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Physical entities are not truly teleported in so-called quantum teleportation, only their states are. Similarly,
physical entities are not truly cloned in so-called quantum cloning, only their states are. The celebrated no-cloning
theorem tells us that a universal cloning machine, able to perfectly clone arbitrary states, cannot be built. However,
this only applies to discernible quantum entities. For the indiscernible ones, which are already perfect clones of
one another, the additional cloning of their state is in fact a natural process, which happens in a spontaneous way,
as soon as they are allowed to interact.
Keywords: Quantum cloning; No-cloning theorem; Indiscernible entities

A clone is a ‘perfect copy of something’, and to clone
something means ‘to produce a perfect copy of it’. Imagine
taking a picture of a famous oil painting, say the Mona
Lisa, using a camera of the highest quality, then printing
it on paper, also using a printer of the highest quality.
Would this result in a perfect copy of the original artwork
by Leonardo da Vinci? Obviously not, and for a number of
reasons, an important one being that the paper and inks
used to print the picture, that is, to carry the patterns of
the painting (its shapes and shades of color) are different
from the wood panel and oils used to create the original
piece. Would you want to create a perfect copy of the
painting —namely, a perfect clone— you would then need
not only to recreate the pictorial patterns in all possible
details, but also use exactly the same substances that
were used to make these patterns manifest in the first
place. Indeed, a clone of a painting, to be such, should
be impossible to differentiate from the original.

In our Mona Lisa metaphor, the entity in question can
be considered to be the wood panel and the oils used
by the artist, whereas the different possible states of the
entity would correspond to the pictorial patterns that can
in principle be created with these materials. To make the
example a little more interesting, you can imagine that
the colors never completely dry up, so that the artist can
always intervene to easily modify the pictorial pattern,
say transforming the “Mona Lisa smile” into a “Mona
Lisa grunt.” So, the wood panel and oils would always
remain the same, whereas the state of the system formed
by these substances can change with time.

In physics, we also distinguish an entity from its states.
Generally speaking, a physical entity can be considered
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to be a collection of properties that are clustered together,
where a property can be generally understood as a state
of prediction towards a certain experiment, precisely
testing the property in question [1]. Some of the entity’s
properties will be intrinsic, in the sense that they always
remain actual for as long as the entity exists. These are
the properties used to characterize the very identity of
the entity in question. For example, the rest mass, the
electric charge and the one-half fractionality of the spin
of an electron are intrinsic properties distinguishing an
electron from other micro-entities, like protons, neutrons,
etc.

Now, if we would be attempting to create a perfect
clone of a microscopic (quantum) entity, the same remark
applies: in order to clone the state of the entity, one should
be able to use an identical “carrier.” This means that if
we want to make a perfect copy of an electron in a given
state, we must use another electron; if we want to obtain
a perfect clone of a photon in a given state, we must use
another photon, and so on.

But although an electron’s spin will always remain a
one-half spin, its state, that is, the 2-dimensional complex
vector representing it in a 2-dimensional Hilbert space (or,
equivalently, the 3-dimensional real vector representing
it in a 3-dimensional Bloch sphere) will typically change
with time, and non-intrinsic properties can be associated
with it, like the property of the spin to be oriented
upwards with respect to a given spatial axis. Non-intrinsic
properties, different from the intrinsic ones, can be either
actual or potential, depending on whether the outcome
of the experimental test defining the property can be
predicted with probability equal to one or different from
one, respectively (see for instance [2], for a discussion
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about the difference between intrinsic and dynamical
properties).

That being said, we can observe that the famous ‘quan-
tum no-cloning theorem’ is a statement only about the
non-intrinsic properties of an entity. More precisely, the
theorem says that it is impossible to make a perfect
copy of an arbitrary state of a quantum entity [3–5]. The
proof of the theorem is extremely simple and consists in
assuming that the action of a cloning machine can be
ideally described by a unitary operator U , such that:

U |ψi〉 ⊗ |ψ0〉 = |ψi〉 ⊗ |ψi〉, (1)

for all i = 1, 2, ..., where |ψ0〉 is an initial “ready” state
and the |ψi〉 are the states to be copied. But if we assume
that, say, |ψ1〉 and |ψ2〉 are two orthogonal states, then
for a superposition state |ψ3〉 = a1|ψ1〉 + a2|ψ2〉, with
|a1|2 + |a2|2 = 1, we must also have U |ψ3〉 ⊗ |ψ0〉 =
|ψ3〉 ⊗ |ψ3〉. However, by linearity:

U |ψ3〉 ⊗ |ψ0〉 = a1U |ψ1〉 ⊗ |ψ0〉 + a2U |ψ2〉 ⊗ |ψ0〉
= a1|ψ1〉 ⊗ |ψ1〉 + a2|ψ2〉 ⊗ |ψ2〉, (2)

which is clearly different from |ψ3〉 ⊗ |ψ3〉, unless either
a1 = 0, or a2 = 0.

In other words, the no-cloning theorem is a statement
about the impossibility of finding a transformation that
would be able to copy an arbitrary state, without altering
the original, with the assumption that the state of the
composite system formed by the entity whose state must
be copied and the entity which has to “carry” the copied
state, can be written as a tensorial product |ψi〉 ⊗ |ψ0〉.
This is a strong assumption, implying that the two en-
tities in question are not entities of the same kind, i.e.,
entities sharing the same intrinsic properties [6]. For in-
stance, they are not two electrons, or two photons. Or,
if they are of the same kind, say two electrons, then
to justify that their overall state can be described as
a tensor product, one needs to avoid the two electrons
to directly interact, for instance keeping them isolated
inside two spatially separated boxes, so as to ensure that
there are properties remaining stably actual that allow at
any moment to distinguish them. However, if precautions
of the above kind are not taken, this will not in general
be the case.

More precisely, assume that the entity to be cloned
is an electron (respectively, a photon) in state |ψ1〉, and
that for the cloning we use another electron (respec-
tively, photon), in the initial state |ψ0〉. We know from
the ‘spin-statistics theorem’ that identical half-integer
(respectively, integer) spin entities must satisfy the Fermi-
Dirac (respectively, Bose-Einstein) statistics, hence their
state must be antisymmetric (respectively, symmetric)
with respect to an exchange of the individual entities [7].
This means that in this situation a cloning machine would
have no way to distinguish the state to be copied from
the “ready” state to be transformed into that state. Also,
in the case of fermions, Pauli’s exclusion principle would

forbid to have more than one entity in the same pure
quantum state, thus excluding a priori the possibility of
a perfect cloning of fermionic entities having the same
intrinsic properties.

The above seems to go in the same direction of the
no-cloning theorem, but, is it really so? Here indeed one
has to face the known difficulty of ascribing individual
states to entities forming a composite system when in an
entangled state, as it will be typically the case when in
the presence of identical entities described by symmetric
or antisymmetric states. In fact, for a bipartite system
formed by two identical fermions/bosons, the antisym-
metric/symmetric vector state can be generally written
as:

|Ψ∓〉 = c (|ψ〉 ⊗ |φ〉 ∓ |φ〉 ⊗ |ψ〉), (3)

where c = (2 + 2|〈φ|ψ〉|2)− 1
2 is the (symmetrical) normal-

ization factor.
When the fermionic/bosonic bipartite system is in

state |Ψ∓〉, one cannot attach individual vector-states to
its two components. This is another way to state what
we already said above, that there is no way a cloning
machine can distinguish which state is the state to be
copied and which state is the state to be transformed
into the state to be copied, precisely because we are in
the presence of truly indiscernible entities. So, do we
really need a cloning machine in this situation?

Note that the standard quantum formalism, when
asserting that genuine states are only described by unit
vectors (up to an overall phase factor), confronts us with
the problem of having to explain how a composite system
is able to exist when its components would seem to have
ceased to exist, at least if we take seriously the general
principle saying that if a physical entity exists then,
necessarily, it must be in a well-defined state [8, 9].

A way out of this paradox is to consider that bona fide
states can be described not only by unit vectors, but also
by density operators, which in the case of the vectors |Ψ∓〉
correspond to the one-dimensional projection operators
ρ∓ = |Ψ∓〉〈Ψ∓|. When we do so, we can deduce the
individual states of the entities forming a bipartite system
by simply ignoring the degrees of freedom of the other
component of the system (and consequently, also the way
the two parts are possibly connected), which can be done
by taking the partial traces of ρ∓.

As noted a long time ago by [10], the result of this pro-
cedure, of partially tracing out degrees of freedom, is not
something that can be interpreted as a classical mixture
of states, in accordance with an ‘ignorance interpretation’,
which is the reason why he called these traced-out states
‘improper mixtures’, which many physicists consider to-
day to be states in their own right. This also follows from
the recent ‘extended Bloch representation’ of quantum
mechanics, in which density operator-states also play a
role in deriving the Born rule, explaining the quantum
measurement processes and quantum entanglement [11].

Now, if we calculate the two partial traces Tr2 ρ∓
and Tr1 ρ∓, over the second and first sub-system, which
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would correspond to the states of the first and second
sub-system, respectively, after a simple calculation one
finds that Tr2 ρ∓ = Tr1 ρ∓, i.e., that the two sub-systems
are exactly in the same (operator) state. In other words,
if we agree that identical systems remain in well-defined
individual states, which are described by traced-out den-
sity operators, then there is no need for cloning machines,
if we are interested in a full-fledged cloning process, as
quantum identical entities, be them fermions or bosons,
as soon as they are allowed to interact, they all end up
in exactly the same state, i.e., they all end up being the
perfect clone of each other, in a spontaneous way.

To conclude, we have emphasized in this note that
the celebrated no-cloning theorem of quantum mechanics
only refers to discernible entities, or to entities that, if
they have the same intrinsic properties, are then kept
in conditions such that they are not allowed to directly
interact, so as not to be subjected to the spin-statistics
theorem. This is what is implicitely assumed in most
descriptions of cloning machines, when for instance the
state of an ion in a trap in Alice’s laboratory is to be
transferred into an ion contained in an identically con-
structed trap in Bob’s laboratory, where what is meant
by “the state of the system” is just the internal state
of the ion, and not also that component of the state
describing its centre of mass.

We have also emphasized that when considering quan-
tum entities that have the same intrinsic properties,
which is what one would expected to use for obtaining
full-fledged physical clones, then there is no no-cloning
theorem, as indiscernible entities all naturally acquire
the same operator-state (i.e., they become not only in-
discernible as regards their intrinsic properties, but also
as regards their non-intrinsic ones).

Of course, in no way the present note wants to diminish
the interest of quantum cloning as usually understood,
i.e., cloning only referring to the copy of an entity’s
state. Indeed, it is precisely this possibility of copying the
information about the state of an entity into the state of
a different entity (within the limitations of the no-cloning
theorem) having a Hilbert space of same dimension, that
makes the process useful in quantum information science
applications, because although the two entities are not
fully identical, they are nevertheless able to produce
identical statistics of outcomes in measurements.

However, we also observed that there is no discussion
in the literature, or in textbooks (as far as we can judge)
about the rather obvious fact that cloning, as a notion,
refers primarily to a physical entity, not to its state.
Quantum elementary entities being truly and strikingly
indiscernible, they are always the perfect physical clones
of one another, and as soon as they are allowed to interact,
they become perfect copies of one another also for what
concerns their individual states, at least for as long as
one accepts to complete standard quantum mechanics by
also including operator-states as a description of genuine
individual states [12].

In other words, the quantum no-cloning theorem is,
in a sense, at odds with the all-cloning aspect that is
built in quantum mechanics, resulting from quantum
indistinguishability and the spin statistics theorem. When
taking seriously the notion of cloning, instead of a ‘no-
cloning theorem’ we have a ‘no-no-cloning theorem’: when
identical entities are brought together, they must be in
the exact same operator-state, as indistinguishability
forces entanglement and in turn entanglement (here as a
symmetrical or anti-symmetrical constraint) forces the
individual entities to acquire the same density matrix
state.
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