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In this manuscript, we explore the effects of continuous measurements upon the quantized electromagnetic
field through a series of simple examples. For this purpose, we consider the Srinivas-Davies model to describe
the optical field dynamics probed continuously by a photodetector. Through the application of this continuous
photodetection model to some specific situations, it is possible to cover some basic concepts of quantum mechanics
such as the principle of superposition, the collapse of the wave function, the probabilistic character of the possible
outcomes associated with projective measurements, as well as some advanced topics such as the description of
open quantum systems, irreversible processes in quantum mechanics, decoherence and dissipation associated with
non-unitary evolution of quantum systems. Besides, we also consider the important concept of entanglement
between two electromagnetic fields and how it is affected by the photodetection process. This work aims to provide
complementary material for undergraduate and graduate students interested in the effects of measuring devices
acting on quantum systems.
Keywords: Continuous measurements, Photodetection, Quantized optical fields

1. Introduction

The postulates of Quantum Mechanics (QM), following
the Copenhagen interpretation, establish the foundations
to describe nature at the microscopic scale. Inside the QM
formalism, it is possible to describe atoms, molecules as
well as light and their mutual interactions [1,2]. Since the
birth of QM, the investigations about coherence, quantum
dynamics, projective measurements, and the intrinsic
probabilistic nature of the outcomes associated with these
kinds of measurement, are extremely important to check
the veracity of the postulates and, therefore, of great
interest to physicists concerned about the foundations of
QM. Until now there is no experimental evidence that
demonstrates any inconsistency with the postulates or
the Copenhagen interpretation of QM [3–5].

In this paper, we are interested in exploring the con-
cepts raised above, considering continuous measurements
applied to the quantized optical field via photodetection.
Despite an extensive literature [6–15] about this subject,
we care about being quite pedagogical to help advanced
undergraduate and graduate students interested in the
effects of measuring devices acting on quantum systems.
This kind of problem is becoming increasingly impor-
tant given the significant quantum-based technologies
advancements [16–31].

To take into account the action of the detector on the
optical field, we use the theoretical photodetection model
developed by Srinivas and Davies [6, 8, 15]. The Srinivas-
*Correspondence email address: lgarruda@gmail.com

Davies model is based on the mathematical framework
called quantum operations [16] which permits not only to
calculate the evolution of closed systems but also the evo-
lution of open quantum systems. It is important to learn
and dominate techniques that describe the dynamics of
quantum systems interacting with the environment since
in real life there is no such thing as closed system, and
to describe real processes we have to take into account
the influence of the rest of the Universe upon the system
of interest.

The Srinivas-Davies model is presented in Sec. 2. In
Sec. 3, to illustrate basic and general results, we review
the simplest case where the Srinivas-Davies model can
be applied: just one-mode of the optical field. For an
arbitrary initial state, we not only present the dynamics
of the field probed by the detector (the conditioned and
unconditioned states) and the photocounting probability
distribution (the probability distribution associated with
the number of photons counted by the detector over a
time period t), but we also present detailed calculations.
For concreteness, we review two specific cases, the num-
ber and the coherent states, pointing out the differences
and the similarities between them when they are probed
by a photodetector. In Sec. 4, we consider another ex-
ample given by a superposition of two coherent states
and analyze the dependence on the number of photons
counted upon the dynamics of two special cases: the odd
and even superpositions of coherent states. In Sec. 5, we
consider two non-interacting optical fields initially pre-
pared as an entangled state of two-mode coherent states.
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There we assume two scenarios: one in which just one
mode is continuously probed, showing how the combined
state evolves under the influence of a local detection, and
another where both modes are probed by two indepen-
dent photodetectors with different detection rates. In
order to guide the readers, the calculations needed to
obtain the main results concerning the dynamics of the
probability distributions and the conditioned and uncon-
ditioned states are detailed in the appendices. Finally, in
Sec. 6 a summary is presented.

2. Srinivas-Davies continuous
photocounting model

The Srinivas-Davies continuous photocounting model
(SD-model) is based on the following statement: whenever
a system in an arbitrary state ρ is subject to a process
(instantaneous or not) and a certain outcome is observed
as a result, the state that emerges from the process will
be of the form [16]

ερ

Tr [ερ] . (1)

The operator ρ is the density operator, also known as
the statistical operator, and it represents the physical
state of the system [1,2, 32]. The map ε in the equation
(1) is what is called a quantum operation; it can represent
an unitary evolution of a closed system, the collapse of
a state due to a measurement associated with some ob-
servable, a non-unitary evolution of a system interacting
with the environment, or a more general process that
encompasses non-unitary evolution between multiple in-
stantaneous projective measurements. In mathematical
language, just for the sake of formality, an operation ε
is a linear positive transformation on the space of all
trace class operators on the Hilbert space H, such that
0 ≤ Tr [ερ] ≤ 1 (for each normalized density operator
ρ), where Tr [ερ] is the probability that the outcome
corresponding to ε has been observed.

Another mathematical particularity that we consider
relevant to mention is that the SD-model satisfies a
semi-group structure which means that the dynamics
of the system is irreversible in time. A semi-group is
an algebraic structure that requires only the associative
property between the elements of a set provided with
a binary operation rule, and it does not need to have
the identity nor the inverse operations. Furthermore, if
the system in the state ρ is subject to a sequence of
two experiments with outcomes corresponding to the
operations ε1 and ε2 respectively, then the state of the
system just after the second experiment will be

ε2ε1ρ

Tr [ε2ε1ρ] , (2)

with Tr [ε2ε1ρ] being the joint probability that the above
sequence of outcomes happens. In other words, the maps
that define the semi-group dynamics in the SD-model are
what is known in the literature as divisible maps [33–35].

Here, we are interested in describing the action of the
photodetection on a quantized electromagnetic field. In
this context, the process of photodetection represented
by the SD-model is characterized by a set of operations
N[t,t+τ) (k) which define the conditioned state

N[t,t+τ) (k) ρ
Tr

[
N[t,t+τ) (k) ρ

] . (3)

The state above is the evolved state conditioned to the
number k of photons counted by the detector over a time
interval [t, t+ τ), where ρ represents the initial state of
the quantized optical field. As we will see in the next
sections, the initial state of the quantized electromagnetic
field can be represented by a number of possibilities.
Each representation of the initial state is associated to
a particular probability distribution which corresponds
to a signature of the optical field that can be obtained
experimentally by photodetection. Also, the conditioned
state given by equation (3) depends on the initial state
and the type of photodetection process, which is usually
accomplished by photon absorption. The state given by
equation (3) represents the change of the optical field due
to its coupling with the detector. Hereafter, we adopt (as
Srinivas and Davies did in their seminal paper [6]) only
homogeneous counting processes for which N[t,t+τ) (k)
are independent of the initial time, that is

N[t,t+τ) (k) = Nτ (k) , (4)

depending only on the time interval τ . Homogeneous
counting processes can be characterized by some axioms
that are related with the probabilistic character of

Pr (k, t) = Tr [Nt (k) ρ] (5)

which is the probability of the event “k photons
counted by the detector during the time lapse t”. These
axioms are the following: 0 ≤ Tr [Nt (k) ρ] ≤ 1 en-
sures that Pr (k, t) assumes values inside the inter-
val [0, 1]; the operation Tt =

∑∞
k=0 Nt (k) satisfies

Tr [Ttρ] = 1 since
∑∞

k=0 Pr (k, t) = 1; Nt1+t2 (k) =∑
k1+k2=k Nt2 (k2)Nt1 (k1) relates the joint probabil-

ity Pr (k1, [0, t1); k2, [t1, t2)) that k1 photocounting is
recorded in the interval [0, t1) and k2 in the inter-
val [t1, t1 + t2), where the probability that k = k1 +
k2 photons are recorded during the total time in-
terval t = t1 + t2 is given by Pr (k, [0, t1 + t2)) =∑

k1+k2=k Pr (k1, [0, t1); k2[t1, t2)). Besides,

lim
t→0

Nt(0)ρ = ρ (6)

ensures that

lim
t→0

Pr(0, t) = 1, (7)

i.e., the probability of the detector records a photocount-
ing at the very beginning of time is extremely unlikely
and it goes to zero in the limit t → 0.

The operation Nt(k) is given in terms of two fun-
damental operations which completely characterize the
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photocounting process within the SD-model. The opera-
tion St is one of them and it represents the non unitary
evolution that the optical field undergoes between two
consecutive photodetections. Following [6] we assume
that

Stρ = eY tρeY †t, (8)

where Y is the generator of the semi-group dynamics
given by divisible maps Stρ = St2St1ρ, where t = t1 +
t2. The other operation that composes Nt(k) is J and
it is responsible for the instantaneous absorption of a
photon from the optical field by the detector, that is, the
operation J is responsible for the collapse of the state
of the field into a state having minus one photon. It is
assumed by the SD-model that the detector cannot count
two or more photons at the same time. Mathematically
we can write this assumption as follows

lim
t→0

Nt(k)ρ
t

= 0 for k ≥ 2 (9)

with

lim
t→0

Nt(1)ρ
t

= Jρ. (10)

In terms of the operations St and J , Nt(k) is given by

Nt (k) ρ =
∫ t

0
dtk

∫ tk

0
dtk−1 . . .∫ t2

0
dt1St−tk

JStk−tk−1 . . . JSt1ρ. (11)

Since the operation St is divisible, the integrand in the
equation (11) can be rewritten as follows

Nt (k) ρ =
∫ t

0
dtk

∫ tk

0
dtk−1 . . .∫ t2

0
dt1StJ(tk)J(tk−1) . . . J(t1)ρ, (12)

where

J(tj)ρ = S−tj
JStj

ρ. (13)

Considering a canonical photoncounting process, where
the operation St is completely defined by the operation
J , the generator Y is given by

Y = −iH
~

− R

2 , (14)

where the Hilbert space operator R is defined by

Tr [ρR] = Tr [Jρ] . (15)

These choices given by equations (8), (14) and (15)
reflect the complementary property of the two mutually
exclusive probabilities

P (J)τ + P (Sτ ) = 1, (16)

that is, the complementarity between the probability
associated to the event “to count 1 photon during an
infinitesimal interval of time τ” (P (J)τ) and the proba-
bility associated with the event “not to count 1 photon
during the same interval of time” (P (St)).

The probability P (J)τ = Tr [Jρ] τ is dimensionless
since Jρ is given by the equation (10) which has the
dimension of frequency. The probability P (Sτ ) = Tr [Stρ]
is also dimensionless since ideally Sτρ = Nτ (0) ρ. When
equation (8) is satisfied, the equation (16) is completely
equivalent to the following relation (see Appendix A):

Tr [ρR] = Tr [Jρ] = − Tr
[
Y ρ+ ρY †]

. (17)

3. Single-mode free field photocounting
statistics

In this section we consider the formalism developed by
Srinivas and Davies applied to the simplest possible
case: one-mode of the quantized electromagnetic field.
Although this example is found in the original Srinivas
and Davies paper [6], we include it here for the sake of
completeness, containing further discussions illustrating
the results and the basic techniques that will be useful
in the following sections. The evolution of such system
is generated by the Hamiltonian [36]

H = ~ωa†a, (18)

where ω is the natural angular frequency of oscillation
of the field, ~ is the Plank’s constant divided by 2π,
and the operators a† and a are the photon creation
and annihilation operators, respectively. These operators
satisfy the usual bosonic commutation relation

[
a, a†]

=
1. If {|n〉} denotes the basis composed of the eigenvectors
of the Hamiltonian (18), known as the Fock (or Number)
states, then a† and a satisfy the following relations

a|n〉 =
√
n|n− 1〉, (19)

a†|n〉 =
√
n+ 1|n+ 1〉, (20)

which naturally implies that

N |n〉 = a†a|n〉 = n|n〉. (21)

Clearly, from equation (19), the role of the annihilation
operator is to remove a quantum of light from the field
changing its state from one with n photons to another
with n−1 photons. The creation operator has the opposite
role.

The number operator N = a†a, whose eigenvalues are
formed by non-negative integers, gives the number of
photons contained in the optical field. Since [H,N ] = 0,
the number operator is a constant of motion. The mean-
ing of this is simple: considering a closed system governed
by the Hamiltonian (18), i.e., considering one-mode of
electromagnetic field evolving freely in the absence of a
detector (or any other process that can remove photons
from the field) and in the absence of a pump laser (or any
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other process that can introduce photons into the field),
the number of photons is, obviously, constant. Because
the pair of observables commutes they are called compat-
ible observables in the sense that the result of measuring
one of them has no effect on the result of measuring
the other and they can be measured simultaneously [1].
Besides, the Fock basis diagonalizes simultaneously both
observables, that is, the Hamiltonian and the number
operator share the same set of eigenvectors. Moreover,
this set of vectors form a complete and orthogonal set:

∞∑
n=0

|n〉〈n| = 1, (22)

〈m|n〉 = δmn. (23)

Naturally, we can express the most general one-mode
optical field state as follows

ρ =
∞∑

m,n=0
ρmn |m〉 〈n| , (24)

where ρmn can be either a statistical weight (and in this
case the state is a statistical mixture of Fock states) or
a pure state with ρmn = cmc

∗
n, where cm = 〈m|ψ〉 are

the probability amplitudes and the state of the system
is written as a linear combination of Fock states: |ψ〉 =∑

n cn|n〉.
Now, if we consider a detector probing the optical field,

every time that one photon is detected (by absorption)
the field loses that photon to the detector. To represent
this absorption process mathematically it is reasonable
to write the super operator J through the following
expression

Jρ = γaρa†, (25)

where γ is a parameter related with the detector’s effi-
ciency and represents the coupling between the detector
and the field. A microscopic model for a detector oper-
ating by photon absorption justifying the choice in the
equation (25) can be found in [10]. The equation (25)
implies via equation (15) that

R = γa†a. (26)

Then, the generator of the non-unitary dynamics in
which the single-mode optical field is subject between
two consecutive photocountings is given by

Y = −i
(
ω − i

γ

2

)
a†a. (27)

Besides, from the equations (25) and (13) we have

J(tj)ρ = S−tj
JStj

ρ = γe−Y tjaeY tjρeY †tja†e−Y †tj

= γa(tj)ρa†(tj), (28)

where

a(tj) = e−Y tjaeY tj (29)

a†(tj) = eY †tja†e−Y †tj , (30)

which implies that

Nt (k) ρ = γkSt

∫ t

0
dtk . . .∫ t2

0
dt1a(tk) . . . a(t1)ρa†(t1) . . . a†(tk). (31)

With the help of the following theorem (see [36]): If
A and B are two non-commuting operators and ξ an
arbitrary parameter, then

eξABe−ξA = B + ξ [A,B] + ξ2

2! [A, [A,B]]

+ξ3

3! [A, [A, [A,B]]] + . . . , (32)

it is possible to calculate the equations (29) and (30),
which gives:

a(tj) = ae
−i

(
ω−i

γ
2

)
tj

(33)

a†(tj) = a†e
i

(
ω+i

γ
2

)
tj

. (34)

With the equations (33) and (34), the operation (31)
becomes

Nt (k) ρ = StJ
kρ

∫ t

0
dtk . . .

∫ t2

0
dt1e

−γ(t1+t2+···+tk).

(35)
The calculus of the multiple integral above is presented

in the Appendix B which gives the following result

∫ t

0
dtk

∫ tk

0
dtk−1...

∫ t2

0
dt1e

−γ

(
t1+t2+...tk

)
= (1 − e−γt)k

γkk! .

(36)
Therefore, the state (3) and the probability distribution

(5) in terms of the fundamental operations J (which
absorves one photon from the field by the detector) and
St (which evolves non-unitarily the state of the field
between two photocountings) become

ρ(k)(t) = StJ
kρ (0)

Tr [StJkρ (0)] , (37)

Pr (k, t) = Tr
[
StJ

kρ (0)
] (1 − e−γt)k

γkk! . (38)

The state (37) is obtained after k photons have been
detected by the measuring device during the probing time
t. It represents our knowledge about the optical field state
after the continuous photodetection process has ended.
It is called conditioned state since it is conditioned to
(our knowledge about) the number of photons that were
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counted. Now, if we want to know how likely is this
particular outcome, that is, if we want to know how
probable is to count k photons during the probing time
t, the answer is given by the equation (38). Considering
an initial state of the form (24), the probability (38) can
be written as follows

Pr (k, t) =
∞∑

m=k

(
m
k

) (
1 − e−γt

)k (
e−γt

)m−k
ρmm (0) ,

(39)

where
(
m
k

)
= m!

k!(m−k)! is the binomial coefficient. Both

expressions, (38) and (39), show that the probability
distribution Pr (k, t) is strongly dependent on the ini-
tial state of the system and both represent general and
equivalent expressions for the one-mode optical field pho-
tocounting probability distribution. Identical formulas to
equation (39) were obtained before the Srinivas-Davies
theory in Refs. [37] and [38] using other approaches.

As we can see in the equation (39), for γt >> 1 (which
means either a large period of probing time or a fast detec-
tion rate or both) only the first term in the sum remains
and the photocounting probability distribution Pr (k, t)
reproduces (asymptotically) the initial state probability
distribution Pn = 〈n|ρ (0) |n〉 = ρnn (0), i.e.,

lim
γt→∞

Pr (k, t) ∼ ρkk (0) . (40)

The conditioned state (37) is the state that emerges
from the continuous photodetection process when it is
known how many photons were counted during the prob-
ing time t; however, if it is not known how many photons
were counted during the probing time we usually de-
scribe our lack of information about the state through
the unconditioned state, which is the state obtained aver-
aging the conditioned state (37) over all possible k counts
weighted by the photocouting probability distribution
(39)

ρ (t) =
∞∑

k=0
Pr (k, t) ρ(k) (t) . (41)

The equations (37), (39) and (41) can be applied for
any initial one-mode optical field state. Let us then illus-
trate the applicability of these equations for some con-
crete examples. Let us begin with two well known partic-
ular cases, the number and the coherent states [8, 36, 39].

In the first example, if we prepare the initial optical
field in a state where we know for sure how many photons
are contained initially in the field, that is, a number state
|n0〉, which implies to choose ρmn (0) = δmn0δnn0 where
n0 is the number of photons contained in the field at
t = 0, then equations (37), (39) and (41) give us the
following dynamics for the conditioned state, the photo-
counting probability distribution and the unconditioned
state, respectively:

ρ(k) (t) = |n0 − k〉 〈n0 − k| , (42)

Pr (k, t) =
(
n0
k

) (
1 − e−γt

)k (
e−γt

)n0−k
, (43)

and

ρ (t)=
∞∑

k=0

(
n0
k

) (
1 − e−γt

)k(
e−γt

)n0−k |n0 − k〉〈n0 − k|.

(44)
What can we conclude from the conditioned and un-

conditioned states (42) and (44)? And what can we say
about the probability distribution (43)? First of all, we
can see that the conditioned state (42) does not depend
on time at all, depending solely on the number of photons
counted by the detector. It represents the collapse of the
initial state |n0〉 into the final state |n0 − k〉, after k pho-
tons have been detected, which is the state that emerges
from the photocounting process if we know how many
photons were counted. Obviously, although the state (42)
does not depend on time, the odds of a particular event is
time dependent and is given by the probability distribu-
tion (43). The time dependent probabilities Pr(k, t) for
k = 0, 1, 2, . . . , 10 with n0 = 10 and γ = 1 are depicted
in different colours in the Fig. 1.

As we can see in the Fig. 1, each possible outcome
has its own time dependent probability distribution
Pr(k, t). For instance, the probability to count no pho-
tons Pr(0, t) = e−γn0t is initially equal to 1 and decays
exponentially to 0 as a function of time. For 0 < k < 10
the probabilities reach a maximum value for some inter-
mediate time and then also decay asymptotically to 0 for
large times. As may be expected, the time scale is defined
by the detector’s efficiency γ and by the initial number
of photons in the field n0. For k = 10, which corresponds
to the event of count all the photons available in the
initial field, the probability Pr(10, t) = (1 − e−γt)10 in-
creases monotonically with time from 0 to 1 indicating
that for sufficiently long time all the photons in the field
are counted leaving the field in the vacuum state |0〉〈0|.

Now, let us suppose that it is not known how many
photons were counted during the process. Let us say

Figure 1: The time dependence of the photocounting probability
distribution Pr (k, t) given by the equation (43) for different
values of k when the initial state is the number state |n0〉. Here
we choose n0 = 10 and γ = 1.
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that, for some reason, we only know that the detector
has counted some number of photons but we do not know
that number. In this case, we are unable to say what the
optical field state is for sure but, instead, we could say
that the state of the field can be |n0〉〈n0| with probability
Pr(0, t), or can be |n0−1〉〈n0−1| with probability Pr(1, t),
and so on. In this situation, the state of the field is in
a statistical mixture of pure states (42) weighted by
the probabilities (43), which is well represented by the
unconditioned state (44). This state is a mixed state
and the statistical matrix that represents the density
operator (44) is a diagonal matrix with null non-diagonal
elements.

The second example of a single-mode initial state con-
sidered in this section is the coherent state [39]. This
important representation of the optical field can be writ-
ten as an infinity superposition of Fock states [36],

|α〉 = e−|α|2/2
∞∑

n=0

αn

n! |n〉. (45)

The photon number probability distribution for the
coherent state follows a Poisson distribution

Pn = |〈n|α〉|2 = 〈n|α〉〈α|n〉 = e−|α|2 |α|2n

n! , (46)

with an average number of photons given by 〈n〉 =
〈α|a†a|α〉 = |α|2. Unlike the number state which has
a definite number of photons and, consequently, a max-
imal uncertainty on its phase, the coherent state has a
definite phase with an indefinite number of photons.

From the equations (45) and (24) we have ρmn =
e−|α|2 αm(α∗)n

√
m!n!

for the coherent state. Then the condi-
tioned state (37) and the photocounting probability dis-
tribution (39) are, respectively, given by (see Appendix
C for details)

ρ(k) (t) =
∣∣∣∣αe−i

(
ω−i γ

2

)
t

〉 〈
αe

−i
(

ω−i γ
2

)
t

∣∣∣∣ , (47)

Pr (k, t)=e−|α|2
∞∑

m=k

(
m
k

) (
1 − e−γt

)k (
e−γt

)m−k |α|2m

m! ,

(48)
where the sum in the equation (48) converges to the
following expression (see Appendix D)

Pr (k, t) = (|α|2 − |α(t)|2)k

k! e−(|α|2−|α(t)|2), (49)

with α(t) = αe
−i

(
ω−i γ

2

)
t.

It is interesting to notice that the coherent state is not
affected by the operation J during the photocounting
process since it is an eigenvector of the annihilation
operator,

a |α〉 = α |α〉 , (50)

with complex eigenvalue α = |α| eiφ. Consequently, the
conditioned state (47) does not depend on k. On the
other hand, between two successive photocountings the
operation St induces two effects over the coherent state:
a time dependent phase shift due to the free evolution of
the field and an irreversible amplitude exponential decay
due to the non-unitary part of the evolution. Therefore,
the coherent state remains coherent during the whole pho-
tocounting process decreasing its amplitude continuously
until all the photons in the field have been detected and
the original field has reached its final state, i.e., the vac-
uum state (which is a coherent state as well). Moreover,
since the conditioned state dynamics (47) is independent
of k and

∑∞
k=0 Pr(k, t) = 1, the unconditioned state (41)

and the conditioned state are the same:

ρ(t) = |α(t)〉〈α(t)|. (51)

Hence, it does not matter if one knows or not how
many photons are counted during the photocounting
process, the coherent state will remain pure and coherent
all the time, differently from the number state where the
lack of information about how many photons are counted
is manifested as a mixed state with statistical weights,
as expressed by equation (44).

The photon number probability distribution associated
with the evolved state of the field, Pn(t) = |〈n|α(t)〉|2 =
〈n|α(t)〉〈α(t)|n〉, is a time dependent Poisson distribution

Pn(t) = e−|α(t)|2 |α(t)|2n

n! . (52)

Figure (2) shows the photon number probability distri-
bution dynamics given by the equation (52) for different
times and for 〈n〉 = |α|2 = 6 and γ = 1. At the initial
time t = 0 the photon number probability distribution
Pn(t) given by the equation (52) is identical to Pn given
by the equation (46), which can be seen in the Fig. (2)-(a).
Figures from (2)-(b) to (2)-(h) show that the distribution
Pn(t) moves from right to left as the amplitude of the
field decreases with time due to the non-unitary action
of the detector. It means that asymptotically all the pho-
tons of the field will be counted and the only probability
that survives is P0(∞) = 1 [see Fig. (2)-(i)] indicating
that the conditioned state given by equation (51) reaches
the vacuum state for a long enough time

lim
t→∞

ρ(t) = lim
t→∞

|α(t)〉〈α(t)| = |0〉〈0|. (53)

The photodetection probability distribution given by
equation (49) is depicted in the Fig. (3) for the same
average number of photons |α|2 = 6 and the same de-
tection rate γ = 1 considered in the Fig. (2). As it can
be observed, the behaviour of the photocouting proba-
bility distribution Pr (k, t) given by equation (49) is the
opposite observed for the photon number distribution in
the equation (52). Initially the photocounting probability
Pr (k, t) to count k = 0 is the only non null probability
and it is equal to 1 [see Fig. (3)-(a)]. In the course of
time, the photocounting probability distribution given by
the equation (49) moves from left to right [see Figs. from
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Figure 2: The photon number probability distribution Pn(t) given by the equation (52) for the initial coherent state |α〉 for different
times. We set |α|2 = 6 and γ = 1. In (a) t = 0; (b) t = 1.0; (c) t = 2.0; (d) t = 3.0; (e) t = 4.0; (f) t = 5.0; (g) t = 6.0; (h)
t = 7.0; (i) t = 8.0. Time is in units of 1/γ.

(3)-b to (3)-k] and for long enough time it reproduces the
initial probability distribution of the optical field given
by equation (46) [see Fig. (3)-l] as expected from the
equation (40). The opposite behaviors observed between
the photon number probability distribution and the pho-
todetection probability distribution is in agreement with
the law of energy conservation which states that the total
energy of an isolated system (field + detector) remains
constant over time.

From an experimental point of view, the optical field
intensities (or even individual photons) are not measured
directly but rather indirectly, measuring the photocurrent
produced and amplified by the detector. The photocur-
rent statistics reflects the statistical properties of light.
For a better understanding of the photodetection process
in real experiments let us consider the simplest optical
setup needed to measure photon statistics. This setup
needs three basic devices: a source of light, a photode-
tector and a discriminator. The source of light can be
a hight-quantum-efficiency light emitting diode (LED),
which is suited for the producing of a quantized light
beam. A good photodetector candidate which is well-

suited for laboratory applications, enabling individual
photons to be detected when the incident flux of light
is low and the optical field needs to be treated quan-
tum mechanically, are the photomultiplier tubes (PMTs),
which are photodetectors that absorves and transforms
incident photons, via photoelectric effect, into measur-
able electric pulses (the photocurrents). Basically, there
are three steps inside a PMT: first, photons coming from
the light source strike a photocathode inside the vacuum
tube ejecting electrons from its surface via photoelec-
tric effect; second, the photoelectrons ejected from the
photocathode surface (the first emission) are directed
towards the electron multiplier for amplification of the
initial signal. The electron multiplier is built by several
electrodes called dynodes, each held at a more positive
electric potential than the preceding one. The multipli-
cation of electrons and consequently amplification of the
photocurrent signal is the result of multiple electron sec-
ondary emissions that take place on the dynodes surfaces
due to successive collisions of the preceding electrons
ejected from the preceding dynodes onto the subsequent
ones. Finally, in the third and last step inside the PMT,
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e20200023-8 Introduction to continuous photocounting effects on the quantized optical field

Figure 3: The photocounting probability distribution Pr (k, t) given by the equation (49) for the initial coherent state |α〉 with
|α|2 = 6 and γ = 1. In (a) t = 0; (b) t = 0.1; (c) t = 0.2; (d) t = 0.3; (e) t = 0.4; (f) t = 0.5; (g) t = 0.6; (h) t = 0.7; (i)
t = 0.8; (j) t = 0.9; (k) t = 1; (l) t = 5. Time is in units of 1/γ.

the large number of electrons that reach the anode re-
sults in a sharp current pulse which is straightforward
to detect with the help of the discriminator, a device
that selects (count) the pulses that have energy above
some threshold energy value and discards the pulses that
have energy bellow this threshold. The discriminator is
important because it separates photocounts from noise.
The important thing to notice here is that the statistics
of emitted photoelectrons preserves the statistical prop-
erties of the probability distribution of absorbed photons
of a given state. The number of photoelectron pulses
computed within a fixed interval length τ is sampled in
many realizations, and a histogram with the proportion
of the realizations with the same k provides the pho-
tocount distribution Pr (k, τ). For more about detailed

optical setups that can be accomplished in undergraduate
laboratories we suggest the following references [40–44] .

4. Superposition of coherent states

In this section we analyse the effect of the photodetection
over a single-mode superposition of two coherent states
|α〉 and |−α〉, where |−α〉 = e±iπa†a|α〉 = |e±iπα〉 is the
ordinary coherent state |α〉 phase shifted by ±π [45, 46].
This kind of superposition can be expressed as follows

|ψ〉 = N (θ)
(
|α〉 + eiθ| − α〉

)
, (54)

where the normalization factor is
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N (θ) = 1√
2

(
1 + e−2|α|2 cos (θ)

) , (55)

and θ is the relative phase between the two states that
compose the superposition.

For large amplitudes the state given by equation (54)
are known in the literature as cat states [47] and this is so
because for large amplitudes the two states that compose
the superposition can be considered practically distin-
guishable states with small overlapping wave functions
(like the superposition of two macroscopic states repre-
senting the cat alive and dead in the famous Schrödinger’s
cat gedanken experiment). Although these states are hard
to be produced in the laboratory, they have been gen-
erated for small amplitudes [48]. Two special cases are
obtained when we consider θ = 0 or θ = π

|ψ±〉 = N± (|α〉 ± | − α〉) , (56)

where N± = 1/
√

2
(
1 ± e−2|α|2)

. The two states given
by the equation (56) are known as even and odd states
[46], respectively. This nomenclature comes from the fact
that the two photon number probability distributions
associated with these states

P±
n = |〈n|ψ±〉|2 = 2N 2

±e
−|α|2 |α|2n

n! [1 ± (−1)n] (57)

are different from zero, respectively, only for n even (in
the case of even state) or only for n odd (in the case of
odd state). Figure (4) shows the even and odd photon
number probability distributions for |α|2 = 6.

Now, let us analyse what happens when we perform
continuous photodetection over the even or odd single-
mode coherent superposition. The conditioned state (37)
for an initial even superposition, ρeven (0) = |ψ(+)〉〈ψ(+)|
is given by the following expression (see Appendix E)

ρ(k)
even (t) = 1

N (k)
(+)

(|α (t)〉〈α (t) | + (−1)k |α (t)〉〈−α (t) |

+ (−1)k | − α (t)〉〈α (t) | + | − α (t)〉〈−α (t) |)
(58)
where the normalization factor is given by

N (k)
+ = 1

2
(

1 + (−1)k
e−2|α|2e−γt

) . (59)

If the initial state is the odd superposition it is straight-
forward to notice that ρ(k)

odd (t) = ρ
(k+1)
even (t), i.e.,

ρ
(k)
odd (t) = 1

N (k)
−

(|α (t)〉〈α (t) |+ (−1)k+1 |α (t)〉〈−α (t) |

+(−1)k+1|− α (t)〉〈α (t) | +|− α (t)〉〈−α (t) |),
(60)
where N (k)

− (t) = N (k+1)
+ (t) = 1

2
(

1+(−1)k+1e−2|α|2e−γt
) .

Through the conditioned states (58) and (60) it is
possible to calculate the photon number probability dis-
tributions of the optical field ρ(k)

n,n (t) = 〈n|ρ(k) (t) |n〉 for
the even and odd states which, after some minor algebra,
take the following forms

ρ(k)
n,n (t) =

e−|α(t)|2 |α (t) |2n
[
1 ± (−1)k+n

]
n!

(
1 ± (−1)k

e−2|α|2e−γt
) (61)

The plus (minus) sign inside the brackets in the equa-
tion (61) is related with the even (odd) probability dis-
tribution. In addition, the conditioned state can change
from an even state to an odd state depending on whether
n+ k is an even or an odd number, respectively. There-
fore, the state parity for a given n is conditioned by the
number k of detected photons. In principle it suggests a
way to control the state parity of the system, however
the exact number of photons registered by the detector
is a random variable.

Figure 4: The photon number probability distributions P
(±)
n given by the equation (57) with |α|2 = 6 (a) for the even coherent

superposition state and (b) for the odd coherent superposition state.
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The photocounting probability Pr(k, t) for the even
(odd) superposition is obtained inserting P (±)

n = ρ
(±)
mm(0)

given by the equation (57) into equation (39) which, after
summing up the series, gives the following result

Pr (k, t) = 2N±(t)Prc(k, t)
[
1 ± (−1)ke−2|α(t)|2

]
, (62)

where Prc(k, t) stands for the photocounting probability
distribution for a coherent state given by the equation
(49). Figure (5) shows the photocounting probability
distribution for an initial even state with |α|2 = 6 and
γ = 1 for different times. As it is expected, for large times
the photocounting probability distribution reproduces
the optical field initial probability distribution.

5. Entangled coherent state

Let us consider now the photocounting effects over a two-
mode entangled state of the optical field. Entanglement
is a genuine quantum property without classical coun-
terpart where two or more components of a combined
system share a joint state that is not separable as a ten-
sor product of the individual subsystems’ states [49, 50].

Moreover, entanglement is a very important resource for
a variety of quantum computation and quantum infor-
mation tasks [16]. In general, entangled states between
two (or more) particles are generated by letting the par-
ticles interact with each other [32]. Several processes
have been proposed to generate entanglement between
two or more optical fields. The process of spontaneous
parametric down-conversion [15], for example, is a way
for the generation of entangled photon pairs. Here we are
not interested in how the two modes were entangled and
we simply suppose that they have interacted sometime
in the past, becoming entangled after the interaction.
The Hamiltonian describing the free evolution after the
interaction is given by

H = ~ω1b
†b+ ~ω2a

†a (63)
where ω1 and ω2 are the angular frequencies, and b and
a are the annihilation operators of the modes 1 and 2,
respectively.

We are going to consider the following initial two-mode
coherent entangled state [51]

|ψ(0)〉 = N (|α〉1| − α〉2 + | − α〉1|α〉2) , (64)
with the corresponding density operator

Figure 5: The probability distribution Pr (k, t) given by the equation (62) for |α|2 = 6 and γ = 1 for different times. In (a) t = 0;
(b) t = 1; (c) t = 2; (d) t = 3; (e) t = 4; (f) t = 5; (g) t = 6; (h) t = 7; (i) t = 8. Time is in units of 1/γ.
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ρ(0) = N 2(|α,−α〉〈α,−α| + |α,−α〉〈−α, α|
+| − α, α〉〈α,−α| + | − α, α〉〈−α, α|), (65)

where N = 1√
2+2e−4|α|2

is the normalization factor.

In [51] it is presented a way to produce entangled be-
tween coherent states using a nonlinear Mach-Zehnder
interferometer.

Here, we consider two different cases: firstly only the
mode 2 is probed and secondly both modes are probed.
Let us see what happens when only the mode 2 is probed
by the detector while the mode 1 evolves freely. Since
the two modes do not interact, the field operators of one
of the modes commute with the operators of the other
mode and the dynamics of the two-mode coherent optical
field is given by

ρ(k)(t) = Nt (k)U1(t)ρ(0)U†
1 (t)

Tr[Nt (k)U1(t)ρ(0)U†
1 (t)]

, (66)

where U1(t) = e−iω1b†bt acts exclusively on mode 1 and
Nt (k) acts exclusively on mode 2 according to equations
(4)-(7) in Appendix E. Therefore,

ρ(k) (t) = Nk(t)2(|α1 (t) ,−α2 (t)〉〈α1 (t) ,−α2 (t) |

+ (−1)k |α1 (t) ,−α2(t)〉〈−α1 (t) , α2(t)|

+ (−1)k | − α1 (t) , α2(t)〉〈α1 (t) ,−α2(t)|
+ | − α1 (t) , α2 (t)〉〈−α1 (t) , α2 (t) |),

(67)
where Nk(t) = 1√

2
(

1+(−1)ke−2|α|2(1+e−γt)
) is the nor-

malization factor, and α1(t) = αe−iω1t and α2(t) =
αe

−i
(

ω2t−i γ
2

)
t are the coherent state amplitudes of each

mode. It is interesting to notice that the state (67) re-
mains pure and entangled during the whole photocount-
ing process since it is well represented by the following
conditioned state

|ψk(t)〉 = Nk(t) (|α1(t),
−α2(t)〉 + (−1)k| − α1(t), α2(t)〉

)
. (68)

For t → ∞ the combined state completely disentangles
as a product of two pure states

lim
t→∞

ρ(k)(t) = |ψ(k)
1 (t)〉〈ψ(k)

1 (t)| ⊗ |0〉22〈0|, (69)

with the mode 2 reaching the vacuum state and the mode
1 becoming the following conditioned state

|ψ(k)
1 (t)〉 = |α1(t)〉 + (−1)k| − α1(t)〉√

2
(
1 + (−1)ke−2|α|2) (70)

which can be the even or the odd state superposition
depending on the parity of k.

Since we are considering the detection just upon the
mode 2, the photodetection probability can be obtained
directly by inserting the initial probability distribution
of mode 2

[ρ2(0)]nn = 〈n| Tr1[ρ(0)]|n〉 =

2N 2e−|α|2 |α|2n

n!

[
1 + (−1)ne−2|α|2

]
, (71)

into equation (39), which gives the following result

Pr(k, t) = 2N 2Prc(k, t)
[
1 + (−1)ke−2(|α|2+|α2(t)|2)

]
,

(72)
where Prc(k, t) stands for the coherent state photocount-
ing probability distribution (49) with α(t) = α2(t). Fig-
ure (6) illustrates the photocounting probability distri-
bution behaviour of mode 2 for different times with
|α|2 = 6 and γ = 1. As we can see, for t → ∞ the photo-
counting probability distribution given by the equation
(72) approaches the initial distribution probability (71).
Furthermore, for very low intensity (|α|2 << 1) the
initial probability distribution (71) resembles the even
superposition state distribution, while for high intensity
(|α|2 >> 1) it resembles the coherent state distribution.

The conditioned state when both modes are simulta-
neously probed by two independent detectors are also
derived. We assume that each detector has its own de-
tection rate, γ1 and γ2, and each one records different
numbers of photons counted, k1 and k2. The conditioned
state is thus given by

ρ(k1,k2)(t) = Nt (k1)Nt (k2) ρ(0)
Tr[Nt (k1)Nt (k2) ρ(0)] , (73)

where Nt (k1) and Nt (k2) are the operations correspond-
ing to the action of the detector 1 on mode 1 and the
action of the detector 2 on mode 2, respectively. By
following the steps in the previous examples it is straight-
forward to show that

ρ(k1,k2) (t) = Nk1,k2(t)(|α1 (t) ,−α2 (t)〉〈α1 (t) ,−α2 (t) |

+ (−1)k1+k2 |α1 (t) ,−α2(t)〉〈−α1 (t) , α2(t)|

+ (−1)k1+k2 | − α1 (t) , α2(t)〉〈α1 (t) ,−α2(t)|
+ | − α1 (t) , α2 (t)〉〈−α1 (t) , α2 (t) |),

(74)
where Nk1,k2(t) = 1

2
(

1+(−1)k1+k2 e−2|α|2(1+e−γ1t+e−γ2t)
) ,

α1(t) = αe
−i

(
ω1t−i

γ1
2

)
t and α2(t) = αe

−i
(

ω2t−i γ
2

)
t. As

before, the combined two-mode state (74) remains pure
and entangled during the whole photocounting process
and the two modes completely disentangle when t → ∞
and the combined state becomes a product of two vacuum
states

lim
t→∞

ρ(k)(t) = |0〉11〈0| ⊗ |0〉22〈0|. (75)
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Figure 6: The probability distribution Pr (k, t) given by the equation (72) for |α|2 = 6 and γ = 1 for different times. In (a) t = 0;
(b) t = 0.1; (c) t = 0.2; (d) t = 0.3; (e) t = 0.4; (f) t = 0.5; (g) t = 0.6; (h) t = 0.7; (i) t = 0.8; (j) t = 0.9; (k) t = 1.0; (l)
t = 5.0. Time is in units of 1/γ.

6. Summary

In this paper we consider the effects of continuous mea-
surements over the quantum state of physical systems.
In particular, we use the theory of continuous photode-
tection proposed by Srinivas and Davies to calculate the
state of the electromagnetic field conditioned to continu-
ous photocounting. We have explored two situations: (1)
a single mode electromagnetic field where three different
initial states are considered: a number state, a coherent
state, and a superposition of coherent states; (2) a two-
mode entangled state of the electromagnetic field where

two scenarios were explored: one in which just one of
the modes is continuously probed by a photo detector,
and another one where both modes are probed by two
independent detectors with different detection rates. In
addition, in order to guide the readers, the calculations
needed to obtain the main results concerning the dynam-
ics of the probability distributions and the conditioned
states are detailed in the appendices.

The article has a pedagogical purpose and we believe
that it can be useful for students and teachers. Readers
interested in further applications and other approaches
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may find a extensive material in the references [9, 11–14,
37,38,52–61].

Supplementary material

The following online material is available for this article:
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
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