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Here is studied a classic problem of the motion of a projectile thrown at an angle to the horizon. The air drag
force is taken into account as the quadratic resistance law. An analytic approach is used for the investigation.
Equations of the projectile motion are solved analytically. The basic functional dependencies of the problem are
described by elementary functions. There is no need to study the problem numerically. The found analytical
solutions are highly accurate over a wide range of parameters The motion of a baseball and a badminton shuttlecock
are presented as examples.
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1. Introduction

The problem of the motion of a projectile in midair
arouses interest of authors as before [1–8]. The number
of publications on this problem is very large. Together
with the investigation of the problem by numerical meth-
ods, attempts are still being made to obtain the analytical
solutions. Many such solutions of a particular type are
obtained. They are valid for limited values of the physi-
cal parameters of the problem (for the linear law of the
medium resistance at low speeds, for short travel times,
for low, high and split angle trajectory regimes and oth-
ers). For the construction of the analytical solutions var-
ious methods are used – both the traditional approaches
[1], and the modern methods [2, 5]. All proposed approx-
imate analytical solutions are rather complicated and
inconvenient for educational purposes. In addition, many
approximate solutions use special functions, for example,
the Lambert W function. This is why the description of
the projectile motion by means of a simple approximate
analytical formulas under the quadratic air resistance is
of great methodological and educational importance.

The purpose of the present work is to give a simple
formulas for the construction of the trajectory of the
projectile motion with quadratic air resistance. In this
paper, one of the variants of approximation of the sought
functions (the projectile coordinates) is realized. It allows
to construct a trajectory of the projectile with the help
of elementary functions without using numerical schemes.
Following other authors, we call this approach the an-
alytic approach. The conditions of applicability of the
quadratic resistance law are deemed to be fulfilled, i.e.
Reynolds number Re lies within 1×103 <Re <2×105.

∗Correspondence email address: chupet@mail.ru.

2. Equations of projectile motion

We now state the formulation of the problem and the
equations of the motion according to [7]. Suppose that
the force of gravity affects the projectile together with
the force of air resistance R (Fig. 1). Air resistance
force is proportional to the square of the velocity of the
projectile and is directed opposite the velocity vector. For
the convenience of further calculations, the drag force
will be written as R = mgkV 2. Here m is the mass of the
projectile, gis the acceleration due to gravity, kis the
proportionality factor. Vector equation of the motion of
the projectile has the form

Figure 1: Basic motion parameters.
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mw = mg + R,

where w – acceleration vector of the projectile. Dif-
ferential equations of the motion, commonly used in
ballistics, are as follows [9]

dV

dt
= −g sin θ − gkV 2 ,

dθ

dt
= −g cos θ

V
,

dx

dt
= V cos θ ,

dy

dt
= V sin θ. (1)

Here V is the velocity of the projectile, θ is the angle
between the tangent to the trajectory of the projectile
and the horizontal, x, y are the Cartesian coordinates of
the projectile,

k = ρacdS

2mg = 1
V 2
term

= const,

ρa is the air density, cd is the drag factor for a sphere, S
is the cross-section area of the object, and Vterm is the
terminal velocity The first two equations of the system (1)
represent the projections of the vector equation of motion
on the tangent and principal normal to the trajectory,
the other two are kinematic relations connecting the
projections of the velocity vector projectile on the axis
x, y with derivatives of the coordinates.

The well-known solution of system (1) consists of an
explicit analytical dependence of the velocity on the slope
angle of the trajectory and three quadratures

V (θ) = V0 cos θ0

cos θ
√

1 + kV 2
0 cos2 θ0 (f (θ0)− f (θ))

,

f (θ) = sin θ
cos2 θ

+ ln tan
(
θ

2 + π

4

)
, (2)

x = x0 −
1
g

θ∫
θ0

V 2dθ, y = y0 −
1
g

θ∫
θ0

V 2 tanθdθ,

t = t0 −
1
g

θ∫
θ0

V

cos θdθ. (3)

Here V0 and θ0 are the initial values of the velocity
and of the slope of the trajectory respectively, t0 is the
initial value of the time, x0, y0 are the initial values
of the coordinates of the projectile (usually accepted
t0 = x0 = y0 = 0). The derivation of the formulas
(2) is shown in the well-known monograph [10]. The
integrals on the right-hand sides of formulas (3) cannot
be expressed in terms of elementary functions. Hence, to
determine the variables t, xandy we must either integrate
system (1) numerically or evaluate the definite integrals
(3).

3. Obtaining an analytical solution of
the problem

The analysis of the task shows, that equations (3) are
not exactly integrable owing to the complicated nature
of function (2). The odd function f (θ) is defined in the
interval −π2 <θ <π

2 . Therefore, it can be assumed that
a successful approximation of this function will make it
possible to calculate analytically the definite integrals (3)
with the required accuracy.

The Ref. [1] presents a simple approximation in the
mathematical sense of a functionf(θ) by a second-order
polynomial of the following form (polynomial is with
respect to a function tan θ)

fa (θ) = a1 tan θ + b1 tan2 θ.

An analysis of the problem shows that it is convenient to
approximate the function f(θ) only by polynomials of the
second or third degree. The first-order polynomial does
not provide the required accuracy of the approximation.
Polynomials of higher orders do not allow us to calculate
the integrals (3) in elementary functions. The polynomial
of the second order approximates the function f(θ) well
only on a bounded interval [0, θ0] . Under the condition
θ <0, another approximation is required because the
function f(θ) is odd. Therefore, the question of using
a second-order polynomial for a given problem requires
a separate study. As already noted, the function fa (θ)
well approximates the function f (θ) only on the limited
interval [0, θ0], since the function fa (θ) contains an even
term. Therefore, in the present paper we approximate
the function f (θ) on the whole interval −π2 <θ <π

2 with
a function f1 (θ) of the following form

f1 (θ) = a1 tan θ + b1 tan3 θ.

The function f1(θ) is formed by two odd functions. The
coefficients a1 and b1 can be chosen in such a way as to
smoothly connect the functions f (θ) and f1 (θ) to each
other with the help of conditions

f1 (θ0) = f (θ0) , f ′1 (θ0) = f ′ (θ0) . (4)

From the conditions (4) we find

a1 = 1
2 cos θ0

+
3 ln tan( θ0

2 + π
4 )

2 tan θ0
,

b1 = 1
2 tan2 θ0

(
1

cos θ0
−

ln tan( θ0
2 + π

4 )
tan θ0

)
.

Such a function f1 (θ) well approximates the function
f (θ) throughout the whole interval of its definition for
any values θ0. As an example, we give graphs of functions
f (θ), f1 (θ) in the interval −80◦ ≤ θ ≤ 80◦. Coefficients
a1 , b1 are calculated at a value θ0 = 60◦.

The solid curve in Figure 2 is a graph of the function
f (θ), the dot curve is a graph of the functionf1 (θ) . The
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Figure 2: Approximation of the function f (θ).

graphs practically coincide. Hence, the function f1 (θ)
can be used instead of the function f (θ) in calculating
the integrals (3).

Now the quadratures (3) are integrated in elementary
functions In calculating the integrals we take t0 = x0 =
y0 = 0. We integrate the first of the integrals (3). For
the coordinate x we obtain:

x = x0 − 1
g

θ∫
θ0

V 2dθ =

=
(
A1 ln

∣∣∣ (tan θ−b)2

tan2 θ+b tan θ+c

∣∣∣−A2 arctan
( 2 tan θ+b

∆
))∣∣∣θ

θ0
.

Here we introduce the following notation:

a = 1
kV 2

0 cos2 θ0
+ f (θ0) ,

d0 = − a

b1
, d1 = a1

b1
, p1 =

3

√
−d0

2 +
√
d2

0
4 + d3

1
27 ,

p2 = − d1
3p1

, b = p1 + p2, c = d1 + b2,

∆ =
√
|b2 − 4c|, A1 = 1

2gkb1 (c+ b2) , A2 = 6bA1
∆ ,

F1 (θ) = A1 ln
∣∣∣∣∣ (tan θ − b)2

tan2 θ + b tan θ + c

∣∣∣∣∣−
A2 arctan

(
2 tan θ + b

∆

)
.

Thus, the dependence x (θ) has the following form:

x (θ) = F1 (θ)− F1 (θ0) . (5)

We integrate the second of the integrals (3). For the
coordinate y we obtain:

y = y0 − 1
g

θ∫
θ0

V 2 tan θdθ =

=
(
bF1 (θ) +A3 arctan

( 2 tan θ+b
∆

))∣∣θ
θ0
.

Here we introduce the following notation:

F2 (θ) = bF1 (θ) +A3 arctan
(

2 tan θ + b

∆

)
,

A3 = 2
gkb1∆ .

Thus, the dependence y (θ) has the following form:

y (θ) = F2 (θ)− F2 (θ0) . (6)

Consequently, the basic functional dependencies of the
problem x (θ) , y (θ) are written in terms of elementary
functions. The main characteristics of the projectile’s
motion are the following ( Fig. 1):
H – the maximum height of ascent of the projectile,
T– motion time,
L – flight range,
xa– the abscissa of the trajectory apex,
ta – the time of ascent,
θ1 – impact angle with respect to the horizontal . Using

formulas (5) - (6), we find:

xa = x(0), H = y(0). (7)

The third integral (3) is not taken in elementary func-
tions. However, estimates for the parameters T and ta
can be made using the formulas of [6]. The angle of
incidence of the projectile θ1 is determined from the
condition y (θ1) = 0. Then we have

L = x (θ1) , T = 2

√
2H
g
, ta = T − kHVa

2 ,

Va = V0 cos θ0√
1 + kV 2

0 cos2 θ0f (θ0)
. (8)

We note that formulas (5) - (6) also define the depen-
dence y = y (x) in a parametric way.

4. The results of the calculations. Field
of application of the obtained
solutions

Proposed formulas have a wide region of application.
We introduce the notation p = kV 2

0 . The dimensionless
parameter p has the following physical meaning – it is
the ratio of air resistance to the weight of the projec-
tile at the beginning of the movement. As calculations
show, trajectory of the projectile y = y (x) and the main
characteristics of the motion L, H, xa have accuracy
to within 1% for values of the launch angle and for the
parameter p within ranges

0◦< θ0 <90◦, 0 <p ≤60.

Figure 3 presents the results of plotting the projectile
trajectories with the aid of formulas (5) – (6) over a

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0145 Revista Brasileira de Ensino de F́ısica, vol. 40, nº 1, e1308, 2018



e1308-4 Simple and convenient analytical formulas for studying the projectile motion in midair

wide range of the change of the initial angle θ0 with the
following values of the parameters

V0 = 80 m/s, k = 0.000625 s2/m2,

g = 9.81 m/s2, p = 4.

The used value of the parameter k is the typical value
of the baseball drag coefficient.

Analytical solutions are shown in Fig. 3 by dotted lines.
The thick solid lines in Fig. 3 are obtained by numerical
integration of system (1) with the aid of the 4-th order
Runge-Kutta method. As it can be seen from Fig. 3,
the analytical solutions (dotted lines) and a numerical
solutions are the same.

Figure 4 represents the results of plotting the projectile
trajectories with the aid of formulas (5) – (6) over a wide
range of the change of the initial velocity V0 . In this
case the values of the parameter p vary from 1 to 9.

As an example of a specific calculation using formulas
(5) – (6), we give the trajectory and the values of the
basic parameters of the motion L, H, T , xa , ta, θ1
for shuttlecock in badminton. Of all the trajectories of
sport projectiles, the trajectory of the shuttlecock has the

Figure 3: The graphs of the trajectory y = y(x) at launching
angles θ0 = 20◦, 45◦, 80◦.

Figure 4: The graphs of the trajectory y = y(x)under the
initial conditions θ0 = 40◦, V0 = 40 m/s, 80 m/s, 120 m/s.

greatest asymmetry. This is explained by the relatively
large value of the drag coefficient k and, accordingly, by
the large values of the parameter p. Initial conditions of
calculation are

k = 0.22 s2/m2, V0 = 50 m/s, θ0 = 40◦, p = 55

The trajectory of the shuttlecock is shown in Fig. 5.
The second column of Table 1 contains range values cal-
culated analytically with formulae (7) – (8). The third
column of Table 1 contains range values from the integra-
tion of the equations of system (1) The fourth column
presents the error of the calculation of the parameter
in the percentage. The error in calculating the basic
motion parameters L, H, xa does not exceed 1 %. The
parameters T , ta are determined in this example with
low accuracy due to the large value of the parameter p.
With smaller values of the parameter p, the values of
T , ta are calculated rather accurately. For example, for
p = 4, the errors in calculating these parameters do
not exceed 1.5 %.

Thus, a successful approximation of the function f (θ)
made it possible to calculate the integrals (3) in elemen-
tary functions and to obtain a highly accurate analytical
solution of the problem of the motion of the projectile in
the air.

5. Conclusions

The proposed approach based on the use of analytic
formulas makes it possible to simplify significantly a
qualitative analysis of the motion of a projectile with the

Figure 5: The trajectory of the shuttlecock.

Table 1: Basic parameters of the shuttlecock movement.
Parameter Analytical Numerical Error

value value ( %)
L , (m) 11.27 11.34 -0.6
H , (m) 5.10 5.06 0.8
T , (s) 2.04 1.93 5.7
xa , (m) 7.91 7.84 0.9
ta , (s) 0.66 0.71 -7.0
θ1 -82.2◦ -79.4◦ 3.5
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air drag taken into account. All basic variables of the
motion are described by analytical formulas containing
elementary functions Moreover, numerical values of the
sought variables are determined with high accuracy in a
wide range of physical parameters. It can be implemented
even on a standard calculator.

Of course, the proposed approach does not replace the
direct numerical integration of the equations of the pro-
jectile motion, but only supplements it. The value and
the advantage of the proposed formulas are that they re-
place a large number of approximate analytical solutions
obtained previously by other authors. Thus, proposed
formulas make it possible to study projectile motion with
quadratic drag force even for first-year undergraduates.
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