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Rotation induced in a coil moving in an electric field
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The integral form of the fourth Maxwell’s equation is often written in two different ways: in the first, the partial
derivative of Electric field appears, while the second contains a time derivative of electric flux integral. It would
be useful, from a didactic point of view, to discriminate between the two different interpretations. In this paper,
starting from a previous work about Faraday’s law, we analyze the derivative of the flux of the electric field and
we shed light on the right way to write the Maxwell equations. We introduce a “magnetomotive force” and we
find, from the corresponding generalization of the second Laplace’s law, the effect of a rotation induced in a coil
embedded in an electric field.
Keywords: Maxwell equations, Displacement current.

1. Introduction

By reading many textbooks for undergraduate and
advanced students, we have found a sort of ambiguity
in the integral form of the fourth Maxwell’s equation
that can be written in a first version as [1, 2]∮

(∂C)

~B · d~l = ε0µ0

∫∫
(S)

∂ ~E

∂t
· n̂dS + µ0I, (1)

and in a second version as [3–9]∮
(∂C)

~B · d~l = ε0µ0
dΦE
dt

+ µ0I, (2)

and, of course, only one of the two equations has to
be right. It is worth noting that the two equations are
equivalent if in the flux ΦE only the electric field depends
on time, and that the presence of the time derivative of
the flux of electric field in the second equation makes it
more similar to the Faraday’s law and allows to express
the Maxwell’s equations in a more symmetrical and
elegant way. From a theoretical point of view, we observe
that, in order to obtain the standard Maxwell equation
in differential form,

~∇× ~B = µ0 ~J + ε0µ0
∂ ~E

∂t
, (3)

the first version (1) is mathematically right, while if the
displacement current depends on the derivative of the
flux, as in (2), it is necessary to modify the relation and
to study the physical consequences of the corrections.
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All the difference between the two equations depends
on the term containing the flux and if we have a flux
integral

Φ =
∫∫
S(t)

~F (t, ~r(t)) · n̂dS, (4)

it is well known, from mathematical analysis, that it is
possible to calculate its time derivative. The derivative
of the flux integral is of great importance in physics.
In fact, for example, if the vector field is the magnetic
one, the derivative of the flux generates an electromotive
force such that

f = −dΦ(t)
dt

= − d

dt

∫∫
S(t)

~B(t, ~r(t)) · n̂dS, (5)

where S(t) is a surface that has a circuit l as its
boundary. The integral form of Faraday’s law refers to
two phenomena. A current can be induced in a coil
either by variation in time of the magnetic field in
which the circuit is embedded or by a relative velocity
between the coil and the field. The first effect leads to
the third Maxwell’s equation, the second is linked to
the Lorentz force [10–13]. The standard notation, which
clearly explains the two contributions, is the following

− dΦ
dt

= −
∫∫

(S(t))

∂ ~B

∂t
· n̂dS +

∮
(∂C)

(
~v × ~B

)
· d~l. (6)

Although the electromagnetic induction has been
well known for more than 150 years, it still requires
reflections in teaching perspective and, over the years,
many papers have been written to describe it in the
most general case [14–23]. In a previous article [24], we
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have considered the evolution of a circuit, simultaneously
embedded in a changing magnetic field, and enlarging
its length from a time t to a time t + ∆t, showing
the validity of the previous relation (6) in this more
general case and the necessity to introduce a more
precise definition of electromotive force with respect to
what is generally found in textbooks. Now we want
to follow a similar reasoning but considering the same
enlarging circuit, where a current passes, embedded in
a varying electric field. In this way, we show that, to
recover the fourth Maxwell’s equation, it is necessary to
introduce a magnetomotive force that is a generalization
of the one present in literature. The paper is organized
as follows: in Section 2, following [24], we analyze the
derivative of the flux of the electric field introducing
the “magnetomotive force”; Section 3 is devoted to the
application of a generalized second Laplace’s law to the
case of Flux cutting and, finally, in Section 4 there are
the conclusions.

2. Flux Time Derivative

We consider the same case studied in [24], but this time
the coil, where a current i passes, is immersed in an
electric field ~E and not in a magnetic field. We repeat
the same calculations made in that paper but with ~B
substituted by ~E. Hence we start analyzing the following
integral function

ΦE(t) =
∫∫
S(t)

~E(t, ~r(t)) · n̂dS. (7)

Now we look at Fig. 1 of [24] and calculate the
derivative

dΦE
dt

= lim
∆t→0

∫∫
S(t+∆t)

~E(t+ ∆t, ~r(t+ ∆t)) · n̂dS

−
∫∫
S(t)

~E(t, ~r(t)) · n̂dS

∆t , (8)

and, considering the closed surface σ formed by S(t),
S(t+ ∆t) and the lateral surface Σ, at the fixed instant
t + ∆t, we assume that there is no internal charge and
therefore ~∇ · ~E = 0 or in integral form

Φσ =
∫
σ

∫
© ~E · n̂dS = 0. (9)

Then we can compute the derivative of the integral
function using the definition of equation (8). The result
is the same as equation (13) of [24] (obtained neglecting
terms of second order in the Taylor expansions), with ~B

substituted by ~E

dΦE(t)
dt

=
∫∫

(S(t))

(
∂ ~E

∂t

)
· n̂dS −

∮
(∂C)

(~v × ~E) · d~l. (10)

Figure 1: A circuit in which a current I flows and we have put
our small coil (in red) in the space between the two plates of the
capacitor embedded in a region of electric field ~E and moving
with velocity ~v from the position S(t) to the position S(t+∆t).

We insert this flux in the integral form of the
Maxwell’s equation (2) and consider the case in Fig. 1
of a circuit in which a current I flows. The first term on
the right side of equation appears if the surface S(t) is
linked to the wire, the second term is non vanishing when
the surface S(t) is between the plates of the capacitor.
We put our small coil just in the space between the two
plates, but in the general case we have

∮
(∂C)

~B · d~l = µ0I + ε0µ0

 ∫∫
(S(t))

(
∂ ~E

∂t

)
· n̂dS

−
∮

(∂C)

(~v × ~E) · d~l

. (11)

From this equation we cannot obtain the right fourth
Maxwell’s equation (3)

For this reason it is legitimate to define a sort of
generalized “magnetomotive force”

fB =
∮

(∂C)

(
~B − ~v

c2
× ~E

)
· d~l, (12)

such that∮
(∂C)

~B · d~l − 1
c2

∮
(∂C)

(
~v × ~E

)
· d~l

= ε0µ0

∫∫
(S)

∂ ~E

∂t
· n̂dS − 1

c2

∮
(∂C)

(
~v × ~E

)
· d~l + µ0I,

(13)

that is, neglecting terms of second order in Taylor
expansion [24],∮
(∂C)

~B ·d~l− 1
c2

∮
(∂C)

(
~v × ~E

)
·d~l = ε0µ0

dΦE
dt

+µ0I, (14)
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that leads to the right Maxwell’s equation in differential
form (3). Hence we have shown that, if one wants to
express the Maxwell’s equation in terms of flux, the
integral form (2) must be modified and substituted
by the equation (14). Now that we have corrected the
equation (2), we argue that equations (1) and (14) are
two ways to write the same equation leading to the
same differential equation (3). In order to obtain the
equation (13) and then (14), we have had to change
the left side of the equation not in a casual way, but
operating a precise transformation of the magnetic field.
Actually, we can show that the equation (13) (directly
related to the equation (14)) can be obtained from
the equation (1) applying to the electric and magnetic
fields a Lorentz transformation (see Appendix). Hence
the equation (14) makes only more explicit the case in
which there is the movement of charges with respect to
the fields or viceversa. But equation (14) appears more
useful also because it allows a clear interpretation in
terms of forces acting on charges.
Note that in literature different definitions of magne-

tomotive force can be found. Among them the closest to
our definition is

FB =
∮

(∂C)

~H · d~l =
∮

(∂C)

~B

µ0
· d~l. (15)

In analogy with the definition of the electromotive
force, we can interpret the magnetomotive force as the
ratio between the work L in a closed circuit and the
magnetic charge qB just as it occurs in the theory of
magnetic monopoles [25, 26], where there are two similar
expressions of forces acting on electric and magnetic
charges respectively:

~FE = qE

(
~E + ~v × ~B

)
, (16)

~FB = qB

(
~B − ~v

c2
× ~E

)
. (17)

From which we can define

fE = L

qE
= 1
qE

∮
(∂C)

~FE · d~l, (18)

fB = L

qB
= 1
qB

∮
(∂C)

~FB · d~l. (19)

Therefore, we can write the flux rule equations in an
appealing and symmetrical way

fE = −dΦB
dt

, (20)

and

fB = µ0I + ε0µ0
dΦE
dt

, (21)

that have the advantage to include in the integral
form of Maxwell’s equations also the expressions of the
forces (16) and (17).
From the Ampere’s equivalence theorem, the forces

and the momenta experienced by the magnetic charges
of a magnetic dipole, are the same that act on an element
of current id~l of a small loop, hence we can obtain
from (17) the following generalization of the second
Laplace’s formula (see also the appendix)

d~F = id~l ×
(
~B − ~v

c2
× ~E

)
, (22)

that we can apply to a coil immersed in an electric field
~E and in which a current i passes.

3. Flux Cutting

We apply the considerations of the previous section to
the case of a rectangular coil embedded in a constant
electric field (Fig. 2). The example we choose is the
analog of the well known exercise, studied in all the
didactic textbooks for a coil in a magnetic field, in
the chapter of Flux cutting for Faraday’s law and a
similar example was also examined in ref. [27], but
without obtaining the result of the rotation of the coil.
At the initial time the coil moves with a constant

velocity ~v, beginning to go out of the region where the
field is present. A current flows into the wire of the coil
in the counterclockwise direction.
Looking at Fig. 2, we have ~E =

∣∣ ~E∣∣x̂, ~v =
∣∣~v∣∣ŷ, d~l1 =∣∣d~l1∣∣ŷ, d~l2 =

∣∣d~l2∣∣ẑ, and the Laplace’s formula (22),
neglecting the magnetic field generated by the current
of the coil itself ( ~B = 0), becomes

d~F = −id~l ×
(
~v

c2
× ~E

)
. (23)

Figure 2: A rectangular coil (in blue) embedded in a region
(with dashed border) of electric field ~E and moving to the right
with velocity ~v.
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In our case ~v × ~E = −|~v|
∣∣ ~E∣∣ẑ gettingd

~F1 = −id~l1 ×
(
~v
c2 × ~E

)
= i|d~l1||~v|

∣∣~E∣∣
c2 x̂

d ~F2 = −id~l2 ×
(
~v
c2 × ~E

)
= 0.

(24)

Therefore

~FBG =
iBG(t)|~v|

∣∣ ~E∣∣
c2

x̂ = −~FAH . (25)

These two forces generate a rotation of the coil around
an axis parallel to the side BC, with a momentum given
by the second fundamental law of mechanics

|~τ | =
∣∣~F ∣∣b = Iin

dω

dt
, (26)

where b is the distance between the two forces and Iin
is the moment of inertia of the coil. We can write

iBG(t)|~v|
∣∣ ~E∣∣

c2
(AB) = 1

12M (AB)2 dω

dt
, (27)

getting

dω

dt
=

12iBG(t)|~v|
∣∣ ~E∣∣

M(AB)c2 =
12i |~v|

∣∣ ~E∣∣
M(AB)c2 (BC − |~v|t), (28)

where M is the mass of the coil.
In the case the electric field is due to a capacitor, with

a surface charge density σ, and the coil is a square of
side ` instead of a rectangle, we can write:

dω

dt
= 12i|~v|σ
Mε0c2

(
1− |~v| t

`

)
. (29)

The angular velocity is:

ω(t) = 12i|~v|σ
Mε0c2

t

(
1− |~v|t2`

)
. (30)

At this point, it would be very useful to describe in
details an experimental apparatus to verify the existence
of the rotation effect. This project goes beyond the
scope of the present paper, however we can at least
give an estimate of the angular velocity after one second
using some effective values of the parameters appearing
in (30). Substituting M = 0.1 Kg, σ = 0.1 C/m2,
|~v| = 0.1 m/s, ` = 0.3 m, i = 3 A, t = 1 sec, in the
equation (30), the result is ω = 1.1× 10−5rad/sec.

4. Conclusions

We have found in many textbooks two different ways
(equations (1) and (2)) to write the integral form of
the fourth Maxwell’s equation. We have shown that it
is necessary to modify the relation (2) if we want to
recover the standard Maxwell differential equation (3).
The resulting equation (14) is correct and is rela-
ted to the equation (1) by a Lorentz transformation.

The equation (14) leads immediately to a corresponding
generalization of the second Laplace’s formula. In this
framework, we have studied the motion of a small loop
of current outgoing from the region of an electric field
and we have found that the coil must undergo a rotation.
We have explicitly calculated the momentum of the
forces for this rotation in the case of a rectangular loop
and the angular velocity as a function of time. The result
is that, in the case of flux cutting, as a current is induced
in a coil moving with respect to magnetic force lines, so
a rotation is induced in a coil moving with respect to
electric force lines.

Appendix

Our aim is to demonstrate that the relation (13)
can be obtained starting from equation (1) through
a Lorentz transformation, in the approximation γ =
(1− v2/c2)−1/2 ≈ 1.
If we consider a frame K ′ that moves with a constant

velocity ~v with respect to a frame K, the electric
and magnetic fields that appear in the two frames
are components of the electromagnetic tensor and are
related by the following transformations [28]

E′x = Ex

E′y = γ (Ey − |~v|Bz)
E′z = γ (Ez + |~v|By)

(31)

If we introduce the components that are parallel(‖)
and perpendicular(⊥) to the direction of velocity vector,
it is possible to writeE

′
‖ = E‖

E′⊥ = γ
[
E⊥ +

(
~v × ~B

)
⊥

] (32)

In the same manner
B′x = Bx

B′y = γ
(
By + |~v|

c2 Ez

)
B′z = γ

(
Bz − |~v|c2 Ey

) (33)

and B
′
‖ = B‖

B′⊥ = γ
[
B⊥ − 1

c2

(
~v × ~E

)
⊥

] (34)

In particular, in the approximation γ ≈ 1 the trans-
formation equations can be written [28]

~E′ = ~E + ~v × ~B

~B′ = ~B − 1
c2

(
~v × ~E

) (35)

Starting from equation (1) and inserting the previous
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transformations, we obtain∮
(∂C)

(
~B − ~v × ~E

c2

)
· d~l

= ε0µ0

∫∫
(S)

∂

∂t

(
~E + ~v × ~B

)
· n̂dS + µ0I, (36)

from which

∮
(∂C)

(
~B − ~v × ~E

c2

)
· d~l = µ0I + ε0µ0

∫∫
(S)

∂ ~E

∂t
· n̂dS + ~v

×
∫∫
(S)

∂ ~B

∂t
· n̂dS

. (37)

Using the third Maxwell equation ~∇× ~E = −∂ ~B∂t and
the Stokes theorem, we get∮
(∂C)

(
~B − ~v × ~E

c2

)
· d~l

= µ0I + ε0µ0

∫∫
(S)

∂ ~E

∂t
· n̂dS −

∮
(∂C)

~v × ~E

c2
· d~l, (38)

that is the equation (13). This form of the equation
allows to write the right side in terms of the flux as
in equation (14) or to come back again to equation (1),
deleting the two equal terms appearing in the two sides
of the equation. But, writing the equation in terms of
flux, we have the advantage to obtain the expressions of
the forces acting on magnetic charges. In this framework
a further justification of the generalization of Laplace’s
equation (22) is that it derives from

d~F = id~l × ~B′. (39)
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