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Perturbed damped pendulum:
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Using the damped pendulum model we introduce the averaging method to study the periodic solutions of dy-
namical systems with small non—autonomous perturbation. We provide sufficient conditions for the existence of
periodic solutions with small amplitude of the non-linear perturbed damped pendulum. The averaging method
provides a useful means to study dynamical systems, accessible to Master and PhD students.
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Utilizando o modelo do péndulo amortecido, introduzimos o método “averaging” no estudo de solugbes
periddicas de sistemas dindmicos com pequenas perturbacoées nao auténomas. Considerando perturbagoes do
sistema do péndulo amortecido, fornecemos condigbes suficientes para a existéncia de solugbes periddicas de
pequena amplitude. O método “averaging” fornece uma ferramenta 1til no estudo de sistemas dindmicos e é

acessivel a estudantes de pds-graduagao.

Palavras-chave: método “averaging”, solugoes peridédicas, sistemas nao lineares, péndulo amortecido.

1. Introduction

Systems derived from the pendulum give to students
important and practical examples of dynamical sys-
tems. For instance, we can see the weight-driven pen-
dulum clocks which had its historical and dynamical
aspects studied by Denny in a recent paper [0]. This
system has been revisited by Llibre and Teixeira in [B],
and using some simple techniques, from averaging the-
ory, they got the same results. Usually, the systems
involving pendulums have also been used to introduce
mathematical concepts of classical mechanics, as we can
see in Ref. [A].

In this paper we attempt to use a simple physical
system, as the damped pendulum, to introduce some
concepts and techniques of the important and useful
averaging theory, which can be used to study the pe-
riodic solutions of dynamical systems. For instance,
in Ref. [@], Llibre, Novaes and Teixeira have used the
averaging theory to provide sufficient conditions for the
existence of periodic solutions of the planar double pen-
dulum with small oscillations perturbed by non—linear
functions.

2. The damped pendulum

We consider a system composed of a point mass m mo-
ving in the plane, under gravity force, such that the
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distance between the point mass m and a given point
P is fixed and equal to [. We also consider that the mo-
tion of the particle suffers a resistance proportional to
its velocity. This system is called Damped Pendulum.

The position of the pendulum is determined by the
angle 6 shown in Fig. M. The equation of motion of this
system is given by

6 = —asin(f) — bo, (1)

where ¢ > 0 and b > 0 are real parameters, with
a = g/l, g the acceleration of the gravity, [ the length
of the rod and b the damping coefficient. We shall also
assume that the damping coefficient b is a small para-
meter.

There are many other kinds of resistance that the
particle motion can suffer, providing many different dy-
namical behaviors (see Remark M). For instance, the
Coulomb Friction introduces a discontinuous term in
the equation of motion (@). For more details about this
last issue, see the book of Andronov et al. [B].

In the qualitative theory of dynamical systems, a
singularity «* of an autonomous differential system
&(t) = F(z), i.e. F(z*) =0, is called Hyperbolic if the
eigenvalues of the linear transformation DF(z*) (deri-
vative of F' in *) has non—zero real components. In this
case, applying the classical Hartman-Grobman Theo-
rem (see Theorem 2.2.3 from Ref. [B]) we can study the
local behavior of the system looking to the linearized
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system ¢(t) = D(x*)y.

Figura 1 - Pendulum.

Remark 1. Here, the behavior of a dynamical system
can be informally understood as how the phase portrait
looks like. For a general introduction to qualitative the-
ory of dynamical systems see for instance the book of
Arrowsmith and Place [@].

The linearized equation of motion of the damped
pendulum is given by

0 = —ab — bo. (2)
Considering the coordinates (6,6), the system ()
has the following eigenvalues
—b—Vb? —4a

b+ —4a
= —2 and )\2 = 2 9

which is the eigenvalues of the matrix

A1

0 1
—a —b

Note that for b2 > 4a the eigenvalues \; and Ao
are both negative, then the singularity (6,6) = (0,0)
is a attractor node, represented in the Fig. B. Now,
for b? < 4a both eigenvalues A\; and Ay have the imagi-
nary part different of zero and negative real part, then
the singularity (6,6) = (0,0) is a attractor focus, re-
presented in the Fig. B. Both cases are topologically
equivalent.

Figura 2 - Attractor node.
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Figura 3 - Attractor focus.

Observe that without the damping effect, i.e. b =0,
both eigenvalues A\; and A\ would be purely imaginary,
then the singularity (6,0) = (0,0) would be a center
(which is a non—hyperbolic singularity), represented in
the Fig. @. This last case is not topologically equivalent
to the two cases above.

) :
=

=

Figura 4 - Center.

We emphasize here that, for b # 0, the linearized
Eq. (B) can only be used to study the local behavior,
at (6,6) = (0,0), of the original (non-linear) system ().
However, a periodic solution of a differential system is
a global element of the phase portrait. Thus to study
these elements we have to consider the non-linear equa-
tion, which has the global information of the system.

As we have seen, when b # 0, the origin is an attrac-
tor singularity, thus the orbits of the system starting
sufficiently closer to the origin tends to it. In other
words, the damped pendulum always tends to stop.
The following study provide conditions to drop this re-
gime obtaining thus a periodic solution of the system
which never reaches the origin.

3. Perturbed system
Let (f,g) be an ordered pair of functions, such that

f,g:RxS' xR —R.
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We consider the non—autonomous perturbation of
the system ()

0 = —asin(f) — b + cf(t,0,0) + 2g(t,0,0).  (3)

By a non—autonomous perturbation we understand
that the function (f, g)(¢, 6, 9) is dependent of the varia-
ble t. We also assume that the ordered pair of functions
(f, g) satisfies the following conditions:

(C1) f(t,0,6) and g(t,6,6) are C? functions;

(C2) f(t,6,6) and g(t,@,é) are locally Lipschitz with
respect to (6, 0);

(C3) £(t,6,6) and g(t,0,8) are respectively Ty and T,
periodic in the variable ¢ with

py 2w Dy 2T
T, ="L2 and T,=2221
T4 va N

being p; and ¢; relatively prime positive integers
fori=f, g;

(C4) and f(¢,0,0) =0.

We say that the Basic Conditions are satisfied for
an ordered pair of functions (f,g) (which define the
non-autonomous perturbation on the system (B)) when
(f, g) satisfies the conditions C;, for i = 1,2,3,4.

J
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Remark 2. For simplicity, instead condition C3 we
can assume, without loss of gemerality, that the func-
tions f(t,&,é) and g(t,9,9) are T—periodic with T =
2prt/+\/a for some integer p. Indeed, taking p the least
common multiple between py and py, we have that there
exists integers ny and ng such that p = nypy = ng py.
Hence

27 Dy 2m Dy 2T
P—==Nfqf———F= =Ngldg— -
va TV va T g, a

4. Change of coordinates

As we shall see in the Section B1 the main result from
the Awveraging Theory, used in this present work, assu-
mes that the perturbed system is given in an Standard
Form (B). To get it, we have to introduce two changes
of coordinates. The first one is done in the following.

If we take 6 = ¢ with |¢| > 0, then the system (B)
becomes

a@ —ebd+ f(t,20,20) +eg(t,e,20). (4)

é=—
Note that, since b is a small parameter, we can as-
sume that b = eb, with b > 0 if we consider pertur-
bations for ¢ > 0; and with b < 0 if we consider per-
turbations for ¢ < 0. Henceforward we assume that
e >0.
As a consequence of this coordinates change we have
the following lemma.

Lemma 1. There exists a continuous function r(t,gb,qi),&:), T—-periodic in the variable t with T = 2pw/\/a, such

that the system (@) is written as

b=—ad+=(90(t) + [i(D)6+ (fo(t) — B)3) +£*r(t, 6, b.), (5)
where
gO(t) = g(ta()?O)v fl(t) = g%(t70’0)5 and f2(t) = %(t7070)'

Demonstracao. Set the variables ¢, ¢ and qb as the parameters of the C? function s — F(s;t, ¢, ¢) defined as

F(sit,6,4) =~

— sbp + f(t,5p,50) + sg(t, s¢, s¢).

Applying the Taylor’s Formula with Lagrange Remainder for the function F(s;t, ¢, (b) at s = 0 we conclude that

there exists 0 < h < 1 such that

F(eit, ¢,¢) =

2FN(€ h; ta ¢a ¢)

F(O7t7¢7¢)+5F’(07t5¢7¢)+5 f7

= —axr+e¢ (go(t) + fi(t)e + (f2(t) — l_’)éb)

2
Since
F'(ch;t, ¢, ) =

g 2ah ¢ cos(e ho) + a(e? h?¢? — 2) sin(e ho)

2

ds?

_|_d— (f(t7 s¢, 5¢) + sg(t, s¢, 3¢))

e3h3

b
s=eh
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and
li

. 2ah ¢ cos(e ho) + a(e? h?¢p? — 2)sin(e hg)  ax?®

Novaes

e—0 53h3

It follows that the function
T (t’ ¢’ é? E)

is continuous in the variable €. By the other hand

F(chit, ¢, ) + ax

3

= F"(chit, ¢, 9)

2

r(t, ¢, d,e) =

2

~g0(t) + f1(t)d + (f2(t) — B)QB.

g

Thus we conclude that the function r(¢, ¢, é,s) is continuous in the variables ¢ ,¢ and ¢, and T—periodic in the

variable t.

The Taylor’s Formula with Lagrange Remainder has
its statement and its proof done in the book of Lima [@].

To study the periodic solutions of the system ()
we shall study the periodic solutions of the system
(8). Indeed, if 9 (t,€) is a solution of system (B), then
p(t,e) = ep(t,e) is a solution of the system (B). Howe-
ver, the change of coordinate, introduced above, res-
tricts our study only for periodic solutions close to the
origin, since |p(t,e)] — 0 as € — 0 for t € I for every
I compact interval of R. In this case, we say that this
periodic solution is bifurcating of the origin.

Now, denoting (z,y) = (¢, ¢), the second order dif-
ferential Eq. (H) can be written as the first order diffe-
rential system

T =y,

y=—az+e(go(t)+ fr(t)z + (fa(t) = D)y) + r(t,z,y,€).

(6)

Observe that the unperturbed system, i.e. € = 0,

We define the matrix M = (M;;)ax2 as
_ 2pm
b

My =
va  Jo

+ /W sin(v/at) (

O

has the following eigenvalues
A1 =iya and Ay = —iv/a,

thus it is a center at the origin, see Fig. @.

There are many works which deal with perturbation
of centers, even in higher dimensions. For instance we
can see the paper of Llibre and Teixeira [H].

The second change of coordinates (C3) will be done
in the Section .

5. Statements of the main results

Our main goal, in this present work, is to find suffici-
ent conditions on the ordered pair of functions (f, g) to
assure the existence of periodic solutions of the system
(B). For this, we shall provide a matrix M such that its
non-singularity, i.e. det(M) # 0, implies the existence
of at least one periodic solution, for € > 0 sufficiently
small, of the system (B). ]

_Mfl(t) +sin(vat) f (t)) o,

Vva

My — /0 g @ (= sin(Vat) f1 () — vacos(v/at) fo(t)) dt,

0

— 2pm

My =2 ¢ /% cos(/at) (

va - Jo

sin(+/at)
Vva
|

cos(v/at) (cos(vat) f1(t) — Vasin(vat) fo(t)) dt,

fi(t) + cos(ﬁt)fz(t)) dt.
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Our main result on the periodic solutions of the
damped pendulum with small non—autonomous pertur-
bation (B) is the following.

Theorem 2. Assume that the Basic Conditions are
satisfied for the pair of functions (f,g), which define
the non—autonomous perturbation on the system (B). If
det(M) # 0, then for € > 0 sufficiently small the per-
turbed damped pendulum (B) has a T—periodic solution
O(t,e), such that

(0(0,¢),6(0,¢)) — (0,0),
when € — 0.

Theorem B is proved in section [A. Its proof is based
in the averaging theory for computing periodic soluti-
ons, which will be introduce in section Bl.

We provide an application of Theorem B in the fol-
lowing corollary.

Corollary 3. Assume that the Basic Conditions are
satisfied for the pair of functions (f,g), which define
the non—autonomous perturbation on the system (B).
Moreover, suppose that

of of

69( 3030) Ol an 69( 3070) CQ

If (C1,Cy) # (0,b), then there exists a T-periodic solu-
tion 0(t,e) of the perturbed damped pendulum (B), such
that

(0(0,¢),0(0,¢)) — (0,0),
when € — 0.

The Corollary B will be proved in section [.

6. Averaging theory

We present in this section a basic result known as First
Order Averaging Theorem. For a general introduction
to averaging theory see for instance the book of Sanders
and Verhulst [H] and the book of Verhulst [].

We consider the differential equation

X =cF(s,X)+e*R(s, X,e), (8)

where F; : R x U — R" is a smooth function and
R:RxU x (—e¢,e5) = R™ is a continuous function.
These functions are both T-periodic in the first variable
t and U is an open subset of R".

Remark 3. The Eq. (B) is the Standard Form, of a
differential system, to apply the first order averaging
theorem.

We define the averaged system associated to system
(B) as .
Z(t) = f1(2), (9)
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where f; : U — R" is given by

£12)= [ Fis. 2)as (10)

In resume, the averaging theory gives a quantitative
relation between the solutions of some non—autonomous
differential system and the solutions of the averaged dif-
ferential system, which is an autonomous one. In our
case, as we are working with periodic systems, the ave-
raging method also leads to the existence of periodic
solutions.

The next theorem associates the singularities of the
system (H) with the periodic solutions of the differential
system (B).

Theorem 4. Assume that
(i) Fy and R are locally Lipschitz with respect to x;

(ii) for a € U with fi(a) = 0, there exist a neigh-
borhood V' of a such that fi(Z) # 0 for all
z € V\{a} and det(dfi(a)) # 0.

Then, for |e| > 0 sufficiently small, there exist a T-
periodic solution X (t,e) of the system (B) such that
X(0,e) > a ase — 0.

Using Brower degree theory, the hypotheses of The-
orem B becomes weaker. For a proof of Theorem @ see
Buica and Llibre [IT].

Remark 4. Using the Averaging Theorem B we can
study some solutions of Eq. (B) only studying the alge-
braic equation f1(Z) = 0, instead solving the differen-
tial equation. This is one of the main characteristic of
Averaging Theory.

7. Proofs of Theorem 2 and Corollary B

In order to use the Theorem B in the proof of Theorem
B, we have to modify the Eq. (B). If we denote

T 0 1
X = 5 A= 9

Y —a 0

0
F(t,x) = |, 1y
go(t) + fr(t)z + (f2(t) — D)y
and
0
Ro(t,x) =
" r(t,x,€)

then the Eq. (B) can be written in the matrix form
%X = Ax + eF(t,x) + ? Ry (t, x). (12)

Now, we introduce the main change of coordinates
which makes us able to write the differential Eq. ()
in the Standard Form (B).
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Take y(t) € R? as

y(t) = e x(1), (13)
where
sin (vat
AL cos (v/at) \(/\&f)
—v/asin (y/at) cos (y/at)

is the matrix of the fundamental solution of the un-
perturbed differential system (I), i.e., ¢ = 0. This
change of coordinates is done in the book of Sanders
and Verhulst [[3].

Observe that the application ¢t — e~ 4? is T—periodic
function with 7' = 27/1/a, since the eigenvalues of A
are purely imaginary. Moreover y(0) = z(0).

Lemma 5. The system ([A) is written in the new va-
riable y as

y =eF(t,y) +e*R(t,y,¢), (14)

where F(t,y) = e AF(t, e
e Ry(t, ety €).

y) and R(t,y,e) =

Demonstragao.
g = % ( ).
= x(t) + e k(1)
= "x(t) + e (Ax(t) + e F (1, x(t)) +
€ R() t X ),

e MF(t,x(1)) + e Ro(t, (1)),
= Ee_AtF(t, ey (1) + e M Ry (t, eMy(t)),
= eF(t,y(t)) + 2R(t,y(t), ).

O

Note that the system (Id) is written in the standard
form (B). Thus we are ready to prove the Theorem B.

Proof of Theorem B. The smooth functions f(¢,x) and
g(t,x) are T-periodic in the variable ¢, with T =
2prm/y/a, which implies that the smooth functlons
F(t,y) and R(t,y,¢) are also T-periodic in .

We shall apply the Theorem B to the differential
Eq. (). Note that the Eq. (Id) can be written as the
Eq. (B) taking

X:yv Fl(th)
and R(t, X,e) =

= F(ty),
R(t,y,e). (15)

Observe that, by Lemma O, the function F; and R
satisfy the assumptions of Theorem M.

Novaes

Given z € R?, we can compute the averaged func-
tion fi : R? — R2, defined in (), as
2pm
2
fl(z) — / —AtF At )d
= Mz—v,

where M is defined in (@) and

/\Fsm\ft)g()dt

2pm
a

- / cos(v/at)go(t)dt

Assuming that det(M) # 0, we conclude that there
exists a solution zg = (xg,yo) of the linear system
f1(z) = 0 given by zg = M ~'v which satisfies the hy-
potheses of Theorem B. Indeed

det(df1(zo)) = det(M) # 0.

Moreover, det(M) # 0 also implies the uniqueness of
the solution zg of the system Mz = v, thus fi(z) # 0
for all z € R?\{zo}.
Hence, applying Theorem B, follows that there exists
a T-periodic solution y(t,¢) of the system (IA) such
that
yv(0,e) = z9 when ¢ — 0,

which implies the existence of a periodic solution
(x(t,e),y(t,e)) of the system (B) such that

((ﬂ(t, 5)7 y(ta 5)) = X(tv 8) = eAty(ta 5)'
Since x(0) = y(0) it follows that

‘T(Oa 6) Zo
_> b
y(0,¢) Yo
when € — 0. Hence

(0(t.2).0(,€)) = e(a(t.e).y(t, )

is a T—periodic solution of the system (B) such that

(60t.€).6(t,)) — (0,0),
when € — 0. O

Proof of Corollary @. The hypotheses of Corollary B
implies that

(C-br G
w_l|l va Ve
Cim (Cy —b)m
Va va
Thus ) _ o o
det(a) = LG +a(b2_02) )
a
Hence det(M) = 0 if and only if (Cy,Cy) = (0,b). Since

(C1,C3) # (0,b), the result follows by applying Theo-
rem B. O
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8. Simulation

Consider the following differential equation
0 = —sin(h) — e + £ sin(t). (16)

Observe that the Eq. ([@) is a small perturbation
of the damped pendulum system. Indeed, Eq. (B)
becomes Eq. (I@) by taking the parameters a = 1,
and b = ¢; and the functions f(t,@,é) = 0, and
g(t,0,0) = sin(t). Therefore, considering C; = Cy = 0
we can apply the Corollary B to assure the existence of
a periodic solution of the system (IH).

Indeed, proceeding with the numerical simulation
we find this periodic solution, represented by the blue
line in Fig. B.

Figura 5 - Solutions converging to the periodic solution.

This simulation has been done using the Wolfram
Mathematica® 8 software.

9. Conclusions and future directions

The averaging theory is a collection of techniques to
study, via approximations, the behavior of the soluti-
ons of a dynamical system under small perturbations.
As we have seen, it can also be used to find periodic
solutions.

In this paper, we have presented one of these tech-
niques and used it to find conditions that assure the
existence of a periodic solution of the non-autonomous
perturbed damped pendulum system. In resume, we
have got an algebraic non—homogeneous linear system
Mz = v such that its solution, when det(M) # 0, is
associated with a periodic solution of such perturbed
system.

Recently, Llibre et al. [[3] have extended the ave-
raging method for studying the periodic solutions of a
class of differential equations with discontinuous second
member. Therefore we are able to consider for instance
equations of kind

0 = —asin(0) — bsign(0) + f(t,0,6) + £2g(t,0,0).
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Here, the term bsign(6) represents the Coulomb Fric-
tion, where the function sgn(z) denotes the sign func-
tion, i.e.

1 ifz <0,
sgn(z) = 0 ifz=0,
1 ifz>0.

For instance, in Ref. [[@], Llibre et al. have used the
averaging theory to provide sufficient conditions for the
existence of periodic solutions with small amplitude of
the non-linear planar double pendulum perturbed by
smooth or non—smooth functions.
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