of metals, such as the Wiedemann-Franz Law and the
fact that the electronic contribution to the specific heat
is proportional to T" at temperatures much less than the
Fermi temperature [8,0T].
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Figura 2 - Illustration of the quasistactic electric discharge process.

Since the model assumes that electrons do not inte-
ract with each other, its solution consists of finding the
eigenstates of a quantum particle confined to a box and
filling up these states according to Fermi-Dirac statis-
tics. In order to obtain the expression for the electronic
contribution to the entropy, we will use a well-known
result for the heat capacity in this model [T, [T

- NekB’sz kBT

Cv 5

(4)

)
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where kg is the Boltzmann constant and e is the Fermi
energy which is given by
2/3
(7))

where NN, is the total number of free electrons, A is the
Planck constant divided by 27, m is the electron mass,
and V is the volume of the macroscopic sample. Ex-
pression (H) results from the Sommerfeld expansion for
the heat capacity, which is accurate as long as the tem-
perature is small compared to the Fermi temperature
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(5)
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Tr = er/kp. This condition is easily satisfied at room
temperature, at which T/Tr ~ 1072,
Using the thermodynamic identity

35)
V7

aT
in the free electron model, it is clear that the entropy
S is equal to the heat capacity 2
o ]\fe/ﬁvgﬂ'2 kBT

S .
2 (Sl

CV—T( (6)
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Since we assume that the discharging process occurs at
constant temperature, we can rewrite Eq. (@) as

(8)

S(T,V,N) = A(T,V)N,}/?,
where
k%Ter Vv

2/3
2 (gmz) T

Note that the function A(T,V) is always positive.
Now that we have the entropy as a function of all

the relevant parameters of the problem, we are able to

evaluate the entropy change of the system due to the

AT, V) = (9)

21f you prefer a derivation that goes from the beggining, see Ref. [I3].
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discharge process. We denote the entropy of each ca-
pacitor in the initial (I) and final (F') configuration by
S}Z) and S](;), respectively, where the superscript (i) in-
dicates which capacitor (1 or 2). The system’s total
entropy change is the sum of the entropy changes of
each capacitor,

AS = AS; +ASy = (S8 — 5y 4 (82 — sy (10)

Before we go on with the calculations, let’s make
an observation about the free electron gas model. We
assume that the piece of metal that we are modelling
possess N atoms, and that each one of these atoms con-
tributes with a electrons to our sample (typically, a is 1
or 2). When an atom donates a electrons, it will be po-
sitively charged, with ae, where e is the electron’s fun-
damental charge. So, when we consider all the sample,
we conclude that our piece of metal is uncharged be-
cause the charge of the electrons cancels out the charge
of the ions, although there exist free electrons.

Furthermore, we are considering metal plates that
could be positively or negatively charged. We know
that the excess charge ¢ that a macroscopic metal can
support is very small, when compared to the number
of valence electrons in the sample. To see a good dis-
cussion on this subject, see Ref. [[@], when Feynman
introduces electric forces.

With these observations in mind, let us continue
with our computations. Consider first the two plates of
capacitor 1. Initially, one plate has an excess charge qq,
and the other, —gy. We know that the electric charge is
quantized, so we have gy = Nge, where Ny is the excess
number of electrons in the plate. Remembering that
the total number of electrons in a plate is Na plus the
excess charge, we have

AS; = A(T,V) [(Na—i— %)1/3 + (Na - %)”3_
)

90 ) 1/3
- = (11
o) )
because in the equilibrium situation the excess charge
in each plate is +¢g/2, as discussed before.
Analogously, for the capacitor 2 we have

QO)1/3
2e

2 (Na)l/g} .(12)

AS, = A(T,V) [(Na + %)1/3 + (Na

Now, to obtain AS, we substitute Eqs. () and (I2)
into Eq. ()

AS = A(T,V)(Na)'/? [2 A+a) 120127

(1+22)"% — (1 -

22)'% — 2| | (13)
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where we have defined x = qo/2Nae, the ratio between
the excess charge and the number of valence electrons
in the neutral sample. The expression obtained for AS
in Eq. (I3) is always positive, as shown in Fig. B.
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Figura 3 - Entropy change as a function of the ratio between the
excess charge and the total number of valence electrons.

Although we obtained an expression for AS and
have shown that AS > 0, we can go a little further.
As we discussed earlier, typically we have x < 1. The-
refore, we can expand the Eq. (I3), using the binomial
expansion for all terms. Doing this, and collecting only
second order terms, we find

AG — 4A(T,V)z*(Na)'/3  A(T,V)q3(Na)=5/3

9 9e2

(14)
In this case, we needed to consider second order terms
in the expansion for AS, because the first order term
vanishes. This can be noticed visually in Fig. B, as the
slope of the curve vanishes as x — 0.

It is worthwhile to compare the entropy variation
in Eq. ([@A) with the entropy change due to the heat
exchange between the resistor and the heat reservoir.
This determines whether the entropy variation calcula-
ted here is relevant to the irreversibility of the whole
process. This ratio is given by

ASr  €*h*(Na) 2/3 107
AS nk%TQCmep n

where p = % is the valence electron density.

In Eq. (I3) we used the values of the constants and
considered Na ~ 10%° and C' ~ 1072 (the best value of
C for typical values for the capacitance). Although the
value of the ratio shows that AS is small when com-
pared to ASg, this difference could be reduced as one
could arbitrarily grows the number of steps n in the
quasistatic discharge process.
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3. Energy calculation

Up to now we have discussed the entropy change in
the discharging process. We can also discuss what hap-
pens to the energy. First, we note a somewhat counter-
intuitive fact. The electrostatic energy change AFEg; of
the system, between the initial and the final configura-
tions does not depend on the resistance R. As long as
R > 0 we have

2

AEg = —;LOC. (16)

However note that Eq. (@) only takes into account
the electrostatic interaction. In order to obtain the
total energy variation we should consider the energy
change due to the rearrangement of the energy levels
of the free electron gas. At room temperature the total
energy of the free electron gas is well approximated by
its ground state energy given by

E= gNeF. (17)

Although in the entropic calculation we used the
first order Sommerfeld expansion, in the energy calcu-
lation the use of the ground state energy is justified
by the fact that in the latter case AE # 0 even for
T = 0 K. For the entropy, however, AS =0forT =0 K
and going beyond zero order is essential.

Using Eq. (IC2) to calculate the energy variation of
the four capacitor plates, we obtain (see Fig. @), ana-
logously to the entropy calculation,

AEpp = B(V)N5/3 [2(1 +x)5/3+
2(1 — 2)%/3 — (1 + 22)%/3 — (1 — 22)%/3 — 2} . (18)

where
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Figura 4 - Energy change as a function of the ratio between the
excess charge and the total number of valence electrons.
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Expanding Eq. (IR) for x < 1 we obtain

2
AFEpp = —§B(V)N5/3z2. (20)

Thus, the total energy variation is given by

2
AE— %0 20

5/3,.2
= T BVN2, (21)

4. Conclusions

In this work we introduced a new approach for the
two-capacitor problem. Instead of looking at it from
an electromagnetic point of view, we focus on its ther-
modynamic properties, mainly the entropy change due
to the discharge process. Our goal was to show that
this process is irreversible, which means that the en-
tropy variation must be always positive (AS > 0). We
assumed that the resistor is in thermal contact with a
heat reservoir at the same temperature, which leads to
ASk 4+ ASygr = 0. Thus, all the entropy variation is
due to the change in the electrons’ distributions in the
plates of the capacitors. We assumed that the valence
electrons in the metal plates can be modeled by the
Free Electron Gas Model. Under these considerations,
we obtained AS > 0 and AFE < 0 for the whole process.
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