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The study of electrostatic phenomena is the gateway to the physics described by Classical Electrodynamics. In
this paper, we discuss in detail two methods based on the Uniqueness Theorem for solving electrostatic problems
with azimuthal symmetry. The first one is the electrostatic potential extension from the axis of symmetry to
an arbitrary point. The other consists in the mutual mapping between two potentials through an inversion
transformation. We have prepared a list of six examples for which we calculate, completely or partially, the
electrostatic potentials for different charge distributions using both methods. The electric field lines are analyzed
and presented graphically in all cases.
Keywords: Electrostatic, Azimuthal Symmetry, Uniqueness Theorem, Method of Inversion.

1. Introduction

Classical Electrodynamics (CED), formulated at the end
of the nineteenth century, is one of the greatest triumphs
of science. It not only unified the already known electric
and magnetic phenomena but also predicted the existence
of electromagnetic waves and, being the first relativistic
theory developed, CED served as a foundation for our
current understanding of space and time. Together with
the gravitational interaction, the classical electromag-
netic fields are responsible for all the physics we observe
in our macroscopic daily life.

In CED, the evolution of the electromagnetic (e.m.)
field — the electric field ~E(~x, t) and the magnetic field
~B(~x, t) — is determined when we solve the so-called
Maxwell’s Equations

~∇. ~E(~x, t) = ρ(~x, t)
ε0

, ~∇×~E(~x, t) + ∂ ~B(~x, t)
∂t

= 0,

~∇. ~B(~x, t) = 0, ~∇×~B(~x, t) − µ0ε0
∂ ~E(~x, t)

∂t
= µ0~j(~x, t),

(1)

assuming that we already know the dynamics of the
electric charges (sources of the e.m. field) described by
the densities of charge, ρ(~x, t), and current, ~j(~x, t). At
the same time, an electromagnetic field defined in space
creates a Lorentz force on each charge qi given by

~F
(e.m.)
i = qi

(
~E(~x, t) + d~xi

dt
× ~B(~x, t)

)
, (2)

where we assume a set of point charges, i.e. ρ(~x, t) =∑
i qiδ(~x − ~xi(t)) and ~j(~x) =

∑
i qi

d~xi(t)
dt δ(~x − ~xi(t)).

*Correspondence email address: ulyssescamara@gmail.com

Therefore it is not difficult to see that the description
of a system formed by electric charges and an e.m. field
is a difficult task. In general, we have an endless loop: the
electric charges create an e.m. field obeying Maxwell’s
equations that modifies their dynamics according to the
Lorentz force, and so on. Only in simple systems, when
we have control over the field configuration or of the
charge distribution, there are analytical solutions. Fortu-
nately, in macroscopic scales, a class of simple systems
becomes very relevant — the electrostatic phenomena.
Electrostatics consists in determining the electric field
formed by a previously known macroscopic charge distri-
bution, characterized by the charge density, ρ(x), which
does not evolve in time. Textbooks of Basic Physics [1–3]
and Classical Electromagnetic Field Theory [4,5] usually
dedicate a substantial part of their text to the analysis of
electrostatic physics. This article is devoted to the intro-
duction and implementation of two powerful techniques
described subtly in the references [6, 7]. These methods
are little explored in undergraduate courses and allow
for the resolution (sometimes only in a partial way) of a
wide range of electrostatic problems with azimuthal sym-
metry. The first technique consists in the determination
of the electrostatic potential by an explicit calculation
done only on the axis of symmetry. The second technique
is the inversion method, in which the potential on the
outside of a sphere of radius R is mapped to the inside of
it and vice versa, maintaining the boundary conditions
on the sphere surface intact.

In section 2, we have a review of the principal proper-
ties of the Poisson and Laplace equations that govern the
electrostatic phenomena. In section 3, the two methods
are derived using the Uniqueness Theorem in the context
of problems with azimuthal symmetry. Section 4 provides
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a series of applications that illustrate the advantages and
limitations of the two methods. The solved examples are
the charged ring, the ring outside/inside of a grounded
conducting sphere, the charged hemisphere, the disc, and
the rod. Finally, we present our final considerations in
section 5.

2. Poisson and Laplace equations

In an electrostatic situation, ρ = ρ(~x) and ~j = ~0, and
equation (2) does not provide any information, since
constraint forces compensate the electromagnetic force in
such a way that the charges do not move. In the absence
of dynamics, there is no magnetic field and Maxwell’s
Eqs. (1) become only

~∇. ~E(~x) = ρ(~x)
ε0

, ~∇×~E(~x) = 0. (3)

The second equation implies that the electric field is
conservative. So it can be rewritten in terms of the scalar
potential, ~E(~x) = −~∇φ(~x). Substituting this new form
into the first equation of (3) we have the following result

∇2φ(~x) = −ρ(~x)
ε0

, (4)

the so-called Poisson’s Equation which describes all elec-
trostatic physics and have very particular characteristics.
The most important one is the Uniqueness Theorem: it
says that if Dirichlet or Neumann boundary conditions
are given, respectively

φ
∣∣
∂V

or n̂ · ~∇φ
∣∣
∂V

, (5)

where ∂V is a closed surface that encloses the volume
V and n̂ is the unit vector normal to the surface, then
the potential φ(x) is unique in all points of interest.
The proof of the theorem can found in several books on
the subject [4–6]. In this article, we will deal only with
Dirichlet boundary conditions.

For a localized charge distribution, i.e. when all charges
are inside of a sphere of finite radius, we must impose
Dirichlet boundary condition, φ

∣∣
∂R3 = 0, and φ(~x) is

determined (by the Uniqueness Theorem) as [4]

φ(~x) = 1
4πε0

∫
R3

ρ(~x ′)
|~x − ~x ′|

d3x′. (6)

The solution given by equation (6) has a problem at the
practical level: even for simple charge configurations, it
can lead to complicated integrals. We will discuss this
point in section 3.1.

In points of space without charges, we have Laplace’s
equation,

∇2φ(~x) = 0. (7)

An important fact is that the scalar potential has no
minimum or maximum at the points where equation

(7) is valid — Earnshaw’s Theorem. As a consequence
there is no distribution of static charges resulting in a
stable configuration, i.e. binding forces are required to
maintain an electrostatic situation. One must take some
caution in the theorem’s proof, it is not uncommon the
use of conceptually wrong arguments in this task, see
reference [8] for a comprehensible discussion about the
subject. A correct and elegant demonstration is found on
page 3 of [7]. It consists of assuming that φ(~x), solution of
(7), has a minimum (maximum) at point ~x0. If this is true,
necessarily around the point ~x0 there is an arbitrarily
small closed surface ∂V , the border of volume V , where
the flux of the vector field ~∇φ is positive (negative).
Therefore∮

∂V

~∇φ · n̂ d2x > 0
(∮

∂V

~∇φ · n̂ d2x < 0
)

.

On the other hand, using Gauss’s theorem [9]∮
∂V

~∇φ · n̂ d2x =
∫

V

∇2φ d3x
Eq.(7)= 0,

then a point of minimum (maximum) is not compatible
with the Laplace Equation and the theorem is proved by
contradiction.

3. Methods for solving problems with
azimuthal symmetry

We are interested in electrostatic situations with az-
imuthal symmetry. In this case, using spherical coor-
dinates, (r, θ, ϕ), the electric potential is not a function
of the azimuthal angle ϕ ∈ [0, 2π]. The general solution
of equation (7) for this symmetry with θ ∈ [0, π] is given
by [4, 5]

φ(r, θ) =
∞∑

l=0

(
Al rl + Bl

rl+1

)
Pl(cos θ), (8)

where Pl(cos θ) are the Legendre Polynomials, in the
appendix A, we list some of their properties. Then, in a
region without charges, every electrostatic problem with
azimuthal symmetry consists in the search of the set of
parameters {Al e Bl, l = 0, 1, . . . }. In the rest of the
section, we shall introduce two methods that can help in
this task.

3.1. Extension around the axis of symmetry

Assume a localized distribution of electric charges which
has azimuthal symmetry, and in which there are no
charges inside the volume determined by rmin < r <
rmax. In this region, the potential is given simultaneously
by Eqs. (6) and (8). Let us assume that the integral (6)
is difficult to solve at an arbitrary point, but it is simple
along the z-axis of symmetry. A ring, a disk and a rod
with uniform distributions of charges are examples of
this type of situation, and we will explore them in the
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next section. Performing the integration only on the axis
of symmetry, we obtain the exact result

φ(z) = 1
4πε0

∫
R3

ρ(~x ′)
|zẑ − ~x ′|

d3x′ = F(z), (9)

rmin < |z|< rmax.

On the other hand, the same solution can be written
in terms of the series (8), the positive half-axis (z > 0)
being given by r = |z| = z and θ = 0 and the negative
half-axis (z < 0) given by r = |z| = −z and θ = π.
For these points, the Legendre Polynomials assume the
values, see equation 2 (Appendix A)

Pl(cos θ) =
{

1 θ = 0 ,

(−1)l θ = π .
(10)

Taking this into account, the function F(z) can be rewrit-
ten as

F(±|z|) = φ(±|z|) =
∞∑

l=0
(±1)l

(
Al |z|l + Bl

|z|l+1

)
. (11)

The expansion of F(z) in powers series of |z| and/or 1/|z|
completely determine the coefficients Al and Bl. So, by
the Uniqueness Theorem, the scalar potential is fixed in a
unique way for all theta θ ∈ [0, π] and rmin < r < rmax,
see equation (8).

3.2. Method of Inversion

Again we assume that there are no charges in the region
rmin < r < rmax and the electrostatic potential is given
by equation (8). Now for some R such that rmin < R <
rmax we define the function

φ̄(r, θ) ≡ R

r
φ

(
R2

r
, θ

)
, (12)

so

φ̄(r, θ) = R

r

∞∑
l=0

(
Al

R2l

rl
+ Bl

R2l+2 rl+1
)

Pl(cos θ),

=
∞∑

l=0

(
Bl

R2l+1 rl + Al
R2l+1

rl+1

)
Pl(cos θ),

=
∞∑

l=0

(
Āl rl + B̄l

rl+1

)
Pl(cos θ), (13)

where Āl = Bl/Rl and B̄l = Al R2l+1. This function is
a solution of the Laplace’s Equation, thus the original
potential φ(r, θ), with rmin< r <rmax, was mapped to an-
other electrostatic potential φ̄(r, θ) which is now defined
in the interval R2/rmax <r <R2/rmin. This procedure
can always be done allowing, a priori, the construction of
two potentials for the price of one. An interesting point
to note is that by performing this operation twice, we
return to the original potential, i.e. ¯̄φ(r, θ) = φ(r, θ).

The main question here is when the Method of In-
version is useful. This occurs when we have boundary
conditions exactly on the sphere of radius R. Note that
by construction we have φ̄(R, θ) = φ(R, θ), therefore
the operation maps the part of the potential φ defined
outside/inside the sphere at the interior/exterior region
of the potential φ̄ and vice-versa. Both obey the same
boundary condition at r = R. This situation arises when
we have a distribution of charges on the spherical shell
of radius R with boundary condition φ(R, θ) = V (θ).

In this case, if φ(r, θ) describes the outside region r > R
(so we must have Al = 0 for the potential to vanish as
r → ∞), then, automatically, the function φ̄(r, θ), with
Āl = Bl/Rl, is the potential in the interior region, r < R
(now we have B̄l = Al R2l+1 = 0 for finitude at the
origin). A second possibility is the mapping between
two different physical situations: one problem is defined
in R < r < rmax and the other in R2/rmax < r < R,
including the limit rmax → ∞, both having the same
boundary condition φ(R, θ) = V (θ).

4. Applications

Here we will use the methods developed in the previous
section to obtain the electrostatic potential in terms of
power series for several examples. The problems were
chosen to illustrate the advantages and limitations of this
approach. With the electrostatic potential already known,
the electric field is determined by direct calculation of
~E = −~∇φ(r, θ). In this way, we will describe in all cases
the electric field graphically using the Wolfram Mathe-
matica software. Explicitly, the figures were made using
the command StreamPlot of the software and represent
the field lines in the plane x = 0.

4.1. Ring of charge

Consider a thin ring of radius R and uniform charge
density λ (total charge q = 2πRλ), see figure 1. The
calculation of the potential at an arbitrary point using
equation (6) is not a trivial task. On the other hand, the
integral only on the z-axis is a simple exercise illustrated
in several basic physics books. The result is [1]

φ(z) = q

4πε0

1√
z2 + R2

. (14)

R
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Figure 1: Ring with uniform charge density.
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This exercise is the standard one to illustrate the method
of extension around the axis of symmetry [6]. To extend
this solution we must expand equation (14) in power
series. There are two distinct expansions, one in the
region |z| > R and another in |z| < R. Let us start with
z > R, so equation (14) can be rewritten as

φ(z) = q

4πε0

1√
z2 + R2

= q

4πε0

1
z

1√
1 + R2

z2

,

= q

4πε0

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2

R2n

z2n+1 , (15)

where equation 4 (Appendix A) was used. Comparing
with equation (11) we have that Al = 0 and only the even
Bl’s are non-zero, i.e. l = 2n, n ∈ N. Thus, as described
in section 3.1, the potential outside the sphere of radius
R is defined uniquely by exchanging z for r and inserting
the corresponding Legendre Polynomials. The complete
solution is

φring
> (r, θ) = q

4πε0R

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2

(
R

r

)2n+1

×P2n(cos θ),
(16)

r ≥ R. In the inner region, |z| < R, again using the
equation 4 (Appendix A) we have the expansion (z > 0)

φ(z) = q

4πε0

1√
z2 + R2

= q

4πε0R

1√
1 + z2

R2

= q

4πε0R

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2

z2n

R2n
.

Now the terms Bl are all null and only the even parame-
ters Al’s are non-zero, i.e. l = 2n, n ∈ N. The potential
inside the sphere of radius R is

φring
< (r, θ)= q

4πε0R

∞∑
n=0

(−1)n

22l

(2n)!
(n!)2

( r

R

)2n

×P2n(cos θ), (17)

0 ≤ r ≤ R. The two solutions coincide in r = R, guar-
anteeing the continuity of potential. Continuity is a nec-
essary condition, but the intersection of the two solu-
tions being a sphere is a curious fact, since the prob-
lem is about a ring of charge. This is a consequence of
the azimuthal symmetry. It is important to note that
the calculation of the two solutions in a separate way
was not necessary. One solution determines the other
by the inversion method. It is straightforward to verify
φring

< (r, θ)=(R/r)φring
> (R2/r, θ). The electric field lines

are illustrated in figure 2, showing the plane {x = 0},
i.e. a “lateral cut” of the ring geometry (the ring is on
the plane {z = 0}). As one can see, in the inside of the
spherical region of radius R the field lines move away
from the plane of the ring; far outside of the ring, the
lines approach a radial behavior, which is the expected
result for a point charge.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 2: Electric field lines on the plane x = 0 for case 4.1.
The two points represent the location of the ring on the plane;
the dashed circle indicates the sphere of radius R.

4.2. Charged ring outside a conducting sphere

Our second example is “Saturn’s ring”. We want to calcu-
late the electric field generated by a grounded conducting
sphere of radius R and a charged ring of radius b > R and
with uniform charge density λ (total charge q = 2πbλ),
in the entire region outside of the sphere, where r > R.
See figure 3a.

Our approach will be via the method of images. The
presence of the charged ring induces opposite charges
on the surface of the grounded conductor in such a way
that φ(R, θ) = 0. So we propose to replace the sphere by
an image ring of radius bI < R and uniform density λI

(total charge qI = 2πbIλI) in such a way that the physical
condition φ(R, θ) = 0 is preserved for all θ ∈ [0, π], see
figure 3b. The Uniqueness Theorem guarantees that if
such a configuration exists, it creates the same potential
as the original problem. Using Eqs. (16) and (17) our
potential ansatz is

φ(r, θ) =
{

φring
< (r, θ) + φimage

> (r, θ), R ≤ r ≤ b,

φring
> (r, θ) + φimage

> (r, θ), r ≥ b.
(18)

At the surface r = R the potential must be null, so

φring
< (R, θ) = −φimage

> (R, θ),
q

4πε0b

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2

(
R

b

)2n

P2n(cos θ) =

qI

4πε0bI

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2

(
bI

R

)2n+1
P2n(cos θ).

The orthogonality of Legendre Polynomials says that this
equality holds only if(

R

b

)2n
q

b
= −

(
bI

R

)2n
qI

R
, ∀ n; n = 0, 1, 2, . . . .

In particular, for n = 0 we have qI = −(R/b)q, hence
bI = R2/b. The respective choices

qI = −
(

R

b

)
q, bI =

(
R

b

)
R < R, (19)
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(b)

Figure 3: (a) Grounded conducting sphere of radius R and ring
of charge with b > R. (b) Equivalent system described by image
ring of radius bI = (R/b)R < R.

provide the right boundary condition on the conductor
surface, which determines the potential. In the region
R ≤ r ≤ b we have

φ<(r, θ) = q

4πε0b

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2 ×[(r

b

)2n

−
(

R

b

)4n+1(
b

r

)2n+1
]

P2n(cos θ), (20)

while for r ≥ b, we have

φ>(r, θ) = q

4πε0b

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2 ×[(

b

r

)2n+1
−
(

R

b

)4n+1(
b

r

)2n+1
]

P2n(cos θ). (21)

By direct inspection, it is not difficult to see that the
potential is continuous on the sphere of radius r = b.
The induced charge density on the grounded conduct-
ing sphere surface is given by σ(θ) = ε0Er(R, θ) =
−ε0∂φ<(R, θ)/∂r, so

σ(θ) = −q(R/b)
4πR2

∞∑
n=0

(−1)n(4n + 1)(2n)!
22n(n!)2

(
R

b

)2n

×P2n(cos θ). (22)

In figure 4, one can see the curve (4πR2/q)σ(θ) for several
values of the ratio R/b. For R/b � 1 (the ring is much
larger than the sphere) the induced charge density is
approximately uniform and given by the first term of
the series, σ(θ) ≈ −q(R/b)/(4πR2). When R/b ∼ 1 (the
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Figure 4: Surface charge density as a function of the polar angle
θ. Red R/b = 0.1, green R/b = 0.3, blue R/b = 0.5, purple
R/b = 0.7 and grey R/b = 0.8.

ring is close to the conducting surface) a concentration of
charges appears in the plane of the ring (θ = π/2). The
integral below provides the total induced charge Qind on
the grounded conductor

Qind = 2πR2
∫ 1

−1
d(cos θ)σ(θ)

= −q(R/b)
2

∞∑
n=0

(−1)n(4n + 1)(2n)!
22n(n!)2

(
R

b

)2n

×

∫ 1

−1
d(cos θ)P2n(cos θ) P0(cos θ)︸ ︷︷ ︸

=1

,

=−q(R/b)
2

∞∑
n=0

(−1)n(4n + 1)(2n)!
22n(n!)2

(
R

b

)2n

× 2δ2n,0

4n + 1 , = −R

b
q. (23)

where equation 6 (Appendix A) was used. As expected,
this is the value of the total charge of the image ring. In
Figure 5 the electric field lines for b = 2R are shown. An
important characteristic is that inside of the fictitious
sphere of radius b the radial component of the electric
field, i.e. −∂φ/∂r, is negative. As a consequence all field
lines point inwards and terminate in the conducting
surface. The field lines far away from the system have a
radial aspect (a point charge behavior).

4.3. Ring of charge inside a grounded
conducting sphere

This is the “inverse” of the previous problem. A ring of
radius a and uniform charge density λ (total charge q =
2πaλ) is inside a grounded conducting sphere of radius R,
see figure 6a. We wish to obtain the electric field in the
region 0 ≤ r ≤ R. This exercise is solved respectively in
sections 9.4 and 3.10 of references [5, 6] via the spherical
Green’s function expansion. Here we will directly use
the results derived in subsection 4.2, together with the
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Figure 5: Electric field lines in the plane {x = 0} for the case
4.2, with b = 2R. The two black dots represent the intersection
of the ring with the plane; the dashed circle indicates the sphere
of radius b, and the full black circle is the grounded conductor
of radius R.
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(b)

Figure 6: (a) Ring of charge with radius a inside a grounded
conducting sphere of radius R. (b) The inversion method maps
the real ring (in blue) to the image ring (in red), and vice-versa.
The conducting sphere (dashed circle) is not affected by the
operation.

method of inversion, r → R2/r. With the inversion, the
intervals r ≥ b and R ≤ r ≤ b are mapped, respectively,
to 0 ≤ r ≤ (R/b)R, and (R/b)R ≤ r ≤ R. In this
procedure, it is clear that the outer and inner rings
have changed places, so the physical ring now has radius
a = (R/b)R < R, while the image ring has radius b =
(R/a)R > R. That is, the inversion method swapped the
real ring and the image ring, keeping the sphere of radius
R invariant, see figure 6b. The same is true to the image
charge qI = −(R/b)q → qI = −(Ra/R2)q = −(a/R)q <
q. The final electrostatic potential is

φ(r, θ) = R

r
φsaturn

(
R2

r
, θ

) ∣∣∣∣∣
b = R2

a

, (24)

where φsaturn is given by Eqs. (20) and (21). In the region
0 ≤ r ≤ a, we have

φ<(r, θ) = q

4πε0R

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2 ×[( r

a

)2n

−
( a

R

)4n+1 ( r

a

)2n
]

P2n(cos θ). (25)

while in a ≤ r ≤ R, the potential is

φ>(r, θ) = q

4πε0R

∞∑
n=0

(−1)n

22n

(2n)!
(n!)2 ×[(a

r

)2n+1
−
( a

R

)4n+1 ( r

a

)2n
]

P2n(cos θ), (26)

From this result, we extract the surface charge density
on the conductor

σ(θ) = −ε0
∂φ>(R, θ)

∂r
(27)

= − q(a/R)
4πε0R2

∞∑
n=0

(−1)n(4n + 1)
22n

(2n)!
(n!)2

( a

R

)2n

×P2n(cos θ),

which is exactly equation (22) with R/b → a/R. The
curves in figure 4 are also valid here (with the corre-
sponding exchange) and the induced charge is equal to
the image charge Qind = −q(a/R). The electric field
lines for a = R/2 are as described in figure 7. All lines
end at the conductor surface, and note that for r < a
the lines “run away” from the plane of the ring.

4.4. Hemisphere with uniform charge density

The calculation of the electric field generated by a hemi-
sphere (shell only) of radius R and constant charge den-
sity σ (total charge q = σ(2πR2)) illustrates a nontrivial
application of the two methods described in section 3.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 7: Electric field lines on the plane {x = 0} for case 4.3
with a = R/2. The two black dots represent the intersection of
the ring with the plane, the dashed circle indicates the sphere of
radius a, and the full black circle is the grounded conductor of
radius R.
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The first step is to determine the potential in the z-axis
of symmetry. We can imagine the hemisphere as a “pile
of rings”, each one with radius R sin θ, thickness Rdθ
and charge dq = σ(2πR sin θ)(Rdθ), with θ ∈ [0, π/2];
see figure 8. By the Superposition Principle, the total
potential in the z-axis (see equation (14)) is the sum of
the potential created by each “ring” so we have

φ(z) = σ2πR2

4πε0

∫ π
2

0

sin θ√
(z − R cos θ)2 + R2 sin2 θ

dθ

= q

4πε0

∫ π
2

0

sin θ√
z2 + R2 − 2zR cos θ

dθ, u = cos θ,

= q

4πε0

∫ 1

0

1√
z2 + R2 − 2zRu

du

= q

4πε0

2
(−2zR)

√
z2 + R2 − 2zRu

∣∣∣u=1

u=0
,

= q

4πε0Rz

(√
z2 + R2 − |R − z|

)
= q

4πε0z

(√
1 + z2

R2 −
∣∣∣1 − z

R

∣∣∣) . (28)

The existence of the modulus |1−z/R| in the final answer
reflects the fact that the parity transformation z → −z is
not a symmetry in this case. The expansion of equation
(28) as a power series of z, for |z| < R, and of 1/z, for
|z| > R, is sufficient to determine the potential at all
points.

Using equation 5 (Appendix A) in the region z > R
(let us consider z > 0), the potential can be rewritten as

φ(z) = q

4πε0z

(√
1 + z2

R2 − z

R
+ 1
)

= q

4πε0R

(√
1 + R2

z2 − 1 + R

z

)
,

= q

4πε0

(
1
z

− 1
R

∞∑
n=1

(−1)n

22n(2n − 1)
(2n)!
(n!)2

(
R

z

)2n
)

.(29)

Note that the zero-term cancels in the sum. equation (29)
is sufficient to determine the potential at all points r > R.
The term separated from the series corresponds to the
“point charge” contribution and its value outside the axis

z
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Figure 8: Hemisphere of radius R and uniform charge density.

of symmetry is obtained via the formal correspondence
z → r; for r � R this term dominates, and effectively we
have an electric charge q at the origin. Comparing with
equation (11) we have Al = 0, ∀ l, and nonzero Bl for
l = 0 and l = 2n − 1, n ∈ N∗. By introducing the radial
coordinate and the Legendre polynomials, the final form
of the potential in this region is

φ>(r, θ) = q

4πε0r

− q

4πε0R

∞∑
n=1

(−1)n

22n(2n − 1)
(2n)!
(n!)2

(
R

r

)2n

×P2n−1(cos θ), (30)

r > R. The results of section 3.1 guarantee that this solu-
tion is the electrostatic potential for all r > R, including
z < 0. This conclusion is not intuitive since there is no
parity symmetry, z → −z, in this example. To leave no
doubts for the reader, we will perform the expansion on
the negative half-axis z < 0 with |z| > R. In this case,
Eqs. (28) and Appendix A provide

φ(−|z|) = − q

4πε0|z|

(√
1 + |z|2

R2 − 1 − |z|
R

)
,

= q

4πε0

(
1

|z|
+ 1

R

∞∑
n=1

(−1)n

22n(2n − 1)
(2n)!
(n!)2

(
R

|z|

)2n
)

.(31)

As expected the series (28) and (31) are different. On
the other hand, in order to extend (31) away from the
symmetry axis it is necessary to use the negative sign
of equation (11) (Pl(−1) = (−1)l). In this particular
problem, only the odd terms are relevant, l = 2n − 1,
n = 1, 2, . . ., so P2n−1(−1) = −1. Therefore we have to
take |z| → r and −1 → P2n−1(cos θ). This change of
sign restores the negative sign in the second term, and
following the previous steps we have equation (30) again.

In the region r ≤ R the expansion of equation (28)
must be done in powers of z. Assuming z positive and
again with the help of equation 5 (Appendix A) we have

φ(z) = q

4πε0z

(√
1 + z2

R2 −
∣∣∣1 − z

R

∣∣∣)

= q

4πε0z

(√
1 + z2

R2 − 1 + z

R

)
,

= q

4πε0R

(
1 −

∞∑
n=1

(−1)n

22n(2n − 1)
(2n)!
(n!)2

( z

R

)2n−1
)

. (32)

In comparison with equation (11) we have Bl = 0, ∀ l,
and Al 6= 0 for l = 0 and l = 2n − 1, n ∈ N∗. Introducing
the Legendre polynomials we have the solution

φ<(r, θ) = q

4πε0R

(
1 −

∞∑
n=1

(−1)n

22n(2n − 1)
(2n)!
(n!)2 ×

( r

R

)2n−1
P2n−1(cos θ)

)
, (33)
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valid for all points r<R. Through direct calculation, it
is possible to see that the expansion in the negative semi-
axis provides the same result. The potential is continuous
(as it should be) along the sphere of radius R,

φ<(R, θ) = φ>(R, θ)

= q

4πε0R

(
1 −

∞∑
n=1

(−1)n

22n(2n − 1)
(2n)!
(n!)2 P2n−1(cos θ)

)
.

We can interpret this result as a boundary condition on
the closed surface r = R. As a consequence, the regions
r < R and r > R are connected by the inversion method.
It is easy to verify that

φ>(r, θ) = R

r
φ<

(
R2

r
, θ

)
. (34)

The electric field lines are not symmetric about the
z = 0 plane, see figure 9. Far from the system, the electric
field becomes radial, such as that of a point charge.

One last comment comes from observing how the elec-
trostatic potential would be if the concavity of the hemi-
sphere were upward. To obtain this potential, we do
a parity transformation z → −z to our final results.
In spherical coordinates, parity becomes r → r and
θ → π − θ. All dependence in the polar angle is inside
the terms P2n−1(cos θ), so

P2n−1(cos θ) → P2n−1 (cos(π − θ)) = P2n−1(− cos θ),
= −P2n−1(cos θ),

due to the odd parity of the Legendre Polynomials with
odd coefficients. Thus we have the mirrored potential
only changing the signals that accompany the sums in
Eqs. (30) and (33). Some interesting points emerge from
this study. If we add the two hemispheres (each with
the same charge q), we will have a sphere with uniform
density and total charge 2q. Evaluating this sum in our
solutions only the first term in equation (33) does not
cancel (due to signal difference) and we have

-2 -1 0 1 2

-2

-1

0

1

2

Figure 9: The electric field lines in the {x = 0} plane for the case
4.4. The continuous black semicircle represents the hemisphere
of radius R.

φsph(r, θ) = φ(r, θ) + φ(r, π − θ) =
{

(2q)
4πε0R , r ≤ R,
(2q)

4πε0r , r ≥ R.
(35)

As expected, the potential inside the sphere is constant
(null electric field) and outside of it corresponds to a
Coulombic potential for a point particle with 2q-charge.
Now, if the inverted sphere has a total charge −q the
combination of the two hemisphere results in a “spherical
dipole” with potential given by

φdip
< (r, θ) = φ<(r, θ)−φ<(r, π − θ),

= − q

4πε0R

∞∑
n=1

(−1)n

22n−1(2n − 1)
(2n)!
(n!)2

( r

R

)2n−1
×

P2n−1(cos θ), r ≤ R,

φdip
> (r, θ) = φ>(r, θ)−φ>(r, π − θ)

= − q

4πε0R

∞∑
n=1

(−1)n

22n−1(2n − 1)
(2n)!
(n!)2

(
R

r

)2n

×

P2n−1(cos θ), r ≥ R.

The electric field lines are shown in figure 10. In the
interior of the spherical shell, the field is almost homoge-
neous (mainly around the center). For the outside region,
the field lines are closed—an electric dipole.

4.5. Disc with uniform charge density

The next two exercises are good examples for understand-
ing the limitations of the method of extension around the
axis of symmetry. The first one consists of a disk of radius
R and uniform density σ (total charge q = σπR2), see
figure 11. The calculation of the potential in the z-axis is
an illustrative exercise of several basic books [1, 2]. The
result is

φ(z) = q

4πε0

2|z|
R2

(√
1 + R2

z2 − 1
)

. (36)

Because of the parity symmetry z → −z, only the
even Legendre polynomials will contribute in the series
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Figure 10: Electric field lines for a spherical shell with positive
charge density on one hemisphere (black semicircle) and negative
charge density on the other (red semicircle).

Revista Brasileira de Ensino de Física, vol. 42, e20190225, 2020 DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0225



Bueno and Silva e20190225-9

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

z
<latexit sha1_base64="VLEo6VgUnu2TnOxoOkqsMPXvyTo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOqPjQI=</latexit>

R
<latexit sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>

Figure 11: Disc with uniform charge density and radius R.

expansion. In all the region |z| > R the scalar potential is
the solution of Laplace’s Equation; it is thus possible to
extract it by the expansion around the axis of symmetry.
Expanding equation (36) in powers of R/|z| (see equation
5 (Appendix A) we are left with

φ(z) = q

4πε0

2|z|
R2

(√
1 + R2

z2 − 1
)

= q

4πε0R

∞∑
n=1

(−1)n+1

22n−1(2n − 1)
(2n)!
(n!)2

(
R

|z|

)2n−1
.

Only the even Bl coefficients, i.e. l = 2n−2 (n = 1, 2, . . .)
are nonzero in equation (11). Inserting the Legendre
polynomials in the series, the electrostatic potential at
all points r ≥ R becomes

φ>(r, θ) = q

4πε0R

∞∑
n=1

(−1)n+1

22n−1(2n − 1)
(2n)!
(n!)2 ×

×
(

R

r

)2n−1
P2n−2(cos θ), r > R. (37)

Now is the time to discuss an important point. Naively,
one can try to describe the potential in the vicinities
of the disc by expanding equation (36) in the region
|z| < R and then adding the Legendre polynomials, or
by using the inversion method in equation (37). The two
approaches are wrong because on the disk (0 ≤ r ≤ R
and θ = π/2) the potential is not a solution of Laplace’s
Equation. The methods of expansion around the axis of
symmetry and of inversion can be applied only in cases
with azimuthal symmetry and electric charge densities
(regions where ∇2φ 6= 0) on surfaces where r = const.,
θ ∈ [θi, θf ] (0 ≤ θi and θf ≤ π). Thus if the potential
satisfies Laplace’s Equation at the point z0 of the z-axis,
it remains a solution of the same equation at all points of
the sphere of radius |z0|. The same holds for the mapping
|z| → R2/|z| in the inversion method.

For the charged disk, this is not true since the potential
is not a solution of the Laplace’s Equation at all points
0 ≤ r ≤ R when θ = π/2. Therefore, none of the ap-
proaches presented in this article can be used to calculate
the potential inside the sphere of radius R. In figure 12
the electric field lines are presented for r > R. Even in
the vicinity of the sphere of radius R, the field lines have
an approximately radial aspect - the one expected for a
point charge.
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Figure 12: Electric field lines on the plane {x = 0} for case 4.5.
The solid black line represents the disk of radius R. It was not
possible to obtain the field inside the sphere of radius R (dashed
circle).

4.6. Charged rod

Our last example is the first solved problem presented in
the electric field chapter of almost every basic textbook
(e.g., see reference [1]), the rod of length L and uniform
charge density λ (total charge q = λL); see figure 13.
Usually, the electrostatic potential is calculated (by sim-
plification) on the plane of symmetry z = 0, here we
need its value on the z-axis. Similarly to the case of the
disk, it will not be possible to determine the potential at
points 0 ≤ r ≤ L/2 and 0 ≤ θ ≤ π, since along the line
r = |z| < L/2 the potential is not a solution of Laplace’s
Equation. Our potential is obtained at any point z > L/2
by application of equation (9), then

φ(z) = λ

4πε0

∫ L/2

−L/2

dz′

z − z′ = − q

4πε0L
ln
(

1 − L
2z

1 + L
2z

)
. (38)

Expanding this in powers of L/2z, see equation 3 (Ap-
pendix A), we have

φ(z) = − q

4πε0L

[
ln
(

1 − L

2z

)
− ln

(
1 + L

2z

)]
= q

4πε0L

∞∑
n=0

1
22n(2n + 1)

(
L

z

)2n+1
. (39)

Comparing with equation (11) we have Al = 0 and
Bl 6= 0 only for l = 2n, n ∈ N. The potential at all
points r > L/2 is obtained by introducing the Legendre

z
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Figure 13: Rod with uniform charge density and length L.
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Figure 14: Electric field lines on the plane {x = 0} for case 4.6.
The solid line represents the bar of length L. It was not possible
to obtain the field inside the sphere of radius L/2 (dashed circle).

polynomials

φ>(r, θ)= q

4πε0L

∞∑
n=0

1
22n(2n + 1)

(
L

r

)2n+1
P2n(cos θ), (40)

r > L/2. In figure 14, we show the electric field generated
by this potential. Note that in the vicinity of the equator,
θ = π/2, the field lines have a radial behavior (like a
point particle), on the other hand they are very different
in the point-ends of the bar (θ ≈ 0 and θ ≈ π); this
is a realization of the edge effects: deformations of the
electric field at the ends of finite bodies.

5. Conclusions

In this paper, we have constructed in detail two useful
methods which can and should be used to solve a large
class of electrostatic problems with azimuthal symme-
try in a simple way. In cases when the potential can
be obtained via direct integration only on the z-axis of
azimuthal symmetry, the use of the method of extension
around the axis of symmetry provides the full solution.
The inversion method generates a solution of Laplace’s
Equation in the range (R/rmax)R < r < (R/rmin)R
from another solution defined in rmin < r < rmax for
some R ∈ (rmin,rmax). These two approaches are de-
scribed in examples in the book Classical Electrodynam-
ics by D. Jackson [6] and briefly in Landau & Lifshitz
Electrodynamics of Continuous Media [7], but both meth-
ods are usually not even mentioned in courses of Electro-
magnetic Theory for undergraduate students. Our main
goal here is to call the attention of teachers and students
of this discipline to the power and simplicity of these
approaches. For this, we presented several illustrative
examples. We highlight the case of the ring of charges
outside and inside a grounded conducting sphere — these
problems are usually studied through complicated meth-
ods. It is also important to emphasize the limitations of
these approaches. They can be applied in regions when
the potential is not only a solution of Laplace’s Equation
for r = |z0| (θ = 0 or π) but is also a solution of the
same equation for every θ ∈ [0, π] (fixed r = |z0|). We

show a couple of examples where this does not occur, the
disk and the rod, for which the potential was determined
only partially. Due to the complexity of the analyzed
configurations, all the potentials were described in terms
of Legendre polynomials expansions rather than in well-
known functions. However, this is not an impediment
to understanding the distribution of the electric field
in space. Using the Wolfram Mathematica software, we
plotted the electric field lines for all examples discussed
in the text. These nice figures bring a visual aspect to
the electrostatic phenomena facilitating their qualitative
understanding, especially if exposed in an Electromag-
netism class. Finally, we hope to motivate the reader
to use their creativity to apply these two approaches,
perhaps together with the Method of Images, to other
exercises of electrostatics.

Supplementary material

The following online material is acailable for this article:
Appendix A - Mathematical supplement
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