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Lecture notes on path-integrals, suitable for an undergraduate course with prerequisites such as: Classical
Mechanics, Electromagnetism and Quantum Mechanics. The aim is to provide the reader, who is familiar with
the major concepts of Solid State Physics, to study these topics couched in the language of path integrals. We
endeavor to keep the formalism to the bare minimum.
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1. Introduction

If you are familiar with some of the major concepts
of Solid State Physics, but want to dive into modern
topics using the language of Quantum Field Theory
these notes are for you. As stated in the subtitle, the
notes are only a toolbox and not a complete set of lecture
notes. Therefore they are actually a sort of manual,
as required for any box containing moderately complex
tools. It is a common phenomenon, that students often
have problems with the mathematical techniques and the
notes are supposed to address this and only this issue.
We have endeavored to keep them as short as possible,
refraining e.g. to include many references, so that the
student may dive into the tricks of the trade without
distraction. As such the notes are like a skeleton onto
which the instructor/student is supposed to attach the
flesh.
The material was used in a one-semester, four hours

per week, undergraduate course in our institute. Prereq-
uisites being mainly Classical, Statistical and Quantum
Mechanics. After digesting the material, you should
be able to read books like [6], [7] etc. Of course all
these books also present the mathematical techniques
we discuss, but the exposition is often incomplete or too
complete.
Our journey starts with Gaussian integrals in sec-

tion 2, since these are essentially the only integrals
we need to set up the path-integrals used below. Sec-
tions 2.4 and 2.5 on stochastic processes are not pre-
requisites for the subsequent material, but are included
to highlight the unity of the mathematical structure.
We introduce path-integrals in section 3, generalizing
the Gaussian processes of section 2.2 from the 3-
dimensional euclidean space to four dimensions. Upon
analytic continuation in the time variable, we obtain

* Correspondence email address: rk@ifsc.usp.br

a relativistically invariant theory in Minkowski-space
in section 3.3 and show that this theory is identical
to the one obtained using the operator-quantum-field-
theory formalism. This is too good a bonus to leave
out, although our subsequent models are mainly non-
relativistic. This formalism is extended to interacting
theories in section 3.5, where we also introduce inte-
grals over fermionic variables. Section 4 rewrites quan-
tum mechanical expectation values as path-integrals and
section 5 uses this to express statistical mechanics in
the path-integral formalism. Finally section 6 presents
models for ferro-magnetism and superconductivity with
emphasis on spontaneous symmetry breaking.

The only possibly new result is the behavior of the
order-parameter near criticality within the BCS-model
Eq. (354). I added pointers, indicated as , which should
help you brush up on the physical underpinnings of
the math used. To get a flavor of Feynman’s original
thoughts, you may look at Feynman & Hibbs[1].

2. Gaussian Integrals and Gaussian
Processes

Gaussian integrals are the basic building blocks for the
subsequent material.

2.1. Gaussian integrals in n dimensions

Let us start with the basic 1-dimensional integral1

I00 =
∫ ∞
−∞

dxe−ax
2/2 =

√
2π
a
. (1)

For complex a the integral may be defined by analytic
continuation. For this to be possible a needs a positive

1 In case you forgot, recall I2
00 =

∫∞
−∞ dxdye−a(x2+y2)/2 =∫ 2π

0 dϕ
∫∞

0
1
2dr

2ear
2/2 etc.
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real part for the integral to be convergent. Complete the
square in the exponential to get

I0 =
∫ ∞
−∞

dxe−(ax2/2+bx) =
√

2π
a
e+b2/2a (2)

and use the derivative-trick to integrate powers of x

I0n(a, b) =
∫ ∞
−∞

dxxne−ax
2/2−bx

=
∫ ∞
−∞

dx
∂n

∂bn
e−ax

2/2−bx

=
√

2π
a

∂n

∂bn
eb

2/2a. (3)

Here we may set b = 0 after taking derivatives to obtain
I0n(a, 0).

The generalization to n dimensions is straightforward.
x becomes a vector x = [x1, x2, . . . xn] ∈ Rn and the
exponent ax2/2 + bx is replaced by

Q(x) = 1
2

n∑
i,j=1

xiAijxj +
n∑
i=1

bixi (4)

with A a symmetric, positive matrix and b ∈ Rn an
auxiliary vector. It is convenient to introduce the inner
product notation

Q(x) ≡ 1
2(x | A | x) + (b | x) (5)

The minimum of Q(x) is at x̄ = −A−1b. We thus have

Q(x) = Q(x̄) + 1
2(x− x̄ | A | x− x̄), (6)

with

Q(x̄) = −1
2(b | A−1 | b). (7)

After shifting x−x̄→ x, we have to compute the integral∫ ∞
−∞

Dxe
− 1

2

∑n

i,j=1
xiAijxj , Dx ≡ dnx, (8)

which is invariant under unitary transformations U
or orthogonal transformations for real matrices. We
therefore change to a new basis {x} → {z = Ux},
which diagonalises the matrix A. A being diagonal,
the integral

∫
Dnz becomes a product of n integrals

∼
∫
dzie

−z2
i âi =

√
2π/âi, where âi is an eigenvalue of

1A. This yields∫ ∞
−∞

Dze−
1
2 (z|A|z) =

∏
i

(2π/ai)1/2

= (2π)n/2(detA)−1/2. (9)

Here we wrote the product of the eigenvalues as a
determinant. Since the determinant is invariant under

orthogonal transformations, the result holds true in the
original basis {x}.
Thus we obtain∫ ∞

−∞
Dxe−

1
2 (x|A|x)−(b|x)

= (2π)n/2(detA)−1/2e
1
2 (b|A−1|b). (10)

It will be convenient to include the determinant in the
exponential as

(detA)−1/2 = e−1/2 ln detA.

Using the identity2 ln detA = Tr lnA, where the trace
operation instructs us to sum over the diagonal elements,
we get ∫ ∞

−∞
Dxe−

1
2 (x|A|x)−(b|x)

= (2π)n/2e 1
2 [ (b|A−1|b)−Tr lnA ]. (11)

Using

xje
1
2

∑
xiAijxj+

∑
bixi = ∂

∂bj
e

1
2

∑
xiAijxj+

∑
bixi , (12)

we conveniently compute integrals with a polynomial
P (x) in the integrand as∫

DxP (x)e−Q(x) =
∫
DxP

[
∂

∂b

]
e−Q(x)

= P

[
∂

∂b

] ∫
Dxe−Q(x)

= (2π)n/2(detA)−1/2P

×
(
∂

∂b

)
[e 1

2 (b|A−1|b))]. (13)

For example∫ ∞
−∞

Dxxie
− 1

2 (x|A|x)

= (2π)n/2(detA)−1/2A−1bi |bi=0= 0 (14)

and

〈xixj〉 ≡
∫∞
−∞Dxxixje

− 1
2 (x|A|x)

(2π)n/2(detA)−1/2

= ∂

∂bj
(A−1bi) |b=0= A−1

ji = A−1
ij . (15)

2 This is easy to verify in a base, where A is diagonal. Functions
with matrix entries, such as logA, expA, are defined by their power
series expansions and we gloss over questions of convergence.
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Exercise 2.1
Show that all Gaussian means with even powers of
〈x1, x2, . . . , xn〉, n = 1, 2, 3 . . ., can be expressed in
terms of one mean 〈xaxb〉 only.

2.2. Gaussian processes

A deterministic process X may be the evolution of a
dynamical system described by Newton’s laws like the
trajectory of a point particle X = x(t), i.e. at each time
the particle has a precise position.
In a stochastic process3 q we would allow the position

of the particle to be random, i.e. at each time we have
q = f(X, t), where X is a stochastic variable chosen
from some probability density P (x). There are now many
possible trajectories for the particle and we can compute
a mean over all of them as

〈q(t)〉 =
∫
f(x, t)P (x)dx. (16)

We will study systems described by a variable q(t), or
many variables qi(t), with P (x) a Gaussian distribution.
If the process is Gaussian, we may define it either by

its probability distribution, as any stochastic process, or
by its two correlation functions: the one-point function

〈q(t)〉 = 0, (17)

set to zero for simplicity4 and the two-point function

〈q(t1)q(t2)〉 = g(t1, t2). (18)

Here g(t1, t2) may be regarded as an infinite, positively
defined matrix, since t1 and t2 may assume any real
values.5 Yet if we want this process to represent a
physically realizable one, such as a one-dimensional
random walk, the time variables have to satisfy the
following obvious ordering

t1 ≤ t2. (19)

For a Gaussian process all other N -point functions
can be expressed in terms of the one- and two-point
functions.
Supposing the process to be time-translationally

invariant, the two-point function satisfies

g(t1, t2) = g(t2 − t1). (20)

We now verify that the probability distribution is given
in terms of the two-point function as:

P [q(t)] = 1
Z
e−

1
2

∫
q(t2)g−1(t2−t1)q(t1)dt1dt2 . (21)

3 See [3], III.4 for a detailed definition.
4 Otherwise just consider the process q − 〈q(t)〉.
5 We use the letter g, since this function will become a Green
function.

Here g−1(t1, t2) is the inverse of the matrix g(t1, t2),
defined as∫

dtg(t1, t)g−1(t, t2) =
∫
dtg−1(t1, t)g(t, t2) = δ(t1−t2).

(22)
The factor Z is responsible for the correct normalization
of P [q(t)]:∫

DQP [q(t)]

≡
∫ ∏

t

dq(t) 1
Z
e−

1
2

∫
q(t1)g−1(t1−t2)q(t2)dt1dt2 = 1.

(23)

The distribution P [q(t)] is a functional, since it depends
on the function q(t). In order to perform explicit compu-
tations, like the normalization factor Z, we will discretize
the continuous time variable in the next section. This
will turn the functional into a function of many variables.

2.3. Discretizing and taking the limit N →∞

To make sense of integrals over in infinite number of
integration variables, we have to discretise our continu-
ous time axis as

t→ i

with i = 1, 2 . . . , N . Thus t becomes an integer index
and g(t) an N -dimensional matrix

q(t) → qi,
g(t1 − t2) → g(i, j) ≡ gi−j .

(24)

The integral in Eq. (23) is now approximated by an
integral over the N variables qi as∫
DQP [q(t)] ∼

∫
dq1dq2 . . . dqNe

− 1
2

∑N

i,j=1
q(i)g−1(i−j)q(j)

(25)

After effecting the matrix computations, we will take the
continuum limit∏

t

dq(t) ≡ DQ = lim
N→∞

N∏
i

dqi (26)

The exponent becomes

1
2

∫
q(t1)g−1(t1 − t2)q(t2)dt1dt2

= lim
N→∞

1
2

N∑
i,j=1

q(i)g−1(i− j)q(j), (27)

yielding for Eq. (21)

P [q(t)] = lim
N→∞

N∏
i

dqi
1
ZN

e
− 1

2

∑N

i,j=1
q(i)g−1(i−j)q(j)

,

(28)
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where ZN is the normalization factor for finite N . Again
it is convenient to introduce the auxiliary vector b
to compute correlation functions as derivatives ∂

∂b(i)
applied to

Pb[q(t)] = lim
N→∞

N∏
i

dqi
1
ZN

× e−
1
2

∑N

i,j=1
q(i)g−1(i−j)q(j)−

∑N

i=1
b(i)q(i)

.
(29)

The correct 2-point function can be read off Eq. (15),
yielding Eq. (18), albeit for finite N , with

ZN = (2π)N/2(det g)1/2. (30)

Let us verify in detail, that Eqs. (17) e (18) follow from
Eq. (21), when we take the limit N → ∞. Eq. (17) is
trivially true, since Gaussian integrals of odd powers are
zero. Now compute 〈q(t1)q(t2)〉 in two steps.

1. Calculate first the exponent in Eq. (21), i.e.∫
q(t2)g−1(t2 − t1)q(t1)dt1dt2 ≡ 〈q|g−1|q〉,

(31)

directly in the continuum limit. Due to transla-
tional invariance the Fourier-transform (FT)6

q(t) =
∫ ∞
−∞

d̃ωe−ıωtq̃(ω), d̃ω ≡ dω√
2π
. (32)

is the road to take.

The exponent is∫
q(t2)g−1(t2 − t1)q(t1)dt1dt2

=
∫
d̃ω1d̃ω2d̃ω3e

−ıω1t2e−ıω2(t2−t1)e−ıω3t1

q̃(ω1)q̃(ω2)q̃(ω3)g̃−1(ω2)dt1dt2

=
∫
d̃ω1d̃ω2d̃ω32πδ(ω1 + ω2)δ(ω2 − ω3)

× q̃(ω1)q̃(ω3)g̃−1(ω2)

=
∫
d̃ω | q̃(ω) |2 g̃−1(ω). (33)

q̃(ω) are complex variables satisfying q̃(ω) =
q̃?(−ω), since q(t) is real.

6 This is the orthogonal transformation mentioned to get Eq. (9).

g(.) depends only on the difference t1 − t2. There-
fore g̃ is a function of one variable only. Since g̃ is
a diagonal matrix7, we get for its inverse

g̃−1(ω) = 1
g̃(ω) . (34)

The diagonal matrix g̃(ω) does not couple vari-
ables with different ω′s, therefore the q̃(ω) are
independent random variables with probability
distribution given by

P [q̃(ω)] = 1
Z
e−1/2

∫
d̃ω
|q̃(ω)|2
g̃(ω) . (35)

2. Let us compute the correlation function

〈q(t1)q(t2)〉 =
∫
DQ · q(t2) · q(t2)

× 1
Z
e−1/2

∫
q(t2)g−1(t2−t1)q(t1)dt1dt2

(36)

We discretize as Eq. (24), but now in Fourier space.
Instead of continuous variables q̃(ω), due to the
discretization we now have discrete variables q̃a,
where a is an integer index

q̃(ω)→ q̃a, q̃(ω′)→ q̃b.

Thus we get

〈q̃(ω)q̃(ω′)〉 → 〈q̃aq̃b〉

= 1
Z

lim
N→∞

×

{∫
q̃aq̃b [

N∏
k=−N

dq̃k] e−1/2
∑N

k=−N
q̃?k

1
g̃k
q̃k

}

= 1
Z

lim
N→∞

{
N∏

k=−N

∫
dq̃kq̃aq̃be

−1/2q̃?k 1
g̃k
q̃k

}
,

(37)

Here we used that the Jacobian t→ ω equals unity
and replaced the sum

∑N
k=−N in the exponent by

the product
∏N
k=−N .

Since
∫∞
−∞ xne−cx

2
dx = 0 (n = odd) we get a non-

zero result only if q̃a = q̃−b or q̃b = q̃−a:

〈q̃aq̃−b〉 = [〈q̃−aq̃b〉]?

= 1
Z

[∫
dq̃a |q̃a|2e−1/2|q̃a|2/g̃a

]

× lim
N→∞

N∏
|k|6=a

[∫
dq̃k e

−1/2|q̃k|2/g̃k
]

7 Such as A(i, j) = a(i− j)δi,j .
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Performing the Gaussian integrals8 yields

〈q̃aq̃−b〉 = lim
N→∞

(2π)N/2
ZN

{[g̃a]1/2g̃a}

?


N∏
k 6=a

[g̃k]1/2


= lim
N→∞

(2π)N/2
ZN

g̃a

N∏
k=−N

[g̃k]1/2 (38)

Here we encounter our first problem with
the continuum limit. The infinite product
limN→∞

∏∏∏N
k .

Yet performing the same computation without the
factors q̃aq̃−b, we compute Z as

Z = lim
N→∞

(2π)N/2(det g)1/2 (39)

in agreement with Eq. (30). This factor guarantees
the equality∫

P [q(t)]DQ = 1 =
∫
P [q̃(ω)]DQ̃ (40)

with DQ̃ ≡ dq1dq2 . . . .dqN and cancels out in
the correlation function, leaving a finite
result.
We are left only with the factor g̃a in Eq. (38) and
therefore get

〈q̃aq̃−a〉 = g̃a (41)

or

〈q̃aq̃−b〉 = δa,bg̃a. (42)

The continuum limit results in

〈q̃(ω)q̃(−ω′)〉 = δ(ω − ω′)g̃(ω). (43)

Using q̃(−ω) = q̃?(ω), since q(t) is real, we get its
FT as

〈q(t1)q(t2)〉

=
∫
Dω1Dω2e

−ı(ω1t1+ıω2t2)〈q̃(ω1)q̃(ω2)〉

=
∫
Dω1e

−ıω1(t2−t1)g̃(ω1) = g(t2 − t1).

(44)
8 q̃ = x + ıy is a complex number. The reality of q(t) implies
q̃k = q̃?−k, so that we do not double the number of degrees of
freedom, even though k runs over positive and negative values.
Since only half of the degrees of freedom of q̃ are independent, we
integrate as Dq̃(ω) ≡

∏n/2
k=1 dxkdyk.

For a complex variable this results in
∫
dqe−c|q|

2 ≡∫
dxe−c|x|

2 ∫
dye−c|y|

2 = [
√

π
c

]2,
∫
x2dqe−c|q|

2 =∫
y2dqe−c|q|

2 = π
2c2 ,

∫
|q|2dqe−c|q|2 = π

c2
,
∫
q2dqe−c|q|

2 = 0.

We realize that the two-point function is the inverse of
the function, which couples the variables in the exponent
of the Gaussian distribution Eq. (21).
Using Eq. (13) we obtain the n-point functions as

〈q(t1)q(t2) . . . q(tn)〉 = ∂b1 . . . ∂bn [e 1
2 〈b|g|b〉]

e
1
2 〈b|g|b〉

∣∣∣∣∣
b=0

. (45)

Exercise 2.2
Show that all the n-point functions can be expressed in
terms of the one- and two-point functions, if the process
is Gaussian.
Exercise 2.3
Using a dice, propose a protocol to measure the corre-
lation function 〈q(t1)q(t2)〉. What do you expect to get?
Perform a computer experiment to compute this 2-point
function. Can you impose some correlations without
spoiling time-translation invariance?
Exercise 2.4 (The law of Large Numbers)
In an experiment O an event E is given by

P (E) = p, P (E) = 1− p ≡ q.

Repeating the experiment n times, the probability of
obtaining E k times is

pn(k) =
(
n

k

)
pkqn−k,

assuming the events E to be independent. Show that(
n

k

)
pkqn−k ∼ 1√

2πnpq e
−(k−np)2/2npq, npq � 1.

Verify the weak law of large numbers

P{|k
n
− p| ≤ ε} → 1 as n→∞.

The strong law of large numbers states that the above
is even true a.e. (a.e.==almost everywhere).
What is the difference between the weak and strong
laws? For a delightful discussion of these non-trivial
issues see [2], pg.18, Example 4.
Exercise 2.5 (The Herschel-Maxwell distribution)
Suppose that a joint probability distribution ρ(x, y)
satisfies (Herschel 1850)
1 - ρ(x, y)dxdy = ρ(x)dxρ(y)dy
2 - ρ(x, y)dxdy = g(r, θ)rdrdθ with g(r, θ) = g(r).
Show that this distribution is Gaussian.
Exercise 2.6 (Maximum entropy)
Show that the Gaussian distribution has maximum
entropy S = −

∑
i pi ln pi for a given mean and variance.

2.4. *The Ornstein-Uhlenbeck process

We define the Ornstein-Uhlenbeck process as a Gaus-
sian process with one-point function 〈q(t)〉 = 0 and two-
point correlation function as

〈q(t1)q(t2)〉 = e−γ(t2−t1) ≡ κ(τ) (46)
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with t2 − t1 = τ > 0. τou ≡ 1/γ is a characteristic
relaxation time.
This process was constructed to describe the stochas-

tic behavior of the velocity of particles in Brow-
nian motion. It is stationary, since it depends only on
the time difference9

〈q(t1)q(t2)〉 = 〈q(t1 + τ)q(t2 + τ)〉.

Write the probability distribution P [q2, q1] to observe
q at instant t1 and at instant t2 as P [q2, q1] ≡
P [q(t1), q(t2). It is convenient to condition this distri-
bution on q1, decomposing it as

P [q2, q1] ≡ Tτ [q2|q1]P [q1]. (47)

Here P [q1] is the probability to observe q at time t1 and
Tτ (q2|q1) is the transition probability to observe q2 at
instant t2 given q1 at instant t1 with τ = t2 − t1 > 0.
Note that Tτ (q2|q1) does not depend on the two times,
but only on the time difference τ .
The Gaussian distribution P [q2, q1], which depends

only on two indices [t1, t2]→ [i, j], is of the form

P [q2, q1] ∼ e−
1
2

∑2
i,j=1

qiAijqj .

To obtain the matrix A, we insert Eq. (46) into Eq. (15)
to get

κ(τ) = A−1
12 = A−1

21 . (48)

In the limit t2 → t1 we have κ(0) = 1, implying

〈|q2
1 |〉 = A−1

11 = 〈|q2
2 |〉 = A−1

22 = 1,

i.e

A−1
11 = A−1

22 = 1. (49)

The matrix A−1 is therefore

A−1 =
(

1 κ
κ 1

)
(50)

with the inverse

A = 1
1− κ2

(
1 −κ
−κ 1

)
. (51)

Requiring the correct normalization∫
P [q2, q1]dq1dq2 = 1. (52)

we get

P [q2, q1] = 1
2π
√

detA
e−〈q2,q1|A|q2,q1〉. (53)

9 It is the only Gaussian, stationary, markovian process (Doob’s
Theorem). For markovian see Eq. (55).

To compute P [q1] and Tτ [q2|q1], note that we may
factor the exponential in Eq. (53) as follows

e−
1
2 〈q2,q1|A|q2,q1〉 = e

−
q22−2κq2q1+q21

2(1−κ2) = e
− (q2−κq1)2

2(1−κ2) e−
1
2 q

2
1 ,

allowing us to identify

P [q1] = 1√
2π
e−

1
2 q

2
1 ,

∫
dq1P [q1] = 1. (54)

and

Tτ [q2|q1] ≡ 1√
2π(1− κ2)

e
− (q2−κq1)2

2(1−κ2) . (55)

You may verify that∫
Tτ [q2|q1]dq2 = 1,

∫
Tτ [q2|q1]P [q1]dq1 = P [q2]. (56)

Since all other correlation functions can be reconstructed
from P [q1] and Tτ [q2|q1], the Ornstein-Uhlenbeck pro-
cess is Markovian. For example, taking t3 > t2 > t1,

P [q3, q2, q1] = P [q3|q2, q1]P [q2, q1]

= Tτ ′ [q3|q2]Tτ [q2|q1]P [q1]

with τ ′ = τ3 − τ2. Here we used the fact that the
transition probability depends only on one previous
time-variable, i.e. P [q3|q2, q1] = P [q3|q2].
We now model the velocity distribution of Brownian

particles at temperature T introducing the velocity V (t)
of a particle as

q(t) =
√

m

kBT
V (t). (57)

Noticing that P [q]dq = P [V ]dV , this results in the
correct Maxwell-Boltzmann distribution at the initial
time t = t1

P [V1] =
√

m

2πkBT
e
−
mV 2

1
2kBT with

∫
dV1P [V1] = 1. (58)

The transition probability becomes

Tτ [V2|V1] =
√

m

2πkBT (1− κ2)e
− m
kBT

(V2−κV1)2

2(1−κ2) . (59)

The correlation functions are

〈V (t2)V (t1)〉 = kBT

m
e−γ(t2−t1), 〈V (t)〉 = 0. (60)

Exercise 2.7
Generate an Ornstein-Uhlenbeck process and measure
the 2-point function using a random-number generator.
Use the Yule-Walker equations. You need only two
equations.
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Exercise 2.8
Convince yourself, that the transition probability
Tτ [V2|V2] satisfies

lim
τ→0

Tτ [V2|V2] = δ(V2 − V1). (61)

Exercise 2.9
Show that the transition probability P (V, τ) ≡ Tτ [V |V0]
satisfies the Fokker-Planck equation

∂P

∂τ
= γ

{
∂ V P

∂V
+ kBT

m

∂2P

∂V 2

}
. (62)

Exercise 2.10
Using the transition probability Tτ [V |V0] compute the
one and two-point correlation functions for a fixed initial
velocity V0, i.e.

P [V1] = δ(V1 − V0).

Since the initial distribution is not Gaussian with mean
zero, the correlation functions are only stationary for
t� 1/γ.
Exercise 2.11
Use Eq. (60) to show that

〈(V (t+ ∆t)− V (t))2〉 → 2kBT
m

γ∆t as ∆t→ 0.

Conclude that V (t) is not differentiable.

2.5. *Brownian motion X(t)

Imagine a bunch of identical and independent particles,
initially at X = 0 with the equilibrium velocity distri-
bution given by the Ornstein-Uhlenbeck process Eq. (58,
59). Now define the Brownian process by

X(t) =
∫ t

0
V (t′)dt′. (63)

This equation is understood as an instruction to com-
pute averages 〈·〉, since we have not defined V (t) by itself.
As the sum of Gaussian processes X(t) is also Gaus-

sian.10 The mean vanishes, since

〈X(t)〉 =
∫ t

0
〈V (t′)〉dt′ = 0 (64)

and the correlation function is

〈Xt1)X(t2)〉 =
∫ t1

0
dt′
∫ t2

0
dt′′〈V (t′)V (t′′)〉. (65)

We get from Eq. (60) for t2 > t1

〈X(t1)X(t2)〉 = kBT

m

∫ t1

0
dt′
∫ t2

0
dt′′e−γ|t

′−t′′|

10 Consider two independent Gaussian processes. The probability
for the sum Y = X1 + X2 is P (Y ) =

∫ ∫
P1(X1)P2(X2)δ(X1 +

X2−Y )dX1dX2 =
∫
P1(X1)P2(Y −X1)dX1. This convolution of

two Gaussians is again Gaussian.

To compute the above integral I(t), compute first the
integral

I1(t) =
∫ t

0
dt1

∫ t

0
dt2e

−γ|t1−t2|

=
∫ t

0
dt1

∫ t1

0
dt2e

−γ(t1−t2)

+
∫ t

0
dt2

∫ t2

0
dt1e

+γ(t1−t2)

= 2
γ2 (γt+ e−γt − 1).

Now use I1(t) to compute I(t) for 0 ≤ t1 ≤ t2 as

I2 =
∫ t1

0
dt′
∫ t2

0
dt′′e−γ|t

′−t′′|

=
∫ t1

0
dt′
(∫ t1

0
dt′′ +

∫ t2

t1

dt′′
)
e−γ|t

′−t′′|

= I1(t1) +
∫ t1

0
dt′
∫ t2

t1

dt′′eγ(t′−t′′)

= I1(t1) + 1
γ2 (eγt1 − 1)(e−γt1 − e−γt2)

= 1
γ2

(
2γt1 − 1 + e−γt1 + e−γt2 − e−γ(t2−t1)

)
.

We obtain the correlation function for 0 ≤ t1 ≤ t2 as

〈X(t1)X(t2)〉 = kBT

mγ2

[
2γt1−1+e−γt1+e−γt2−e−γ(t2−t1)

]
.

(66)
Now this Gaussian process is fully specified, since we
know the first two correlation functions. But notice that
X(t) is neither stationary nor markovian! Yet for large
times

t1 � 1/γ, t2 − t1 � 1/γ (67)

this process reduces to the markovianWiener process11

with

〈W (t1)W (t2)〉 = 2kBT
mγ

t1 = 2kBT
mγ

min(t1, t2) (68)

and

〈W 2(t)〉 = 2kBT
mγ

t ≡ 2Dt. (69)

Here D with dimension [m2

sec ] is the diffusion coefficient
(Einstein 1905)

D = kBT

mγ
. (70)

11 The sample paths of this process, as of the Ornstein-Uhlenbeck
process, are very rough: they are continuous, but nowhere ( almost
never) differentiable. In fact from Eq. (69) we get 〈(W (t+ ∆t)−
W (t))2〉 = 2kBT

mγ
∆t, so that the increments ∆W over a time-

interval ∆t behave as ∆W ∼
√

∆t. Thus ∆W
∆t ∼ ∆t−1/2, which

diverges as ∆t→ 0.
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This equation says: to reach thermal equilibrium, there
has to be a balance between fluctuations kBT and
dissipation mγ, i.e. kBT ∼ mγ.
Inspired by Einstein’s paper on Brownian motion, J.B.

Perrin measured 〈X2(t)〉 to obtain D and therefore the
value of the Boltzmann constant

kB = mγD

T
.

For γ Einstein used Stoke’s formula γ = 6πηa for a
molecule with radius a immersed in a stationary medium
with viscosity η. From the perfect gas law pV = RT =
NAkBT , we know R = NAkB , yielding a value for
Avogadro’s number NA

NA = RT

Dmγ
. (71)

This equation has been verified by Perrin.12 For the
measurement of NA he received the Nobel price in 1926.
His work provided the nail in the coffin enclosing the
deniers of the existence of atoms: Boltzmann was finally
vindicated.

Exercise 2.12
The Ornstein-Uhlenbeck and the Wiener processes are
related as

W (t) =
√

2t V (ln t/2γ), t > 0. (72)

Verify that
√

2tV (ln t/2γ) is also Gaussian and show
that Eq. (60) go over into 〈W (t)〉 = 0 and Eq. (68).
Exercise 2.13
Show that the Ornstein-Uhlenbeck transition probability
Tτ in Eq. (55) becomes the Wiener transition probability

Wτ [q|q0] = 1√
4πDτ

e−
(q−q0)2

4Dτ , lim
τ→0

Wτ [q|q0] = δ(q − q0),

(73)
when we rescale the variables as follow Tτ →√
β/DTτ , q → αq, τ → βτ, β = 2Dα2 → 0. Show that it

satisfies the diffusion equation

∂Wτ

∂τ
= D

∂2Wτ

∂q2 . (74)

Exercise 2.14
V (t) being the Ornstein-Uhlenbeck process given by
Eq. (60), use Eq. (66) for X(t), show that

〈(X(t+s)−X(t))2〉 = 2D
γ

(e−γs
2

+γs−1), s > 0. (75)

Therefore

〈(X(t+ ∆t)−X(t))2〉 ∼ Dγ∆t2, ∆t→ 0. (76)

From its definition, we expect X(t) to be differentiable
(almost everywhere). This is born out due to the (∆t)2

12 For a discussion of this point see ref. [4], pg. 51.

in Eq. (76), as opposed to the Wiener process, in which
we have a (∆t)1. Yet for large t, X(t) goes over into the
non-differentiable Wiener process. Clarify!
Exercise 2.15
For the Langevin approach to Brownian motion see [3],
chapt. VIII,8.

3. Path Integrals

The integral
∫
DQ in the correlation function Eq. (36)

〈q(t1)q(t2)〉 =
∫
DQ · q(t1) · q(t2)P [q(t)] = g(t2 − t1)

(77)
with

P [q(t)] = 1
Z
e−1/2

∫
dt1q(t2)g−1(t2−t1)q(t1)dt2 (78)

is in fact a sum over all trajectories, a path integral. In
Fig. 1 we show two possible paths for a discrete time axis
and discrete q(t). The probability distribution P [q(t)] is
a functional, since it depends13 on a whole function q(t).
We define the Generating Function as

Z[j] ≡ 1
Z

∫
DQ

× e−1/2
∫
dt2q(t2)g−1(t2−t1)q(t1)dt1+

∫
dt1j(t1)q(t1)

(79)

and using Eq. (10) to integrate over DQ

Z[j] = e1/2
∫
dt2j(t2)g(t2−t1)j(t1)dt1 . (80)

Figure 1: The integral DQ is discretized into a sum. Summing
over all paths means adding the contribution of possible lines
with the proper weight. Here we show only two paths for
discretized time t = 0, 1, 2, . . . , 20 . The dynamical variable q is
also discretized 0 ≤ q(t) < 10.

13 Notice the difference to section 2.4, where P [q1] there depends
only on the real number q1.
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Here we chose the normalization factor Z such that
Z(j = 0) = 1.
Use Eq. (45) with bi replaced by j(t), to obtain the

correlation functions as14

〈q(t1) . . . q(tN )〉 = δNZ[j]
δj(t1) . . . δj(tN ) |j=0 . (81)

All correlation functions are actually compositions of the
2-point function g(t) (See exercise 2.1).

3.1. A Gaussian field in one dimension

Consider an Ornstein-Uhlenbeck type process with the
correlation function

gt2,t1 = g(t2 − t1) = e−|t2−t1|/τ .

Due to the absolute value in the exponent, the cor-
relation function 〈q(t2)q(t1)〉 is defined for any time-
ordering, although only for t1 < t2 does it describe the
Brownian motion of particles.
Let us compute the matrix-inverse g−1

t2,t1 . This will
deliver a convenient operator expression for g−1(t),
easily generalizable to higher dimensions.
The Fourier transform g(t) ≡

∫
dω
2π e
−ıωtg̃(ω) of g(t) is

g̃(ω) =
∫ ∞

0
dte−ıωt−t/τ +

∫ 0

−∞
dte−ıωt+t/τ

= 1
−ıω + 1/τ −

1
−ıω − 1/τ = 2

τ

1
ω2 + τ−2 . (82)

Since this is a diagonal matrix, the inverse is

g̃−1(ω) = τ

2 (ω2 + τ−2). (83)

In t-space we get

g−1(t) =
∫
dω

2π e
+ıωt τ

2 (ω2 + τ−2).

Using δ(t) =
∫∞
−∞

dω
2π e

ıωt, this results in15

g−1(t) = τ

2

(
− d2

dt2
+ τ−2

)
δ(t). (84)

We check this equation using partial integration with
vanishing boundary terms and respecting the symmetry

14 The definition of the functional derivative of the functional
F [ϕ(x)], generalizing the index i in ∂/∂bi to a continuous variable,
is

∂F [ϕ(x)]
∂ϕ(y)

≡ lim
ε→0

F [ϕ(x) + εδ(x− y)]− F [ϕ(x)]
ε

.

In particular we have ∂ϕ(x)
∂ϕ(y) = δ(x − y), generalizing the discrete

Kronecker δij .
15 This identity is easily shown using θ(t) =

∫∞
−∞

dω
2π

eıωt

ıω+ε and
taking the derivative d/dt before the limit ε ↓ 0.

g(t) = g(−t)16:∫ ∞
−∞

dtg−1(t1 − t)g(t− t2)

= τ

2

∫ ∞
−∞

dt

{(
− d2

dt21
+ τ−2

)
δ(t1 − t)

}
e−|t−t2|/τ

= τ

2

∫ ∞
−∞

dtδ(t1 − t)
(
− d2

dt2
+ τ−2

)
× {θ(t− t2)e−(t−t2)/τ + θ(t2 − t)e+(t−t2)/τ}

= τ

2

∫ ∞
−∞

dtδ(t1 − t)
{
τ−2e−|t−t2|/τ

−
(

1
2δ
′
t(t− t2)− 1

22δ(t− t2)/τ + θ(t− t2)/τ2
)

× e−(t−t2)/τ

−
(

1
2δ
′
t(t2 − t)−

1
22δ(t2 − t)/τ + θ(t2 − t)/τ2

)

× e+(t−t2)/τ

}
= δ(t1 − t2),

i.e. ∫
dtg−1(t1 − t)g(t− t2) = δ(t1 − t2). (85)

Recognize g(t) ≡ gOU (t) as the Green function of the
differential operator OOU [t] (also called the resolvent)
with Dirichlet boundary conditions at t = ±∞

OOU [t] ≡ τ

2

(
− d2

dt2
+ τ−2

)
, (86)

satisfying17

OOU [t]g(t− t′) = τ

2

(
− d2

dt2
+ τ−2

)
g(t− t′)

= δ(t− t′). (87)

For the physically realizable process the time-variables
are restricted to t2 > t1. The corresponding retarded
Green function

ĝt2,t1 = ĝ(t2 − t1) = e−(t2−t1)/τθ(t2 − t1) (88)

is the solution of the diffusion equation

ÔOU (t)ĝ(t) ≡
(
τ
d

dt
+ 1
)
ĝ(t) = δ(t).

16 This means in particular,that the singularities generated by
d/dt applied to the θ-functions are equally distributed, acquiring
each a factor 1/2 to avoid double counting.
17 The matrix product is

∫
dt1g−1(t − t1)g(t1 − t′) =

∫
dt1

τ
2(

− d2

dt21
+ τ−2

)
δ(t− t1)g(t1 − t′) = δ(t− t′), the δ(t− t1) eating

up the integral to get Eq. (87).
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Writing g(t) as
g(t) = ĝ(t) + ĝ(−t) = e−t/τθ(t) + e+t/τθ(−t). (89)

Up to boundary conditions, this shows this expression
to be a one-dimensional analog of the Feynman propa-
gator – to be introduced below Eq. (133).

3.2. Gaussian field in Euclidean 4-dimensional
space

Let us extend the path integral formalism to four
dimensions. Consider a field φ(x, y, z, t) living in this
four-dimensional space and suppose it to be random.
An example could be the surface of a wildly perturbed
ocean and the field φ(x, y, z, t) would be the height of
the ocean’s surface at point x, y, z at time t. Notice the
the height φ is a random variable, whereas x, y, z, t are
coordinates, which under discretisation become integer
indices.
We generalize the 1-dimensional operator in Eq. (86)

to four Euclidean dimensions [x1, x2, x3, x4], renaming
τ−1 ≡ m

O′OU (t) ≡ − d2

dt2
+ τ−2

→ − ∂2

∂x2
1
− ∂2

∂x2
2
− ∂2

∂x2
3
− ∂2

∂x2
4

+m2

≡ −�2
x +m2.

The one-dimensional field q(t) becomes a four-
dimensional euclidean field ϕ(x1, x2, x3, x4)

q(t)→ ϕ(x1, x2, x3, x4) (90)
with a mass-type parameter m. Denote x =
[x1, x2, x3, x4] the coordinate in the four-dimensional
euclidean space E4.
Applying the substitution

O′OU (t) = −d
2

dt2
+ τ−2 → OE(x) = �2

x −m2 (91)

to Eq. (87), requires the 2-point function DE(x) of
the Euclidean theory to satisfy the four-dimensional
equation

(�2
x −m2)DE(x) = δ(4)(x). (92)

We therefore have the following correspondences
q → φ

t → x = [x1, x2, x3, x4]
〈q(t2)q(t1)〉 → 〈ϕ(y)ϕ(z)〉
O′OU (t)δ(t) → OE(x)δ(4)(x). (93)

We now define the Euclidean generating functional, as

ZE [J ] = 1
Z

∫
E

Dϕ

e1/2
∫
d4xϕ(x)(�x−m2)δ(4)(x−y)ϕ(y)d4y+

∫
d4xJ(x)ϕ(x).

(94)

where the subscript E reminds us that we are in
Euclidean space.
In the next section we will relate our Euclidean theory

to a relativistic Minkowskian one. The variable x4 will
go over into a time variable as x4 → ct with c the light
velocity. Without the δ(4)(x− y) in Eq. (94), this would
lead to a non-local Lagrangian density, which for a local
relativistic field theory an unacceptable situation. Such
things as action-at-a-distance potentials as ∼ 1/r would
violate special relativity. Using δ(4)(x − y) to eliminate
one integral, we get

ZE [J ] = 1
Z

∫
E

Dϕe1/2
∫
d4xϕ(x)(�x−m2)ϕ(x)+

∫
d4xJ(x)ϕ(x) .

(95)

We now trade
∫
d4xϕ(x)�xϕ(x) for −

∫
d4x∂µϕ(x)

∂µϕ(x) by a partial integration and use Gauss’s theorem
under the assumption that the boundary terms vanish.
This is true, if the field ϕ(x) and its first derivatives van-
ish at the boundary or for periodic boundary conditions.
We get

ZE [J ] = 1
Z

∫
E

Dϕ

e1/2
∫
d4x
(
−∂νϕ(x)∂νϕ(x)−m2)ϕ2(x)

)
+
∫
d4xJ(x)ϕ(x)

with ∂ν ≡ ∂/∂xν ≡ [∂x1 , ∂x2 , ∂x3 , ∂x4 ] and sum over ν =
1, 2, 3, 4 implied,
The generating functional can the expressed in terms

to the Euclidean Lagrangian density

LE(ϕ) ≡ 1
2 [∂νϕ(x)∂νϕ(x) +m2ϕ2(x)] (96)

as

ZE [J ] = 1
Z

∫
E

Dϕe−
∫
d4xLE(ϕ)+

∫
d4xJϕ (97)

Integrating out Dϕ as in Eq. (80), we obtain the
generating functional defining our theory

ZE [J ] = e
1/2
∫
E
d4xJ(x)[�x−m2]−1J(x)

. (98)

Again normalized as Z(0) = 1. We have constructed a
local theory, involving only fields and their derivatives
at the single point x.
Notice that the above construction works for any

Green function, not only for the relativistic case. In fact
we will use non-relativistic models of electrons in the
applications sects.(6.1,6.3) with

O = ı~∂t −
~2∇2

2m − µ. (99)

We constructed a field theory in four dimensions based
on a Gaussian probability distribution and the question
arises: What does it describe? To answer this ques-
tion we will
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1. Morph one of its coordinates into a time variable,
so that the resulting theory lives in Minkowski
space.

2. Show that this theory equals the usual Operator
Quantum Field Theory (OQFT) of a free bosonic
quantum field.

3. Show that this equivalence carries over to interact-
ing fields.

3.3. Wick rotation to Minkowski space

Start from a 4-dimensional Euclidean space E4 with
points being indexed as xµ = [x1, x2, x3, x4] and metric

ds2
E = dx2

1 + dx2
2 + dx2

3 + dx2
4. (100)

Although we could have defined our theory directly
in Minkowski space M4, it is instructive to go from
E4 to M4 by an analytic continuations18 in x4, since
this automatically yields the 2-point function with the
correct boundary condition. In fact to go from an
Euclidean theory with metric ds2

E to a Minkowskian
theory with metric

− ds2
M = dx2

1 + dx2
2 + dx2

3 − dt2 ≡ −dxµdxµ (101)

we perform the analytic continuation

t ≡ x0 = −ıx4, (102)

where t is now our time-variable.19

In the case of a Gaussian theory it is sufficient
to perform this for the 2-point function, also called
the propagator. The Fourier transform of the defining
Eq. (92) in 4-dimensional Euclidean space, is

− (p2 +m2)D̃E(p) = 1, p2 = p2
1 +p2

2 +p2
3 +p2

4 = p2 +p2
4,

(103)
i.e.

D̃E(p) = −1
p2 +m2 . (104)

Therefore going to x-space yields

DE(x) =
∫

d3p

(2π)3
dp4

2π
e−ıp·x

p2 + p2
4 +m2 . (105)

This integral is well defined and is the unique solution
of Eq. (92).
To obtain a theory living in Minkowski space analyt-

ically20 continue D̃E(p) to complex momentum p4. The

18 The Osterwalder-Schrader theorem states the very general
conditions under which this analytic continuation is possible.
19 Whenever a time variable has the same dimension as a space
variable, it means that we are using unities in which c = 1.
20 For our Gaussian theory there are no problems with analytic
continuation.

Figure 2: Wick rotation of the blue contour C, running along the
real p-axis, into the red contour C’, running along the imaginary
p-axis, without crossing the poles. These are shown as blobs,
whose distance to the vertical axis is ±ε.

p4-dependent integral in Eq. (105) is

I4(x4) =
∫ ∞
−∞

dp4

2π
e−ıp4x4

p2
4 + E(p)2

=
∫ ∞
−∞

dp4

2π
e−ıp4x4(

p4 + ıE(p)
)(
p4 − ıE(p)

)
with E(p) =

√
p2 +m2. The integrand is a meromor-

phic function with two poles on the imaginary axis
at ±ıE(p).21 Now move the integration path C to the
vertical axis of the complex p4-plane by a rotation of
−π/2 as shown in Fig. 2. To avoid hitting the poles under
the rotation, displace them by an infinitesimal amount
to the left and right of the vertical axis. To avoid the
blowup of eıp4x4 under rotation also rotate x4 by π/2
and introduce a new coordinate

x0 = t = −ıx4. (106)

I4(x4) now becomes

I4(x0) = lim
ε→0

∫
C′

ds

2π

× ep4(s)x0(
p4(s) + ıE(p) + ε

)(
p4(s)− ıE(p)− ε

) ,
(107)

21 In Minkowski space the poles are along the real axis as you may
see in references [6, 7].
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where s is a real coordinate running along the contour
C′. Since along this contour p4(s) is purely imaginary
define the real variable k0 as

k0 = ıp4 (108)

and trade s for k0 as integration variable. With this
change of variables, the integral along the new path C′
becomes22

I4(x0) = lim
ε→0

∫ ∞
−∞

dk0

2π
e−ık0x0(

k0 + E(k)− ıε
)(
k0 − E(k) + ıε

)
= lim
ε→0

∫ ∞
−∞

dk0

2π
e−ık0x0

k2 −m2 + ıε
, (109)

where

k2 ≡ k2
0 − k2. (110)

After this analytic continuation of the Euclidean prop-
agator DE(x) of Eq. (105) becomes the Feynman
propagator

DF (x) =
∫ ∞
−∞

d4k

(2π)4
e−ık·x

k2 −m2 + ıε
, (111)

the scalar product in Minkowski space being defined as
k · x ≡ k0x0 − k · x. The propagator satisfies

(∂2 +m2)DF (x− y) = −δ(4)(x− y),

∂2 ≡ ∂ν∂ν = ∂2
t −∇2 (112)

where ∂ν ≡ ∂/∂xν ≡ [∂t, ∂x1 , ∂x2 , ∂x3 ], ∂ν ≡
[∂t,−∂x1 ,−∂x2 ,−∂x3 ], repeated indices ν = [0, 1, 2, 3]
being summed over.
To explicitly compute I4(x0), we close the integration

path by a contour in the complex plane, choosing always
the decreasing exponential in Eq. (109) to get

I4(x0) = ı


e−ıx0E(k)

2E(k) , x0 > 0

eıx0E(k)

2E(k) , x0 < 0
(113)

with E(k) =
√
k2 +m2.

In the following section we show, that the Feynman
propagator obtained by the the analytic continuation
of the euclidean one, is identical to the Feynman
propagator of the Operator Quantum Field Theory
(OQFT). This great advantage is the reason we started
from the Euclidean formulation.
Apply now the substitution∫

E

d4x→ ı

∫
d4x, �→ −∂2, (114)

22 Since E(p) > 0, 2E(p)ε is an equivalent stand-in for the limit
ε→ 0.

to the Euclidean functional Eq. (97), to get the generat-
ing functional for the Minkowskian theory as

Z[J ] = 1
Z

∫
Dϕeı

∫
d4x
(
L0(ϕ)+Jϕ

)
(115)

with

L0(ϕ) ≡ 1
2
(
∂νϕ∂

νϕ−m2ϕ2) . (116)

and d4x = dxdydzdt. Notice that whenever an ı appears
in the exponent multiplying L0, we are in Minkowski
space M4. Integrating over ϕ we get in analogy to
Eq. (98)

Z[J ] = 1
Z

∫
Dϕe

ı
2

∫
d4x
(
ϕ(−∂2−m2)ϕ+Jϕ

)
= e−

ı
2

∫
d4xJ(x)[∂2+m2]−1J(x)

= e
− ı

2

∫
d4xd4yJ(x) δ

(4)(x−y)
∂2+m2 J(y)

where we set the normalization factor Z such that
Z(0) = 1. Upon using Eq. (112) this yields

Z[J ] = e
ı
2

∫
d4xd4yJ(x)DF (x−y)J(y). (117)

The Minkowskian generating functional Eq. (115) pro-
duces the correct correlation function as

〈ϕ(x1) . . . ϕ(xn)〉 = δnZ[j]
ınδJ(x1) . . . δJ(xn) |J=0. (118)

In particular for n = 2 we get

〈ϕ(x1)ϕ(x2)〉 = ıDF (x1 − x2). (119)

Since the equation of motion Eq. (92) is linear, it
describes a free field propagation in space-time. To get
some interesting physics we will have to turn interactions
on in Sect. 3.5.

3.4. Quantizing a complex scalar field

In this section we will compute the two-point function of
a free complex scalar field using the operator approach
of Quantum Field Theory (OQFT) in order to show that
this yields the same Feynman propagator. In this section
we will always work in Minkowski space with coordinate
[x1, x2, x3, x0 = t].
In OQFT the propagator is defined to be the vacuum

expectation value of the following time-ordered 2-point
function

ıD
(OQFT )
F (x− y) = 〈Ω|Tφ(x)φ?(y)|Ω〉 (120)

of the quantized operator field φ(~x, t) – actually an
operator valued distribution. Here |Ω〉 is the vacuum
state and T means time-ordered – see Eq. (133). The
quantized field φ(~x, t) will turn out to be a collection of
harmonic operators.
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Consider a complex scalar field, whose Lagrangian
density is

L0(φ) ≡ 1
2
(
∂αφ

?∂αφ−m2φ?φ
)
, (121)

where ∂α ≡ [∂t, ∂x1 , ∂x2 , ∂x3 ], ∂α ≡ [∂t,−∂x1 ,−∂x2 ,−∂x3 ]
and we sum over the repeated indices α, so that

L0(φ) = 1
2
(
∂0φ

?∂0φ−∇φ? · ∇φ−m2φ?φ
)
.

The equations of motion are

∂

∂xα
∂L0

∂(∂φ/∂xα) −
∂L0

∂φ
= 0,

∂

∂xα
∂L0

∂(∂φ?/∂xα) −
∂L0

∂φ?
= 0

i.e.

(∂2 +m2)
{ φ(x)
φ?(x)

}
= 0 (122)

with ∂2 ≡ ∂2
t − ∂2

x1
− ∂2

x2
− ∂2

x2
. This so called Klein-

Gordon equation, is a four-dimensional wave equation
familiar from the study of Maxwell’s equations, in which
case m = 0.
The canonical quantization rules are – in units where

c = ~ = 1 –

[φ(x, t), φ(x′, t)] = 0, [π(x, t), π(x′, t)] = 0

φ(x, t), π(x′, t)] = −ıδ(3)(x− x′) (123)

with the conjugate momenta

π = ∂L0/∂φ̇ = φ̇? and π? = ∂L0/∂φ̇
? = φ̇.

Expand this field in energy-momentum eigenstates,23

satisfying Eq. (122)

φ(x, t) =
∫

d3k√
(2π)32Ek

× [a+(k)eık·x−ıEkt + a†−(k)e−ık·x+ıEkt]

≡
∫
d3k[a+(k)fk(x) + a−(k)†f?k(x)], (124)

where

Ek =
√

k2 +m2, fk(x) = e−ık·x√
(2π)32Ek

with k = {k = [k1, k2, k3], k0 = Ek} and k · x = Ekx0 −
k · x. Here a†−(k) is the hermitian conjugate of a−(k),
since we are dealing with operators.

23 The factor
√

2Ek is included, so that e.g. the commutation
relations Eq. (128) are the usual harmonic oscillator ones.

We easily solve for a±(k). For this we use the orthog-
onality relations

ı

∫
d3xf?k(x, t)

↔
∂t fl(x, t) = δ3(k− l) (125)∫

d3xfk(x, t)
↔
∂t fl(x, t) = 0, (126)

where

f(t)
↔
∂t g(t) ≡ f(t)dg

dt
− df

dt
g(t),

such that, inter alia, the
↔
∂t kills the Ek factors from

fk(x) and allows the cancellation necessary for Eq. (126)
to be true. Using these in Eq. (124) we get

a+(k) = ı

∫
d3xf?k(x, t)

↔
∂t φ(x, t),

a−(k) = ı

∫
d3xf?k(x, t)

↔
∂t φ

?(x, t).

Executing the operation
↔
∂t we get

a+(k) =
∫
d3xf?k(x, t)[Ekφ(x, t) + ıφ̇(x, t]

and using Eq. (123), this yields the commutator

[a+(k), a†+(l)]

= −
∫
d3xd3y[f?k(x, t)

↔
∂t φ(x, t), fl(y, t)

↔
∂t φ

?(y, t)

= ı

∫
d3xf?k(x, t)

↔
∂t fl(x, t) = δ(3)(k− l). (127)

Proceeding analogously, we get for the whole set

[a+(k), a†+(k′)] = [a−(k), a†−(k′)] = δ(3)(k− k′)),

[a±(k), a±(k′)] = 0, [a†±(k), a†±(k′)] = 0,

[a+(k), a†−(k′)] = 0, [a−(k), a†+(k′)] = 0. (128)

These commutation relations show, that we have two
independent harmonic oscillators a±(k) for each
momentum k. Defining the vacuum for each k as

a±(k)|0k〉 = 0,∀k, (129)

we build a product-Hilbert space applying the creation
operators a†±(k) to the ground state |Ω〉 =

∏
k |0k〉.

We have the usual harmonic oscillator operators like
energy, momentum etc, but here just highlight the
charge operator. Due to the symmetry

φ(x)→ eıηφ(x) (130)

for constant η, Noether’s theorem tells us that the
current

jµ = ı(φ?∂µφ− φ∂µφ?) (131)
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is conserved: ∂µjµ = 0. The conserved charge is24

Q = ı

∫
d3xj0 =

∫
d3k[a†+(k)a+(k)− a†−(k)a−(k)],

(132)
the operator a†+(k) creating a positively charged particle
of mass m and the a†−(k) a negatively charged one.

Now compute the time-ordered product

〈Ω|Tφ(x′)φ?(x)|Ω〉

≡ θ(t′ − t)〈0|φ(x′)φ?(x)|0〉

+ θ(t− t′)〈0|φ?(x)φ(x′)|0〉. (133)

Both terms above create a charge Q = +1 at (x, t) and
destroy this charge at (x′, t′ > t). The first term does the
obvious job, whereas the second term creates a charge
Q = −1 at (x′, t′) and destroys it at (x, t > t′). This
justifies the name propagator, since it propagates stuff
from x to x′ and vice-versa.25 Since the fields φ(x), φ?(x′)
commute for space-like distances x− x′, the θ-functions
don’t spoil relativistic invariance.
Inserting the expansions Eq. (124) into Eq. (133),

we get

〈Ω|Tφ(x′)φ?(x)|Ω〉

=
∫
d3k
[
fk(x′)f?k(x)θ(t′ − t)

+ f?k(x′)fk(x)θ(t− t′)
]

=
∫

d3k

(2π)32Ek
[θ(t′ − t)e−ık·(x

′−x)

+ θ(t− t′)eık·(x
′−x)]

The time-dependent part of the integrand in square
brackets equals the rhs of Eq. (113).26 Using Eq. (109)
we get

〈Ω|Tφ(x)φ?(y)|Ω〉 = ı

∫
d4k

(2π)4
e−ık·(x−y)

k2 −m2 + ıε
. (134)

Therefore conclude with Eq. (111), that

〈Ω|Tφ(x)φ?(y)|Ω〉

= ıD
(OQFT )
F (x− y)

= ıDF (x− y) = 〈ϕ(x)ϕ?(y)〉. (135)

24 Going from Eq. (131) to Eq. (132) we actually subtracted in
infinite constant. The presence of an infinite number of oscillators
requires this redefinition of the charge! This simple subtraction is
sufficient for a free theory. The interacting case requires a whole
new machinery called renormalization.
25 To be able to follow the propagating charge, was to reason to
use a complex field and not a real, neutral field.
26 Although this equation was computed for a real scalar field, the
integrand is the same for our complex field.

The other time-ordered products are

〈Ω|Tφ(x)φ(y)|Ω〉 = 〈Ω|Tφ?(x)φ?(y)|Ω〉 = 0. (136)

Upon expanding in terms of real, hermitian fields
φ1, φ2 as

φ(x) = 1√
2
(
φ1(x) + ıφ2(x

)
,

yields

〈Ω|Tφi(x)φj(y)|Ω〉 = ıδijD
(OQFT )
F (x− y)

= ıδijDF (x− y). (137)

Thus Eqs. (115, 119) show, that the path-integral yields
the time-ordered correlation functions of OQFT

〈Ω|Tφ(x1)φ(x2)|Ω〉 =
∫
Dϕϕ(x1)ϕ(x2)eı

∫
d4xL0(ϕ).

(138)
Since our theory is Gaussian, this is all we need to specify
the whole theory and we therefore have for any number
of fields

〈Ω|Tφ(x1)φ(x2) . . . φ(xN )|Ω〉

=
∫
Dφϕ(x1)ϕ(x2) . . . ϕ(xN )

× eı
∫
d4xL0(ϕ). (139)

We have therefore shown, that the path-integral for-
mulation is equivalent to the OQFT description.
In section 3.5 we will extend this to a theory with
interactions.

Aside: On- & Off-shell
A field is called on-shell, if its energy-
momentum operator eigenvalues satisfy
Ek = +

√
k2 +m2. If this is not true, the

field is off-shell.27

Explicit relativistic invariance is a must
in QFT, especially in the old days, when
non-invariant cut-offs abounded to tame
ultraviolet divergences. If we use tradi-
tional non-relativistic perturbation theory,
we maintain conservation of momentum,
but abandon conservation of energy, to
allow the appearance of intermediate states.
This results in the ubiquitous presence
of energy denominators. This procedure,
although yielding correct results, breaks
explicit relativistic invariance. In QFT we

27 We may impose the on-shell condition with positive energy in
a manifestly relativistic invariant way as∫

d3k

(2π)32Ek
=
∫

d4kδ(k2 −m2)2πθ(k0).

.
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want to maintain explicit invariance and
therefore impose conservation of energy and
momentum. But now, in order to allow the
appearance of intermediate states, we have
to place the particles off-shell.

Exercise 3.1
For a discussion of Feynman’s propagator theory  
BD1[8], Section 6.4. What is the difference between
retarded, advanced and Feynman propagators, all of
which satisfy Eq. (112)?

3.5. Generating functional for interacting
theories

We turn interactions on28 adding an interaction term to
the free quadratic Lagrangian L0(ϕ) in Eq. (115)

L0(ϕ)→ L(ϕ) = L0(ϕ) + Lint(ϕ) (140)

and define our interacting theory via the generating
functional

Z[J ] =
∫
Dϕeı

∫
d4x
(
L0(ϕ)+Lint(ϕ)+Jϕ

)
(141)

with the normalization factor
∫
Dϕeı

∫
d4x
(
L0(ϕ)+Lint(ϕ)

)
included into the measure Dϕ, so that Z(0) = 1.
Equation (139) written now for interacting fields

becomes

〈Ω|Tφ(x1)φ(x2) . . . φ(xN )|Ω〉

=
∫
Dφϕ(x1)ϕ(x2) . . . ϕ(xN )eı

∫
d4x
(
L0(ϕ)+Lint(ϕ)

)
.

(142)

This looks, but only looks, similar to the Gell-Mann
Low formula of OQFT

〈Ω|Tφ(x1)φ(x2) . . . φ(xN )|Ω〉

= 1
Z̃
〈0|Tφ0(x1)φ0(x2) . . . φ0(xN )

× eı
∫
d4x(Lint(φ0)+Jφ0)|0〉, (143)

where φ, |Ω〉 are the operator field and the vacuum of
the interacting theory, |0〉, φ0 the corresponding free field
quantities29 and Z̃, as usual, equals the numerator with
J = 0. But here we deal with time-ordered products,
as in Eq. (133), of operator-valued-distributions. In the

28 This process often leads to misunderstandings. We started
with a chimera: a free charged field, which is not the source of
an electromagnetic field. The interaction now has to change this
chimera into a real-world particle with a new mass, charge etc. A
very non-trivial process indeed, which we don’t discuss here.
29 Like the free scalar field of Eq. (124).

rhs of Eq. (142) the operator-valued-distributions have
morphed into mere integration variables at the price of
performing path-integrals.
Generally we are unable to perform the

∫
Dϕ integral,

since the interaction Lagrangian is not quadratic in the
field variables. But we may rewrite Z[j] using our old
trick equ(15). Expand the exponential eı

∫
d4xLint(ϕ) in

powers of ϕ(y). A linear term would be∫
Dϕϕ(y) eı

∫
d4x
(
L0(ϕ)+Jϕ

)
Replace ϕ(y) by the operation 1

ı
δ

δJ(y) as∫
Dϕϕ(y) eı

∫
d4x
(
L0(ϕ)+Jϕ

)
=
∫
Dϕ

1
ı

δ

δJ(y)e
ı
∫
d4x
(
L0(ϕ)+Jϕ

)
= 1
ı

δ

δJ(y)

∫
Dϕeı

∫
d4x
(
L(ϕ)+Jϕ

)
We can perform this substitution for all the powers of
ϕ(y) and reassemble the exponential to get

Z[j] =
∫
Dϕeı

∫
L(ϕ)+ı

∫
Jϕ

= eı
∫
Lint( 1

ı
δ
δJ )
∫
Dϕeı

∫
L0(ϕ)+ı

∫
Jϕ. (144)

Performing the Gaussian integral over Dϕ we obtain

Z[J ] = eı
∫
Lint( 1

ı
δ
δJ )e

ı
2

∫
d4xJ(x)∆F (x−y)J(y)d4y (145)

and correlation functions as

〈ϕ(x1)ϕ(x2) . . . ϕ(xn)〉

= δnZ[J ]
ınδJ(x1)δJ(x2) . . . δJ(xn)

∣∣∣∣∣
J=0

(146)

Eq. (145) is a closed formula for the fully inter-
acting theory. Yet it is in general unknown how to
compute

eLint(
1
ı
δ
δJ )〈. . .〉,

except expanding the exponential.
Furthermore our manipulations are formal and the

integrals in general turn out to be divergent! Yet there
is a well-defined mathematical scheme – not some
mysteriously dubious instructions – to extract finite
results for renormalizable field theories e.g. the BPHZ30

renormalization scheme [16]. Renormalizable roughly

30 The acronym stands for N. Bogoliubov and O. Parasiuk, who
invented it; K. Hepp, who showed its correctness to all orders in
perturbation theory and W. Zimmerman, who turned it into a
highly efficient machinery.
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means that the Lagrangian contains only products of
fields, whose total mass-dimension is less or equal to the
space-time dimension D = 4 and the theory includes
all interactions of this type. The symmetries of the thus
constructed quantum field theory may be different from
the classical version. In particular it may have even
more or less conservation laws – in which case anomalies
are said to arise.
Let us obtain the path-integral version of the

equation of motion like Eq. (122). For this purpose
use the following simple identity∫

Dϕ
δ

δϕ
= 0, (147)

assuming as usual boundary conditions with vanishing
boundary terms. Applying this to the integrand of the
generating functional Z[j] of Eq. (144)

Z[J ] =
∫
Dϕeı

∫
d4x(L(ϕ)+Jϕ) =

∫
DϕeıS(ϕ)+ı

∫
d4xJϕ,

we get∫
Dϕ

δ

δϕ
eıS(ϕ)+ı

∫
d4xJϕ

=
∫
Dϕ ı

[δS(ϕ)
δϕ

+ J
]
eıS(ϕ)+ı

∫
d4xJϕ = 0.

(148)
Remember that

δS(ϕ)
δϕ

= ∂L
∂ϕ
− ∂µ

∂L
∂∂µϕ

, (149)

which set to 0 yields the classical equation of motion.
In fact, since the action depends both on
ϕ(x) and its derivative ϕ′(x) = dϕ(x)/dx,
we have

δS = δ

∫
dyL[ϕ(y), ϕ′(y)]

=
∫
dy

[
∂L
∂ϕ(y)δϕ+ ∂L

∂ϕ′(y)δϕ
′
]

=
∫
dy

[
∂L
∂ϕ(y) −

d

dy

∂L
∂ϕ(y)

]
δϕ(y),

(150)
where we performed a partial integration,
assuming that the boundary terms vanish.
Thus

δS

δϕ(x) = ∂L
∂ϕ(x) −

d

dx

∂L
∂ϕ(x) (151)

with Eq. (149) its four-dimensional version.
Setting J = 0 in Eq. (148) yields the equation of

motion∫
DϕeıS(ϕ) δS

δϕ(y)

=
∫
DϕeıS(ϕ)

(
∂L
∂ϕ
− ∂µ

∂L
∂∂µϕ

)
= 0. (152)

Here the classical equation of motion shows up in the
integrand.
Taking one derivative of Eq. (148) with respect to J ,

we get

0 = δ

δJx1

∫
DϕeıS(ϕ)+ı

∫
d4xJ(x)ϕ(x)

(
δS

δϕ(y) + J(y)
)

= ı

∫
Dϕϕ(x1)eıS(ϕ)+ı

∫
d4xJ(x)ϕ(x)

(
δS

δϕ(y) + J(y)
)

+
∫
DϕeıS(ϕ)+ı

∫
d4xJ(x)ϕ(x)δ(4)(y − x1)

Setting J = 0 yields∫
DϕeıS(ϕ)

(
ϕ(x1) δS

δϕ(y) − ıδ
(4)(y − x1)

)
= 0.

(153)

Exercise 3.2
Taking two derivatives of Eq. (148) with respect to J ,
show that∫

Dϕϕ(x2)ϕ(x1)eıS(ϕ)
( δS

δϕ(y)

)
= ı

∫
DϕeıS(ϕ)

×
(
ϕ(x1)δ(4)(y − x2) + ϕ(x2)δ(4)(y − x1)

)
.

(154)

Exercise 3.3
Write Eq. (148) as[

δS′(−ı δ
δJ

) + J
]
Z[j] = 0. (155)

This Schwinger-Dyson equation is an exact equation.
Z[j] may now be expanded in a power series to obtain
perturbation theory results.

3.6. Connected correlation functions and the
effective action

We have been using the auxiliary source field J(x) to
generate correlation functions from Z[j] via Eq. (146).
As such J(x) actually is a sort of outsider, since we
are really interested in the field ϕ(x). It is therefore
extremely useful to have a generating functional, which
permits direct access to the field ϕ(x).
For this purpose we first define a new generating

functional W (J) as

Z[J ] = eıW [J], W [J ] = −ı lnZ[J ]. (156)

Using the cumulant expansion of exercise 3.3 or by direct
computation, it is straightforward to verify, that W [J ]
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generates the connected correlation functions

〈ϕ(x1)ϕ(x2) . . . ϕ(xn)〉c = ıδnW [J ]
ınδJ(x1)δJ(x2) . . . δJ(xn)

∣∣∣∣∣
J=0

(157)
E.g.

〈ϕ(x)〉c = 〈ϕ(x)〉,

〈ϕ(x1)ϕ(x2)〉c = δ2W [J ]
ıδJ(x1)δJ(x2) |J=0

=
[
− 1
Z[j]

δ2Z[j]
δJ(x1)δJ(x2)

+ 1
Z[j]2

δZ[j]
δJ(x1)

δZ[j]
δJ(x2)

]
J=0

= 〈ϕ(x1)ϕ(x2)〉 − 〈ϕ(x1)〉〈ϕ(x2)〉,
(158)

where we used Eq. (146). Now trade the auxiliary source
J(x) for the one-point correlation function31

ϕ̃(x) ≡ 〈ϕ(x)〉 = 〈ϕ(x)〉c = δW

δJ(x) (159)

by a functional Legendre transformation

Γ[ϕ̃] ≡W [J ]−
∫
d4xJ(x)ϕ̃(x) (160)

and use ϕ̃(x) as the independent field. The field ϕ̃(x)
is directly related to physical properties as opposed to
auxiliary field J(x).
As Eq. (156) shows, Γ[ϕ̃] is an effective action. J(x)

is now a variable dependent of ϕ̃(x), given by

δΓ[ϕ̃]
δϕ̃(x) = −J(x). (161)

Using Eq. (159) it also follows that

δΓ[ϕ̃]
δJ(x) = 0.

Differentiating Eqs. (159, 161), we get

〈ϕ̃(x)ϕ̃(y)〉c = −ıδ2W
δJ(x)δJ(x) = −ı δϕ(x)

δJ(y)

Γ(2)(x, y) ≡ δ2Γ
δϕ(x)δϕ(x) = − δJ(y)

δϕ(x) . (162)

The functional Γ[ϕ̃] is useful, inter alia, for the study of
phase transitions. If ϕ̃(x) is not zero, even if J(x) = 0,
spontaneous symmetry breaking32 occurs. Due to
Eq. (161), this means

δΓ[ϕ̃]/δϕ̃(x) = 0. (163)

31 In the presence of the external source J(x) the one-point
correlation functions 〈ϕ(x)〉 does not vanish!
32 See e.g. [11], Eq. (3.18) for details, after reading section 6.1.

Exercise 3.4 (The cumulant expansion)
Show that

ln〈e−x〉 =
∞∑
n=0

(−1)n
n! 〈x

n〉c, (164)

where the subscript c stands for connected. We have

〈x〉c = 〈x〉, 〈x2〉c = 〈x2〉 − 〈x〉2, . . .

Exercise 3.5 (Proper vertex functions)
The functions

Γ(n)(x1, x2, . . . xn) ≡ δnΓ[ϕ̃]
δϕ̃(x1) . . . δϕ̃(xn)

∣∣∣
ϕ̃=0

(165)

are called proper vertex functions. Verify, that for the
free field case the only proper vertex is

Γ(2)
0 (x, y) = −(∂2 +m2)δ(4)(x− y), Γ(2)

0 (p) = p2 −m2.
(166)

Exercise 3.6
Show that∫

d4yΓ(2)
0 (x, y)DF (y − z) = δ(4)(x− z), (167)

i.e. the Feynman propagator is the Green function of the
proper vertex Γ(2)

0 . Show that the analogous relation∫
d4yΓ(2)(x, y) [−ı〈ϕ(y)ϕ(z)〉c] = δ(4)(x− z) (168)

holds for the interacting case. Multiply Eqs. (162)
like matrices, paying attention to the repeated indices
summed/integrated over.
Exercise 3.7 (The free field case)
Eq. (117) states

W0[J ] = 1
2

∫
d4xd4yJ(x)DF (x− y)J(y).

Verify

ϕ̃0(z) =
∫
d4z′DF (z − z′)J(z′). (169)

Insert this in Eq. (160) to get

Γ0[ϕ̃] = −
∫
d4yJ(y)ϕ̃0(y)

=
∫
d4xd4yJ(x)

(
− δ(4)(x− y)

)
ϕ̃0(y).

Use the equation for the Feynman propagator
(Eq. (112))

(∂2
x +m2)DF (x− y) = −δ(4)(x− y)

to get rid of the
(
− δ(4)(x − y)

)
-factor. Show using

Eq. (169), that

Γ0[ϕ̃] = −1
2

∫
d4xϕ̃0(x)(∂2 +m2)ϕ̃0(x), (170)

J(x) = (∂2 +m2)ϕ̃0(x).
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You will perform usual matrix multiplications with
continuous indices and perform a partial integration.

Apply a partial integration on the ∂2ϕ̃-term33 to show
that the effective action Γ0[ϕ̃] coincides with the classical
free action S0(ϕ) =

∫
L0(ϕ).

At this point notice, that we had to execute the path-
integral

∫
Dϕ in Eq. (95) with the classical action S0(ϕ)

figuring in the integrand, to obtain Γ0[ϕ̃] = S0(ϕ̃).
In the interacting case Γ[ϕ̃] is very different from the
interacting classical action S(ϕ) =

∫
L(ϕ)!

Exercise 3.8(The effective potential)
Let us compute the first order quantum correction to the
classical action[11, 13, 18]. For this purpose we expand
around the classical saddle point Eq. (149), where
φ(x)|saddle point = φ0. The saddle-point equation is

δ(S[φ] +
∫
Jφ)

δφ
|φ=φ0 = 0 (171)

or
δS[φ]
δφ(x) |φ=φ0 = −J(x), (172)

which expresses φ0 as a functional of J → φ0[J ].
Expanding about the saddle-point, we have up to second
order

S[φ] = S[φ0]−
∫
d4xJ(x)∆φ(x)

+ 1
2

∫
d4xd4y∆φ(x)A∆φ(y) (173)

with ∆φ = φ − φ0 and the expansion coefficient A is a
functional of φ0:

A[φ] = δ2S[φ]
δφ(x)δφ(y) |φ=φ0 . (174)

To simplify notation write this as

S[φ] = S[φ0]− (J,∆φ) + 1
2(∆φ, A∆φ). (175)

Eq. (156) tells us to compute

Z[J ] =
∫
Dφeı

(
S[φ]+(J,φ)

)
= eıW [J]. (176)

We perform this in the Euclidean version

ZE [J ] =
∫
Dφe−

(
SE [φ]+(J,φ)

)
= e−WE [J], (177)

where (, ) are now Euclidean integrals. Shifting φ to
φ+ φ0, we have

ZE [J ] =
∫
Dφe−

(
SE [φ0]+(J,φ0)+ 1

2 (φ,Aφ)
)

= e−SE [φ0]−(J,φ0)
∫
Dφe−

1
2 (φ,Aφ) (178)

33 See the comments after Eq. (97).

Integrate over φ, to get

WE [J ] = SE [φ0] + (J, φ0) + 1
2 log detA. (179)

The corresponding effective action is

ΓE [φ̃] = WE [J ]− (J, φ̃)

= SE [φ0] + (J, (φ0 − φ̃)) + 1
2 log detA. (180)

We still have to trade J for φ̃0. This means solving
the implicit Eq. (172) and Eq. (159). Fortunately it is
only necessary to expand SE to first order to get with
Eq. (172)

SE [φ̃] = SE [φ0] +
∫

(φ̃− φ0)δSE
δφ
|φ=φ0

= SE [φ0]−
∫

(φ̃− φ0)J.

Therefore we find the effective action including a first
order quantum correction as

ΓE [φ̃] = SE [φ̃] + 1
2 log detA[φ̃]. (181)

Reinstating the factors of ~, convince yourself that the
additional term is first order in ~.
To get some feeling for this formula, we compute the

effective potential Veff , which is the effective action
Γ[φ] computed for constant φ. Since Γ[φ] is an extensive
quantity, we also will extract the space-time volume Ω
to obtain an intensive quantity for Veff . Computing in
Euclidean space we get for the action

SE [φ] =
∫
d4x

[
1
2(∂φ)2 + V (φ)

]
(182)

and expand it to second order in η with φ̃ = v + η(x)
and v constant. After a partial integration we get

SE [φ] =
∫
d4x

[
1
2(∂η)2 + V (v) + ηV ′(v) + 1

2η
2V ′′(v)

]
= ΩV (v) +

∫
d4x

×
{
ηV ′(v) + 1

2η
[
− ∂2 + V ′′(v)

]
η

}
. (183)

Eq. (172) and Eq. (174) now yield at the saddle-point
φ = v

V ′(v) = −J

A[x, y] = [−∂2 + V ′′(v)]δ(4)(x− y). (184)

Thus integrating over η, we obtain from Eq. (179)

WE [J ] = ΩV (v) + (J, v) + 1
2Tr logA[v].
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In Fourier space the trace is

Tr logA[φ̃] = Ω
∫

d4k

(2π)4 log[k2 + V ′′(v)]. (185)

Now expand the effective action in powers of momentum
around a constant φ = v as

Γ[φ] ≡
∫
d4x

[
Veff (v) + 1

2(∂φ)2Z(v) + · · ·
]
, (186)

where Veff is now a function of v, not a functional.
Thus we finally get from Eq. (181)

Veff (v) = V (v) + 1
2

∫
d4k

(2π)4 log[k2 + V ′′(v)]. (187)

This integral is ultraviolet divergent for large k. Inte-
grating up to a cut off at Λ, one obtains neglecting an
irrelevant constant

Veff (v) = V (v) + Λ2

32π2V
′′(v)

+
(
V ′′(v)

)2
64π2

(
log
(
V ′′(v)

)2
Λ2 − 1

2

)
. (188)

If we choose for the potential the expression

V (φ) = λ

4!φ(x)4 (189)

our model is renormalizable,34 allowing us to obtain a
cut-off independent result. It has the symmetry

φ(x)→ −φ(x). (190)

After the dust of the renormalization has settled, we
are left with the following effective potential

Veff (v) = λ

4!v
4 + (a1λ

2 + a2)v4
(

log v2

M2 − a3

)
,

(191)

where ai, i = 1, 2, 3 are numerical constants. Notice
that the action SE [φ] does not contain any dimensional
parameter. Yet in order to obtain a non-trivial result
when implementing the renormalization, one is obliged
to introduce a mass-parameterM in order to avoid infra-
red divergencies at k = 0.
Although V (φ) has a minimum at φ = 0, Veff (v) has

a maximum there and two minima at ±vmin
∂Γ[v]
∂v
|vmin = ∂V [v]

∂v
|vmin = 0, v2

min > 0. (192)

In accordance with Eq. (163), the quantum corrections
induce the spontaneous breaking of the symmetry
Eq. (190) in the limit35 Ω→∞ – see sect. 6 explaining
this concept.

34 See the comments after Eq. (146).
35 For finite Ω the two states centered at ±vmin would overlap,
creating either a symmetric or an anti-symmetric state. For infinite
Ω the overlap vanishes exponentially and we have to choose either
+vmin or −vmin with identical physics.

4. Path Integrals in Quantum Mechanics

We now rewrite the usual formulation of non-
relativistic Quantum Mechanics in terms of path-
integrals. Although this is just a special 1-dimensional
case of sect. 3.3, it is instructive, because we start from
scratch and obtain the path-integral formulation also for
the interacting case.

Consider the hamiltonian

H = 1
2mP 2 + V (Q) (193)

with

[Q,P ] = ı~. (194)

Time evolution is given by

〈b(t′)|a(t)〉 = 〈b|e−ıH(t′−t)/~|a〉 (195)

Using the usual non-normalizable states, we have

Q|q〉 = q|q〉, P |p〉 = p|p〉, (196)

〈q′|q〉 = δ(q′ − q), 〈p′|p〉 = δ(p′ − p) (197)

〈q|p〉 = 〈p|q〉? = eıpq√
2π

(198)

〈q|P |p〉 = p〈q|p〉 = 1
ı

∂

∂q
〈q|p〉. (199)

The completeness relation is

I =
∫ ∞
−∞

dq|q〉〈q|. (200)

We have in the Heisenberg representation

qH(t)|q, t〉 = eıtH/~qe−ıtH/~eıtH/~|q〉 = q|q, t〉. (201)

For a time-dependent Hamiltonian the Heisenberg oper-
ators qH(t1) and qH(t2) do in general not commute for
t1 6= t2. Therefore, if we want to use completeness for
different times, we have to choose a different basis |q, t〉
for each t in which q(t) is diagonal.
Use the unitary time evolution operator U(tI , tF ) to

propagate the wave function as

ψ(tF ) = U(tf , tI)ψ(tI). (202)

Therefore U(tF , tI) has to satisfy the Schrödinger equa-
tion

ı~
∂U(tF , tI)

∂tF
= H(tF )U(tF , tI) (203)

with the initial condition U(tI , tI) = I. For a time-
independent Hamiltonian H the evolution operator
U(tI , tI) is given by

U(tF , tI) = e−ı/~(tF−tI)H , (204)
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whereas for a time-dependent Hamiltonian it is
expressed in terms of the time-ordered exponential as

U(tF , tI) = Te
−ı/~

∫ tF
tI

dt′H(t′)
. (205)

We can decompose the time-evolution into steps due to

U(tF , tI) = U(tF , t)U(t, tI), for tF > t > tI . (206)

The matrix elements

K(qF , qI ; tF − tI) ≡ 〈qF |U(tF , tI)|qI〉 ≡ 〈qF , tF |qI , tI〉
(207)

are called the kernel. We will compute it in the position-
space representation in order to express it in terms of
Path-integrals. Use Eq. (206) to evolve from tI to tF in
N consecutive steps (for notational simplicity only for
the time-independent case)

K(qF , qI ; tF − tI)

= 〈qF |U(tF , tN−1)U(tN−1, tN−2) . . . U(t1, tI)|qI〉.
(208)

Insert the identity Eq. (200) N times splitting our time
interval into N small intervals ∆t = (tF − tI)/N to get

K(qF , qI ; tF − tI) =
N−1∏
i=1

∫ ∞
−∞

dqi

N−1∏
i=0

K(qi+1, qi; ∆t)

(209)
with t0 = tI , tN = tF and we do not integrate over
q0 = qI and qN = qF ! Now compute the kernel for a
small time step (with ~ = 1)

K(qi+1, qi; ∆t) = 〈qi+1|e−ıH∆t|qi〉 (210)

with

K(qi+1, qI ; ∆t)→ δ(qi+1 − qi) for ∆t→ 0.

Although q does not commute with p, for small ∆t we
may ignore36 this and write

e−ıH∆t = e−ı
p2
2m∆te−ıV (q)∆t (211)

Therefore

〈qi+1e
−ıH∆t|qi〉 = 〈qi+1|e−ı

p2
2m∆te−ıV (q)∆t|qi〉

= 〈qi+1|e−ı
p2
2m∆t|qi〉e−ıV (qi)∆t

=
∫
dpi〈qi+1|pi〉e−ı

p2
i

2m∆t〈pi|qi〉e−ıV (qi)∆t

= 1
2π

∫
dpie

ıpi(qi+1−qi)−ı∆t[
p2
i

2m+V (qi)].

(212)

36 The commutant of the kinetic and potential energy is of order
O(ε2). If this were untrue, and if [H(t), H(t′] 6= 0 we would have
to use the Baker-Haussdorf formula – see [5], section 10.2.5 and
Wikipedia.

Here we chose to replace 〈qi+1|e−ıV (q)∆t|qi〉 by
e−ıV (q=qi)∆t. For eventual problems with this choice see
[5], section 4.

Performing the p-integrals, we get

1
2π

∫
dpie

ıpi(qi+1−qi)−ı(
p2
i

2m )∆t

=
( m

2πı∆t

)1/2
eım(qi+1−qi)2/(2∆t). (213)

Therefore the small time-step kernel is

K(qi+1, qi; ∆t) =
( m

2πı∆t

)1/2

× exp
(
ı
m

2
(qi+1 − qi)2

∆t − ı∆tV (qi)
)

(214)

For qi+1 = q(t+∆t), qi = q(t) and ∆t ∼ 0 we manipulate
as37 Thus

m

2

(
q(t+ ∆t)− q(t)

)2

∆t = m

2

(
q(t+ ∆t)− q(t)

∆t

)2
∆t

= m

2

∫ t+∆t

t

dtq̇2. (215)

Therefore we get

m

2

(
q(t+ ∆t)− q(t)

)2
∆t −∆tV (q1) =

∫ t+∆t

t

dtL(q, q̇),
(216)

where the systems Lagrangian is

L(q, q̇) = 1
2mq̇

2 − V (q). (217)

This yields

〈q(t+ ∆t|q(t)〉 =
( m

2πı∆t

)1/2
e
ı
∫ t+∆t

t
dtL(q,q̇)

. (218)

Inserting this into Eq. (209) (now with ~ inserted),

〈qF , tF |qI , tI〉

= K(qF , qI ; tF − tI)

= lim
N→∞

( m

2πı~∆t

)N/2
×
[
ΠN−1
k=1

∫ ∞
−∞

dqk

]
e
ı
∫ tF
tI

dtL(q,q̇)
. (219)

With the notation

lim
N→∞

[
ΠN−1
k=1

∫ ∞
−∞

dqk

]
=
∫ q(tF )

q(tI)
D[q(t)] =

∫
Dq,

(220)

37 Regarding the differentiability of q(t), refer to the discussion
at Eq. (68) of the Wiener process. Thus our manipulations are
formal, but we know how to compute before the limit N →∞.
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we have

〈qF , tF |qI , tI〉 =
∫ q(tF )

q(tI)
D[q(t)]eı/~

∫
dtL(q,q̇)

=
∫
DqeıS/~, (221)

with the action

S =
∫ tF

tI

L(q, q̇)dt. (222)

This equation is the one-dimensional version of Eq. (141)
with J = 0.
Although we have shown Eq. (221) to be true for a

non-relativistic one-body Hamiltonian with a potential
V (q), Eq. (221) does not make any reference to this
particular form and it is in fact true generally.
We can also leave the p-integrals undone38 in Eq. (213)

and write

〈qF , tF |qI , tI〉 = lim
N→∞

[
ΠN−1
k=1

∫ ∞
−∞

dqk

] [
ΠN−1
k=1

∫ ∞
−∞

dpk

]
eı/~

∫
dt(p(t)q̇(t)−H(p(t),q(t))).

or

〈qF , tF |qI , tI〉 =
∫ q(tF )

q(tI)
D[q(t)]

∫
D[p(t)]

2π~

× e
ı
~

∫ tF
tI

dt[p(t)q̇(t)−H(p(t),q(t))
. (223)

This formulation is called the phase space integral,
since the integration measure is the Liouville measure
D[q(t)]D[p(t)].
In our computation it was necessary that tF > tI ,

so that we could use the kernel-decomposition property
Eq. (206) in Eq. (208). Suppose, we want to compute
the expectation value of two operators, e.g. q̂(t1), q̂(t2).
In their path-integral computation we would necessarily
have to insert q(t1), q(t2) in their correct ∆t-interval,
the later operator to the left and the earlier to the right.
Therefore the path-integral∫

Dq q(t1)q(t2)eıS/~

always represents the expectation value of the time-
ordered operators∫

Dq q(t1)q(t2)eıS/~ = 〈qF , tF |T q̂(t1)q̂(t2)|qI , tI〉.

One outstanding property of the path integral repre-
sentation Eq. (221) is the ease in obtaining the classical

38 The first and last p-integrals are different, but we have not
indicated this.

limit, which means taking ~ → 0. For small ~ the
exponent fluctuates wildly and the integrals will vanish,
unless the action S assumes its minimum, implying

δS[q(t), q̇(t)]/δq = 0, (224)

which yields the classical equations of motion, to be
compared with the exact equation (152).

We quote several relevant properties of K

1. The kernel K(qF , qI , tF − tI) satisfies the
Schrödinger equation

[ı~∂tF −H(qF , pF )]K(qF , qI , tF − tI) = 0. (225)

2. We can expand the kernel using energy eigenstates
ψn(x) ≡ 〈x|n〉

K(qF , qI , tF − tI) = 〈qF |e−ı(tF−tI)H |qI〉

=
∑
n

〈qF |e−ı(tF−tI)H |n〉〈n|qI〉

=
∑
n

e−ı(tF−tI)Enψ?n(qF )ψn(qI)

(226)

3. The kernel is also called propagator, since it prop-
agates the system from tI to tF . We can construct
the retarded propagator as

KR(qF , qI ; tF − tI) = θ(tF − tI)K(qF , qI ; tF − tI)
(227)

where θ(t) = 1 for t > 0 and zero elsewhere. Since
dθ(x)/dx = δ(x), the retarded propagator satisfies

[ı~∂tF −H(qF , pf , tF )]KR(qF , qI ; tF − tI)

= ı~δ(tF − tI)δ(qF − qI), (228)

i.e. the retarded propagator is the Green function
of the Schrödinger equation.

Exercise 4.1
Obtain Eq. (205) for a time-dependent Hamiltonian.
To show this rewrite Eq. (203) as an integral equation,
using the identity∫ t

tI

dt′∂t′U(t′, tI) = U(t, tI)− U(tI , tI)

= −ı/~
∫ t

tI

dt′H(t′)U(t′, tI).

Therefore

U(t, tI) = 1− ı/~
∫ t

tI

dt′H(t′)U(t′, tI).
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Now we iterate this as

U(t, tI) = 1− ı/~
∫ t

tI

dt′H(t′)

×
(

1− ı/~
∫ t′

tI

dt′′H(t′′)U(t′′, tI)
)

+ · · ·

= 1 + (−ı/~)
∫ t

tI

dt′H(t′)

+ (−ı/~)2
∫ t

tI

dt′
∫ t′

tI

dt′′H(t′)H(t′′) + · · ·

We express the integrands in terms of the time-ordered
products defined as

T [H(t1)H(t2) . . . H(tn)]

≡ θ(t1 − t2)θ(t2 − t3) . . . θ(tn−1 − tn)

H(t1)H(t2) . . . H(tn)

+ n! permutations.

Show that

1
2

∫ t

tI

dt1

∫ t

tI

dt2T [H(t1)H(t2)]

=
∫ t

tI

dt1

∫ t1

tI

dt2H(t2)H(t1)

Therefore

U(t, tI) = 1 + (−ı/~)
∫ t

tI

dt1T [H(t1)]

+ (−ı/~)2

2!

∫ t

tI

dt1

∫ t

tI

dt2T [H(t1)H(t2)] + · · ·

Going on like this get Eq. (205).
Exercise 4.2
Obtain the kernel for the free particle with H = p2

2m

K0(qF , qI , tF − tI) =
√

m

2πı~(tF − tI)
e
ı
~
m(qF−qI )2

2(tF−tI ) ,

(229)
using its path-integral representation Eq. (221). This can
also easily obtained directly as

K0(qF , qI , tI − tI) = 〈qf |e−ıH(tF−tI)/~|qI〉

= 〈qf |
∫

dp

2π e
−ıH(tF−tI)/~|p〉|p〈|qI〉

=
∫

dp

2π e
−ı[ p

2
2m ](tF−tI)/~〈qf |p〉〈p|qI〉

=
∫

dp

2π e
−ı[ p

2
2m ](tF−tI)/~+ı(qF−qI)p/~.

Performing this Gaussian integral yields Eq. (229).

Exercise 4.3
Show that the kernel for the harmonic oscillator with
action

Sh[q] = m

2

∫ tF

tI

dt[q̇(t)2 − ω2
hq(t)2] (230)

is given by

Kh(qF , qI , T = tI − tI) =
√

mωh
2πı~ sinωhT

eıSh[qc(T )]/~,

(231)
where qc is the classical path and

Sh[qc(T )] = mωh
2 sinωhT

[(q2
F + q2

I ) cosωhT − 2qfqI ].

(232)
For details see e.g. [1], Problem 3-8.

5. Statistical Mechanics in Terms of
Path Integrals

The statistical partition function is

Z(β) =
∑
n

e−βEn ≡ Tre−βH , β = 1
kBT

. (233)

For systems to be in thermal equilibrium, the Hamil-
tonian has to be time-independent. This looks like the
quantum mechanical TrU(tF − tI) of Sect. 4, after
replacing β by ı(tF − tI)/~. We will therefore use
the quantum-mechanical path-integral formulation for
U(tF − tI) and after that introduce a fictitious time
variable τ to label our paths.
To start with write

Z̃(tF − tI) ≡ Tre−
ı
~ (tF−tI)H (234)

in terms of the position-representation using Eq. (226).
The trace operation becomes an integral over |x〉 states
with xF = xI = x, i.e. we do not integrate over all paths,
but only over all closed loops coming back to x and then
integrate over x

Z̃(tF − tI) =
∫ ∞
−∞

dx〈x|U(tF , tI)|x〉

=
∫ ∞
−∞

dxK(x, x, tF − tI). (235)

Using Eq. (219) with x(tF ) = x(tI), i.e. periodic
boundary conditions and the product now running
up to k = N , we get

Z̃(tF − tI) = lim
N→∞

( m

2πı~∆t

)N/2
×
[
ΠN
k=0

∫ ∞
−∞

dqk

]
e

(ı/~)
∫ t+∆t

t
dtL(x,ẋ)

=
∫ ∞
−∞

dx

∫ x(tF )=x

x(tI)=x
D[x(t)]eı/~S[x(t)]
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or

Z̃(tF − tI) =
∫
pbc

D[x(t)]eı/~S[x(t)]. (236)

We now set tI = 0 and tF = ı~β and t = −ıτ . The
exponent becomes for a particle subject to a potential

ıS[x(t)] = ı

∫
dt

[
m

2

(
dx

dt

)2
− V (x)

]

= −
∫ ~β

0
dτ

[
m

2

(
dx

dτ

)2
+ V (x)

]
with the Euclidean Lagrangian

LE [x] ≡ m

2

(
dx

dτ

)2
+ V (x). (237)

In terms of the Euclidean Lagrangian density in four
dimensions as in Eq. (96), we get

Z(β) =
∫
pbc

Dϕe
−
∫ ~β

0
dτ
∫
d3xLE(ϕ,∂ϕ)

. (238)

The imposition of periodic boundary conditions
imposes a constraint on the Fourier transforms g(t) =∫∞
−∞

dω
2π g̃(ω)e−ıωt. Requiring g(t) = g(t + β) implies

eıωβ = 1 or

ωn = 2πn
β

(bosons) (239)

for integer n. The integral becomes a Matsubara sum∫
dω

2π g̃(ω)→ 1
β

∞∑
n=−∞

g̃(ωn). (240)

5.1. Fermions

For fermionic fields we have to impose anti-periodic
boundary conditions. We therefore need to set eıωβ =
−1 or

ωn = (2n+ 1)π
β

, (fermions). (241)

To get this tricky point clear, we will look at a one-
dimensional fermionic oscillator. We will compute
the trace e−ıHt using elementary quantum mechanics
and path-integrals to compare the results. But first we
have to learn how to integrate over fermionic variables!

5.1.1. Fermionic integrals

We need a fermionic path-integral formalism analogous
to the bosonic case. Since we don’t have the least idea
how to get this, we proceed the following way.
For a quadratic Lagrangian we know how to perform

the path-integral. We will therefore invent integration
rules, which for the known free quadratic case give the

same results as OQFT. Then we will use these rules
for interacting Lagrangians, guaranteeing that they give
the OQFT results in perturbation theory. We may of
course then use our path-integral formalism to obtain
non-perturbative results.
Consider real-valued quantities obeying the following

anti-commutation rules

{θi, θj} = 0→ θ2
i = 0, i, j = 1, 2, . . . , N. (242)

Thus any function of one variable is at most linear in θ

g(θ) = g0 + g1θ (243)

and for two variables

g(θ1θ2) = g0 + g1θ + g2θ2 + g12θ1θ2.

E.g. for the exponential we have

eAθ1θ2 = 1 +Aθ1θ2.

The variables θi are called Grassmann fermions.
Define differentiation and integration rules as

d

dθi
θj = δij ,

∫
dθi = 0,

∫
θj dθi = δi.j , (244)

where dθi are also anti-commuting Grassmann variables,
anti-commuting also with θj . Although differentiation
and integration rules are the same39, therefore redun-
dant, having both is still convenient in order to maintain
similarity to the bosonic calculations. We will go on and
use most of the usual calculus rules without proving
them.

The only big difference will be the rule for changing
variables40. In fact we have with Eq. (243)∫

g(θ)dθ = g1

and for a real number a using linearity

g(aθ) = g0 + ag1θ.

Therefore
∫
g(aθ)dθ =

∫
(g0 + ag1θ)dθ = ag1 =

a
∫
g(θ)dθ i.e. ∫

g(aθ)dθ = a

∫
g(θ)dθ. (245)

For the bosonic case we would have instead∫
f(ax)dx = 1

a

∫
f(x)dx.

The ubiquitous determinant also moves to the numer-
ator. Consider a real, positive definite matrix Ai,j

39 It necessarily follows, that there is no geometric interpretation
for
∫
dθ and no integration limits etc.

40 The Jacobian in a transformation of variables also changes
place.
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composed of four sets of all anti-commuting variables
θi, θ

?
j , ηi, η

?
i with i, j = 1, 2, . . .M and the quadratic form

Q(θ, θ?) ≡
M∑

[i,j]=1

θ?iAi,jθj −
M∑
i=1

η?i θi −
M∑
i=1

θ?i ηi

≡ Q(θ, θ?) = θ?Aθ − η?θ − θ?η, (246)

where the ? just distinguishes different independent anti-
commuting sets.
Notice that

∂eQ

∂θi
= −θieQ,

∂eQ

∂θ?i
= +θ?i eQ.

With the convention∫
[DθDθ?]θ?1θ1θ

?
2θ2 . . . θ

?
MθM = +1, (247)

where DθDθ? = dθ1dθ
?
1dθ2dθ

?
2 . . . dθMdθ

?
M , we have the

following identity

IF =
∫
DθDθ?eQ(θ,θ?) = detAe−η

?A−1η. (248)

This can be shown with some combinatorics. To compute

IF =
∫

[DθDθ?]e
∑M

[i,j]=1
θ?iAi,jθj

for the case η = 0, η? = 0, we go to the diagonal
representation of A

IF =
∫

[DθDθ?]e
∑M

i=1
θ?i aiθi .

Expand the exponential and notice that one factor of
θ, θ? is needed for each dθ, dθ? to get a non vanishing
result after integration. Thus only the term

a1θ
?
1θ1a2θ

?
2θ2 . . . .aMθ

?
MθM

survives in the integral. But there areM ! ways to obtain
this term and all have the same sign, since the pair
θ?i θi commutes with all other pairs. Thus we get41 with
Eq. (247)

IF =
∫

[DθDθ?]e
∑M

[i,j]=1
θ?iAi,jθj =

M∏
i=1

ai = detA.

For η, η? nonzero we complete the square as in the
bosonic case.
We will generate correlation functions applying ∂/∂ηi

as in the bosonic case.

41 Had we integrated only over
∫
dθ with an anti-symmetric matrix

A – therefore with purely imaginary eigenvalues – and an even
number of variables, the result would be the Pfaffian of A with
Pf(A) =

√
detA.

Exercise 5.1
Show that the definition of the integral as

∫
dθ = 0 is

required by shift invariance, which we of course want
to maintain. For this purpose consider g(θ) = g0 + g1θ
and compute

∫
g(θ + η)dθ, assuming

∫
θdθ = 1. Invoke

linearity to conclude that
∫
g(θ)dθ =

∫
g(θ + η)dθ

requires (f1η)
∫
dθ = 0.

Exercise 5.2
Show that the Jacobian’s position is inverted, when
compared to the bosonic case.

5.1.2. The fermionic harmonic oscillator

To compute path-integrals we need the classical descrip-
tion of the oscillator for a fermionic field ψ(t). Define its
Lagrangian density to be

L(ψ,ψ?) = ψ?ı∂tψ − ωψ?ψ, (249)

where ω is some constant parameter and we set
~ = 1. Here ψ and ψ? are independent fields. This
Lagrangian is the one-dimensional version of the rela-
tivistic 3-dimensional Dirac Lagrangian, see e.g. [12],
chapter 3.
Since L(ψ,ψ?) is independent of ∂tψ?, the equation

motion for ψ reduces to ∂L
∂ψ? = 0, i.e.

ı∂tψ − ωψ = 0 → ψ(t) = beıωt. (250)

The equation of motion for ψ? yields

ψ?(t) = b†e−ıωt, (251)

where the peculiar naming of the initial condition as b†
for ψ?(t) foreshadows its role as creation operator. Here
it is just another constant.
The momentum conjugate to ψ is πψ = ∂L/∂ψ̇ = ıψ?

and we compute the Hamiltonian as

HF = πψψ̇ − L = ωψ?ψ. (252)

Now quantize this fermionic system. In accordance
with Pauli’s principle b becomes an anti-commuting
operator satisfying

{b, b†} = 1, {b, b} = 0 {b†, b†} = 0,

where now b† is the hermitian conjugate of b.
This one-dimensional fermionic system has only two

eigenstates: the fermionic state being either empty or
occupied

b|0〉 = 0, |1〉 = b†|0〉.

We thus have a two-dimensional Hilbert space with
Hamiltonian

HF = ωb†b+ constant,
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where we used the equations of motion Eq. (250).
Hermiticity of HF correctly identifies b† as the hermitian
conjugate of b. Due to possible operator ordering ambi-
guities, when going from the classical to the quantum
hamiltonian, the energy levels are only given up to an
arbitrary off-set. We set the constant so that

HF = ω(b†b− 1/2). (253)

Compare HF with the bosonic Hamiltonian HB =
ω(a†a+ 1/2).
The two energy eigenvalues of HF are

ε0 = 〈0|HF |0〉 = −ω/2, ε1 = 〈1|HF |1〉 = +ω/2.

We now compute the normalized trace of e−ıHFT for
some time variable T , summing over the two eigenvalues

tr[e−ıHFT ] =
∑1
i=0 e

−ıεiT

Z

= eıωT/2 + e−ıωT/2

2 = cos ωT2 , (254)

where the normalization factor Z = 2 has been chosen
as to satisfy the normalization condition

tr[e−ıHFT ]ω=0 = 1. (255)

Now compute the same trace with the path-integral
method. Use Eq. (236), integrating over the anti-
commuting Grassmann variables ψ,ψ?. The normalized
trace with normalization factor Z̃ is

tre−ıHT = 1
Z̃

∫
DψDψ?e

ı
∫ T

0
Ldt

Inserting Eq. (249) we have

tre−ıHT = 1
Z̃

∫
DψDψ?eı

∫
dτψ?(t) [ıdt−ω]ψ(t)

= 1
Z̃

det[ıd/dt− ω].

Adopting the same normalization Eq. (255) we get

Z̃ = det[ıd/dt− ω]|ω=0 = det[ıd/dt],

yielding

tre−ıHT = det[ıd/dt− ω]
det[ıd/dt] ≡ det[Dω]

det[ıd/dt] . (256)

We compute the determinants in momentum-space,
where the operators are diagonal and the determinant
is the product of the eigenvalues en(ω). Compute them
solving the classical equations of motion to get a com-
plete set of eigenfunctions

Dωfn(t) ≡ [ıd/dt− ω]fn(t) = en(ω)fn(t).

With the appropriate anti-periodic boundary conditions
fn(t+ T ) = −fn(t) the eigenvalues are

en(ω) = − (2n+ 1)π
T

− ω ≡ −ωn − ω, n = 0,±1,±2, . . .

This yields

tre−ıH(ω)T =
∞∏

n=−∞

en(ω)
en(0) =

∞∏
n=0

(
1− ω2

ω2
n

)
.

The product is
∞∏
n=0

(
1− ω2T 2

(2n+ 1)2π2

)
= cos ωT2 . (257)

This agrees with the fermionic partition function
Eq. (254)

ZF (ω) = cos ωT2 , (258)

vindicating the use of anti-periodic boundary condi-
tions. Although we used the proverbial slash-hammer
to kill the fly Eq. (254), path-integrals prove to be
extremely expedient in the field-theoretical case.

Remember that we had to use particular bound-
ary conditions to write the path-integral in terms of
the Lagrangian in Eq. (96). This is not necessary for
fermionic Lagrangians linear in the derivatives, so that
anti-periodic boundary conditions are no roadblock here.

Exercise 5.3
Repeat the computation of the trace for the bosonic
oscillator.
Exercise 5.4
Show that Matsubara-sums may be evaluated as∑

n

f(ωn) =
∑
Resf

f(−ız)g(z) (259)

with

g(z) =

+ β
eβz−1 bosons

− β
eβz+1 fermions

(260)

and Resf instructs us to sum over the residues of the
poles of f(−ız). If f(z) has cuts, we have to include the
discontinuity across them.
For ωn=fermionic and ωm=bosonic show

1
β

∞∑
n=−∞

1
ıωn − ε

= 1
eβε + 1 ,

1
β

∞∑
m=−∞

1
ıωm − ε

= − 1
eβε − 1

The bosonic sum has limε→0 → −∞, so we may use this
limit to check the sign.
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If you use the function g(z) = −π2 tanh(πz2 ) for
fermions or g(z) = π

2 coth(πz2 ) for bosons, do you get
the same result?
Exercise 5.5
Show the following identities for fermions

1
β

∑
n

1
(ıωn − εq)(ıωn + ıω − εp+q)

= −nF (εq)− nF (εq+p)
ıω + εp − εq+p

(261)

and

1
β

∑
n

1
(ıωn − εq)(ıωn − ıωm − εp−q)

= 1− nF (εq)− nF (εp−q)
ıω + εp − εp−q

,

using nF (−x) = 1− nF (x), nF (x+ ıω) = nF (x).
Exercise 5.6
For ωn=fermionic and ωm=bosonic frequencies show

1
β

∑
n

1
(ıωn − εq)(ıωn + ıωm − εq+p)

= nF (εq)− nF (εq+p)
ıωm − εq+p + εq

. (262)

6. Non-relativistic Electron Models

Let us consider non-relativistic electrons coupled by a 4-
fermion interaction. This is one of the simplest models,
yet sufficiently rich to contain extremely interesting
physics, such as spontaneous symmetry breaking.

Since this model includes fermions, we will use two
independent set of Grassmann variables: ψ(x) and ψ?(x)
with x = [x1, x2, x3, t]. We append a binary variable
to describe the electron’s spin ψ?i (x), ψi(x), i = ±. We
will integrate over ψ and ψ?, indicating the measure as
D[ψ,ψ?], using the results of Sect. (5.1.1), in particular
Eq. (248). As usual path-integrals will be performed in
their discrete version. A finite hyper-cube inR4 of length
L = N , we will have N4 space-time points with two
variables at each point, yielding M = 2 ∗N4 degrees of
freedom in e.g. Eq. (248).
The total Lagrangian density is the sum of the free

density42 and an additional 4-fermion interaction

L =
∑
i=±

ψ?i
(
ı∂t + 1

2m∇
2 + µ

)
ψi +Gψ?+ψ

?
−ψ−ψ+

(263)

where µ is the chemical potential and G is a coupling
constant.

42 We will set ~ = 1 in the following.

With one electron per site, a half-filled band, this
interaction is the only local four-fermion interaction
possible. Yet this simple model is rich enough to describe
several important systems undergoing phase transitions.
The free parameter G is a coupling constant with
dimension ∼ m−2, supposed to encapsulate all physics,
such as non-local effects due to some potential V (r−r′),
which are swept under the rug by our simple 4-fermion
interaction. Of course this model cannot describe situ-
ations, where particular properties of the Fermi-surface
are important like high temperature superconductors,
graphene etc.
The generating functional

Z =
∫
D[ψ,ψ?]eı

∫
d4xL (264)

with d4x = dtd3x. The generating functional is trans-
lationally and rotationally invariant, although in con-
densed matter physics we typically want to describe
crystals. In crystals these symmetries are broken down
to sub-symmetries and we have invariance only to
subgroups, depending on the crystal’s symmetry. Since
we will concentrate on phase transitions, these details
are not relevant.
In the following sections we will manipulate this

Lagrangian in several ways, each one exposing the
feature we are looking for. In other words, we will find
different minima of the generating functional above –
 [7], chapter 6. This of course means, that we know
what we want to get: how to introduce additional fields
m(x),∆(x) to tame the 4-fermion interaction, morphing
it to a bilinear form. This will allow us to exactly
integrate over the fermions, leaving an action involving
only these new fields m(x) and ∆(x).

6.1. Ferromagnetism

We will rewrite the generating functional Eq. (264)
to extract a model describing the ferromagnetic phase
transition.
In order to describe spin, we need the three traceless

Pauli matrices

σ1 =
(

0 1
−1 0

)
, σ2 =

(
0 −ı

+ı 0

)
,

σ3 =
(

1 0
0 −1

)
, (265)

satisfying the identity

σαijσ
β
kl = δαβ

3 [2δilδjk − δijδkl] + ıεαβγ [δjkσγil − δikσ
γ
jl]

(266)
with α, β = 1, 2, 3 and i, j, k, l = ±. In particular we set
α = β and sum to get

σij · σkl = 2δilδjk − δijδkl. (267)
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Use it to rewrite the 4-fermion interaction as43

ψ?+ψ
?
−ψ−ψ+ = −2s(x) · s(x) (268)

with

s(x) =
∑
ij=±

ψ?i σijψj . (269)

The action becomes

S[ψ, s] =
∫
d4xL

=
∫
d4x

(∑
i=±

ψ?i
(
ı∂t + 1

2m∇
2 + µ

)
ψi

− 2Gs(x) · s(x)
)
. (270)

Now linearize the s(x) · s(x) term introducing the field
m, called magnetization. The name is justified, since m
couples with the spin-density s(x) due to the termm ·s.
In fact, with g =

√
G, use∫

D[m]eı
∫
d4x(m2−2gm·s) (271)

=
∫
D[m]eı

∫
d4x(m−gs)2

e−ı
∫
d4xGs2

=
[∫

D[m′]eı
∫
d4xm′2

]
e−ıG

∫
d4x s·s.

The integral overm′ yields the constant determinant N
and we get the identity

e−ıG
∫
d4x s(x)·s(x) = 1

N

∫
D[m]eı

∫
d4x(m2−2gm·s).

(272)
Using m · s = m · ψ?i σijψj , the generating functional
becomes

Zψ,m = 1
N

∫
D[ψ,ψ?]D[m]

× eı
∫
d4x{

∑
i,j
ψ?i [(ı∂t+ 1

2m∇
2+µ)δij−2gm·σij ]ψj+m2}

(273)

Now use Eq. (248) to integrate over the bilinear fermions,
to get

Z[m] = 1
N

∫
D[m]

(
detO[m]

)
eı
∫
d4xm2],

where

O[m] = (ı∂t + 1
2m∇

2 + µ)δij − 2gm(x)·σ. (274)

43 Remember the anti-commutativity of ψ!

Putting the determinant into the exponent with detO =
eTr lnO, we get for the generating functional in terms of
the action S[m]

Z[m] = 1
N

∫
D[m]eıS[m]

= 1
N

∫
D[m]eı

∫
d4xgm2+Tr lnO[m]. (275)

O is the infinite-dimensional matrix with indices [x, i],
so that the trace is to be taken over all the indices x in
x-space and i in σ-space: Tr ≡ Tr[x,σ]. Eventually we
will have to expand the log and we therefore factor out
O[0] to get a structure like ln(1− x)

Tr lnO[m]) = Tr ln{O[0]
(
1− 2DSgm · σ

)
(276)

with

D−1
S ≡ O[0] = (ı∂t + 1

2m∇
2 + µ)δij .

(277)

To ease the notation we renamed O−1[0] asDS, which is
the Schrödinger propagator of the free fermionic theory.
Let us flesh out the structure of the above equation,

writing out the indices. As a matrix O[m] needs two
indices a and c

O[m]ac = O[0]a,b
(
δb,c − 2g[DS ]b,c[m · σ]b,c

)
, (278)

where Latin indices are compound indices as {a, b, . . .} ≡
{[x, i], [y, j], . . .}. The δb,c is a product of a Kronecker
delta in σ-space and a Dirac delta in x-space. O[0]
is a local operator – see Eq. (86) for a 1-dimensional
example. But an operator containing derivatives will
become non-local in the discrete/finite version of the
path-integral, since derivatives have support in neigh-
boring bins. Its inverse, the propagator DS , due to
translational invariance depends only on the difference
in x-space, as ĝ(t2 − t1) in Eq. (87). It is diagonal in
σ-space: DS ≡ DS(x− y)δij . m is a diagonal matrix in
x-space: mx,y = m(x)δ(x − y). Products of m(x) are
local in x-space, but non-local in momentum space.
We now compute the trace trσ in spin-space. In order

to get rid of the logarithm, we use a convenient trick.
Take the derivative of

Tr lnO[m] = Tr lnO[0]
(
1− 2gDSσ ·m

)
as

∂Trx,σ lnO[m]
∂g

Trx,σ

{
−2DSσ ·m

1− 2gDSσ ·m

}
, (279)

where we have displayed the matrix-inverse as a fraction
to emphasize, that positions don’t matter. Using

[1−B · σ]−1 = 1 +B · σ
1−B2 ,
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we compute

trσ
2DSσ ·m

1− 2gDSσ ·m] = trσ
2DSσ ·m[1 + 2gDSm · σ]

(1− 4g2[DSm]2)

= 8gDSm ·DSm

1− 4g2DSm ·DSm
, (280)

where we used trσ = 0. Inserting this into the derivative
of Eq. (275), we get

∂S[m]
∂g

= trx
−8gDSm ·DSm

1− 4g2DSm ·DSm
. (281)

Integrating we get the action with the trσ already taken

S[m] = ı

∫
d4xm2(x)

+ trx ln
{
O[0]

[
1− 4GDSm ·DSm

]}
(282)

where we adjusted the g-independent constant to cor-
rectly reproduce the limit G→ 0.
Up to here we have not made any approximations,

but only rewritten Eq. (264). Yet it is not known how
to compute the trx or compute the integral

∫
D[m]

without some approximation, such as expanding the ln.
Eq. (282) shows that our system is rotationally

invariant. In fact the measure D[m] and
∫
d3x, d3k are

invariant and S[β,m] depends only on scalar products of
bona fide vectors.44 Therefore any mathematically
correct result deduced from this action has to
respect this symmetry. Dear reader: please never
forget this statement!
When describing phase-transitions, we are looking

for an order parameter, in the present case the magneti-
zation, which is zero in the paramagnetic and non-zero
in the ferromagnetic phase. As mentioned in Eq. (163)
we require, that

δΓ[m̃(x)]
δm̃(x) = 0 (283)

for some non-zero m̃(x) ≡ 〈m(x)〉. We do want to
preserve translational invariance, so that momentum
conservation is not spontaneously broken. Therefore we
require Eq. (283) to hold for a constant non zero value
of the magnetization m̄

〈m(x)〉 = m̄ 6= 0. (284)

Since we did not compute Γ[m̃(x)], we will resort to
the mean field approximation or Ginzburg-Landau
effective action in the next section.

6.2. The Ginzburg-Landau effective action:
ferromagnetic spontaneous symmetry
breaking

To model a simple ferromagnetic phase transition, we
will expand the logarithm of S[m] in Eq. (282). It is

44 We actually should show that m transforms as a vector: see
exercise 6.1 below.

sufficient to keep terms up to g4. We therefore compute

tr ln
{

1− 4g2DSm ·DSm
}

=
∞∑
n=1

(−4g2)n
n

tr
{[
DSm ·DSm

]n}
.

Thus S[m] is given up to order g4 by

S4[m] =
∫ β

0
dτ

∫
d3xm2(x)− 4g2tr

{
DSm ·DSm

}
+ 8g4tr

{[
DSm

]4}
. (285)

In the instruction to take the trace trx, x is an
integration variable and we may therefore change to
any other convenient variables, but let us not forget
the Jacobian J of the transformation. We will compute
the determinants/traces in momentum-space, using their
invariance under this unitary transformation, which
guarantees J = 1

detx(A) = detx{UU−1AUU−1}

= detx{U}detx{U−1AU}detx{U−1}

= detx{U}detx{U−1}detx{U−1AU}

= detx{UU−1}detx{U−1AU} = detkA.

With t = −ıτ and taking the Fourier transform as

m(ω,k) =
∫
d4xeı(ωτ+k·x)m(τ,x),

we get for the free propagator from Eq. (277)

DS(k) = 1
ıω − ε(k) (286)

with ε(k) = k2

2m − µ.
We compute the g2-term as

trx

{
DSmi ·DSmi

}
= Trx

{
miDS ·miDS

}
(287)

=
∫
d4xd4ymi(x)DS(x− y)mi(y)DS(y − x)

=
∫
d4xd4y

d4k1

(2π)4
d4k2

(2π)4
d4k3

(2π)4
d4k4

(2π)4

? eı[k1·x+k2·(x−y)+k3·y+k4·(y−x)]mi(k1)

DS(k2)mi(k3)DS(k4)

=
∫

d4k1

(2π)4
d4k2

(2π)4
d4k3

(2π)4
d4k4

(2π)4
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? δ(k1 + k2 − k4)δ(−k2 + k3 + k4))mi(k1)

DS(k2)mi(k3)DS(k4)

=
∫

d4k1

(2π)4
d4k2

(2π)4mi(k1)

DS(k2)mi(−k1)DS(k1 + k2). (288)

Thus

tr
{
DSmiDSmi

}
=
∫

d4k

(2π)4mi(k) Π2(k) mi(−k).

(289)
with the polarization function

Π2(k) =
∫

d4q

(2π)4DS(q)DS(k + q). (290)

This process is illustrated in Fig. 3. We can easily read
off the resulting Eq. (289) without tedious Fourier trans-
forms. Notice that translational invariance in x-space
implies energy-momentum conservation.
To describe statistical mechanics, the ω-integral in∫
d4q has to morph into a sum over Matsubara frequen-

cies Eq. (240) for fermions as∫
dω

2π g(ω)→ 1
β

∞∑
n=−∞

g(ωn), ωn = (2n+ 1)π
β

.

Remembering from Eq. (277) that ωn are fermionic,
whereas ω are bosonic frequencies coming from mi(k),
we get from Eq. (262)

1
β

∑
n

DS(q)DS(k + q)

= 1
β

∑
n

1(
ıωn − εq

)(
ıωn + ıω − εk+q

)
= nF (εq)− nF (εk+q)

ıω − εk+q + εq
(291)

Below we will need the expansion of Π(k2, ω) to first
order in k2

Π2(k, ω) ∼ Π2(0, 0) + α2k
2, (292)

k

k+q

q

k

Figure 3: Π2(k): second order contribution to the trace. The
thin lines stand for the propagators DS . Notice momentum
conservation at the vertices.

with e.g.

Π2(0, 0) = lim
k→0

∫
d3q

(2π)3

∑
n

DS(q)DS(k + q)

=
∫

d3q

(2π)3
eβεq(
εq + 1

)2 .
Similarly we get for the g4 term - indicating convolutions
by the symbol ⊗,

tr
{

(DSm ·DSm)2} = a4(β)
{
m⊗

}4
. (293)

Hence we get to order g4 or G2

S4[m] = 8G2α4
{
m⊗

}4 +
∫

d4k

(2π)4mi(k)

×
[
1− 4G

(
Π2(0, 0) + α2k

2)] mi(−k). (294)

This model is supposed to describe the Fe-phase
transition occurring at some critical temperature Tc.
The magnetization vanishes above Tc and is non-zero
below Tc. Therefore it is called order parameter. The
particular value of Tc depends on the physical details
of the ferro-magnetic material. We will not model some
particular system, but rather leave Tc as well as as
α2,Π2(0, 0) and α4 as free parameters.
Yet in the vicinity of the critical point a universal

behaviour of the order parameter sets in. Universal quan-
tities do not depend on the details, but only on stuff like
the spatial dimension (d = 3 in our case), the symmetry
of the order parameter (rotational symmetry in our case)
etc. Which properties are universal has to be discovered
in each case and it is those our model has a chance
to describe. We therefore simply dump non-universal
properties into the free parameters [G,α2,Π2(0, α4] and
hope for the best.45 We will expand all the temperature-
dependent variables around the critical temperature Tc.
As we will see, the value of Tc is determined by the
vanishing of the coefficient of the m2-term.
All this can be subsumed into theGinzburg-Landau

effective action as an approximation to Γ[m] of
Eq. (160). Notice that at this point we have abandoned
performing the path integral

∫
D[m], neglecting the

associated quantum effects. We therefore drop the mean
value symbol and set 〈m(x)〉 ∼ m(x). Transferring
S4[m] to Euclidean τ,x-space, we get the Ginzburg-
Landau effective action

ΓGL[m] =
∫
dτd3x[c1∇m ·∇m+ c2m

2 + c4m
4].

(295)
with some free parameters c2, ci > 0, i = 1, 4. The gra-
dient term damps out high frequency spatial variations
of the order-parameter.

45 For more details see [13], sect. 15.2.
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Using Eq. (283) we get the gap equation for m(x)

δΓGL[m]
δm(y) = [−2c1∇2m+ 2c2m+ 4c4m3] = 0. (296)

As a first approximation, we neglect fluctuations and
look for constant

m(x) = m̄ 6= 0 (297)

as required by Eq. (284). The magnetization m̄ becomes
the order parameter of the ferromagnetic phase
transition. Since our model is rotationally invariant, it
is of course unable to provide a particular direction for
the magnetization to point to! At most it may yield a
non-zero value for the length of the magnetization vec-
tor. This is called Spontaneous Symmetry Breaking
(SSB). In fact under a rotation the magnetization
vector m transforms as

m̄i → Rijm̄j , summed over j, (298)

where R is a anti-symmetric 3 × 3 - matrix. It satisfies
RijRik = δjk, so that the original vector and the rotated
one have the same length. This means that the angle of
m̄ is arbitrary, the partition function being independent
of this angle! We have now two possibilities

1. Either m̄ = 0, in which case the angle is irrelevant.
2. Or m̄ 6= 0, in which case we have identical physics

for all values of the angle, i.e. SSB. The theory only
tells us thatm lies on a sphere of radius |m̄| 6=
0. If the reader needs a bona fide magnetization
vector with a direction, it is up to him to choose
this direction. Due to the symmetry, all eventually
chosen directions will produce identical results!

Comment 1

Symmetry arguments like the one used
at Eq. (298) are millennia old. Aristoteles
resorted to symmetry to prove that the
vacuum does not exist. In the middle ages
this was called horror vacui - nature abhors
the vacuum.
The argument goes as follows: If the vacuum
existed, a body travelling in it with constant
velocity would never stop! Due to transla-
tional invariance this is true, since all the
places are equivalent and the body can’t
do anything except going on[20]. Now he
concludes: but this is absurd, therefore the
vacuum does not exist46.
Notice that Aristoteles lived ∼ 2000 years
before Galileo! If you want the body to stop,
you have to somehow break translational

46 Do you agree or do you feel cheated?

invariance. In our system you have to some-
how break rotational invariance. You could
take resource to some magnetic field point-
ing in a particular direction and adding a
corresponding interaction to our model. This
would be explicit symmetry breaking.
But SSB is much more subtle!

For a constant order parameter the gap equation
Eq. (296) becomes

2m̄
{
c2 + 4c4m̄2} = 0. (299)

If m̄2 6= 0, we say that the system undergoes sponta-
neous symmetry breaking. This requires c2 to change
sign at some T = Tc. The simplest assumption is

c2 = a(T − Tc), a > 0

such that

m̄2 = a(Tc − T )
4c4

. (300)

The solutions of our gap-equation are then

|m̄| =
{
a′[Tc − T ]1/2, T ≤ Tc

0 T > Tc
(301)

with the constant a′ =
√
a/(4c4).

Here we encounter the critical index γ, which
controls how the magnetization vanishes at the critical
temperature

m̄ ∼ (Tc − T )γ (302)

with γ = 1/2. We also notice that the derivative
dm̄/dT diverges at the critical temperature, signaling
a singularity.
Now we observe

1. The critical temperature Tc depends on the details
of the physics to be described. Since this would be
a tall order for our model to live up to, we left Tc
a free, unknown parameter.

2. Unless forbidden by some special requirement, the
lowest order terms in the expansion of the determi-
nant arem(x) ·m(x), [m(x) ·m(x)]2. These terms
are required by the rotational symmetry of
our model, which excludes all the odd powers of
m(x). This fixes the value of critical exponent γ
to be 1

2 . We therefore trust this value to have a
rather general validity: it is called universal. See
 [7], pgs. 285, 351.

We now include fluctuations to compute the x-
dependence of the 2-point correlation function. This
is actually an inconsistent procedure. We first neglect
fluctuations, which forced us to set 〈m(x)〉 ∼ m(x) =
m̄. But we include them now, to compute 〈m(x)m(0)〉.
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Yet the results provide valuable insights into the physics
of phase transitions.
In analogy to Eq. (92), we use Eq. (168) – with no

factor of ı since our setting is in our Euclidean. This
shows, that the two point correlation function gGL(x) =
〈m(x)m(0)〉 − m̄2 satisfies the equation{

2c2 + 4c4m(x)2 − 2c1∇2}gGL(x) = δ(3)(x). (303)

Inserting m(x) from Eq. (301), we get{
−2c1∇2 + 2λa′(Tc − T )

}
gGL(x) = δ(3)(x) (304)

with λ = 2 for T < Tc and λ = −1 for T > Tc. The
solution with the boundary condition gGL(∞) = 0 is

gGL(x) = 1
8πc1

e−|x|/ξ

|x| (305)

with

ξ =
{
a+(T − Tc)−1/2, T > Tc
a−(Tc − T )−1/2, T < Tc

(306)

where a+ =
√
c1/a′, a− =

√
c1/2a′. ξ is called

correlation length. It diverges at T = Tc with the
universal critical exponent ν = 1

2 . The ratio a+/a− is
also a universal parameter.
If you want to go beyond the mean-field picture, use

e.g. the Renormalization Group approach, which is
beyond this note. You may check out [10, 17], besides
the books already mentioned.

Exercise 6.1
Consider a massless boson in d = 2 euclidean dimen-
sions. In analogy to Eq. (92) its propagator satisfies

∇2DE2(x) = δ(2)(x). (307)

Solve this equation and notice divergences for both
small and large distances. The small distance behavior
is not relevant, if the system lives on a solid lattice.
The large distance divergence illustrates, why SSB of
a continuous symmetry does not exist in two dimen-
sions. The small number of neighbors is insufficient to
prevent the large distance fluctuations from destroying
the coherence in the ordered phase. d = 1 is even worse
in this respect. d = 2 is the lower critical dimension
for spontaneously breaking a continuous symmetry at
a temperature T > 0. Yet a discreet symmetry may be
broken in d=2, but not in d=1.
Exercise 6.2
Show that c4 > 0.
Exercise 6.3
Show that m transforms as a vector under rotations.
Choose a coordinate system, whose z-axis coincides with
the rotation axis. By definition ψ transforms under a
rotation around this axis by an angle ϕ as

ψ′(x′) = S3ψ(x),

with

S3 = eı
σ3
2 ϕ

and the vector x transforms as

x′ = Ax

A =

cosϕ sinϕ 0
sinϕ cosϕ 0

0 0 1


Show that m transforms as x, i.e.

m′i(x′) = (ψ?)′(x′)σiψ′(x′)

= Aijψ?(x)σjψ(x) = Aijmj(x). (308)

6.3. Superconductivity

Consider again the Lagrangian density Eq. (263)

L =
∑
i=±

ψ?i
(
ı∂t −

1
2m∇

2 − µ
)
ψi +Gψ?+ψ

?
−ψ−ψ+.

(309)

with the partition function

Z =
∫
D[ψ,ψ?]eı

∫
d4xL. (310)

We will again integrate over the fermions, but now in
a way different from the previous section. The order
parameter will be a charged field! In the OQFT
language, instead of the Hartree-Fock approximation
with the charge-conserving break-up

〈ψ†+ψ
†
−ψ+ψ−〉 ∼ 〈ψ†+ψ−〉〈ψ

†
−ψ+〉,

Bardeen-Cooper-Schrieffer(BCS) took the revolu-
tionary step to decouple the 4-fermion interaction as

〈ψ†+ψ
†
−ψ+ψ−〉 ∼ 〈ψ†+ψ

†
−〉〈ψ+ψ−〉,

requiring the introduction of a complex charged order
parameter ∆(x).
First convert the quartic fermion interaction to a bilin-

ear one, a little different from the analogous computation
in Eq. (272). Notice that the integral∫

D∆D∆?e−G∆∆?

= CG

where ∆,∆? are two independent bosonic fields, is the
G-dependent irrelevant constant CG. Shifting the fields
∆,∆? as

∆→ ∆−Gψ+ψ−, ∆? → ∆? −Gψ?−ψ?+, (311)
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and noticing that this leaves the measure invariant, we
get,

CGe
G
∫
d4xψ?+ψ

?
−ψ−ψ+

=
∫
D[∆,∆?]e

∫
d4x[−∆?∆

G +∆?ψ+ψ−+∆ψ?−ψ
?
+].

(312)

Inserting Eq. (312) into Eq. (310) yields

Z =
∫
D[ψ,ψ?]D[∆,∆?]eı

∫
d4xL[ψ,∆] (313)

with the Lagrangian density

L[ψ,∆] =
∑
i=±

ψ?i
(
ı∂t −

1
2m∇

2 − µ
)
ψi

+ ∆?ψ+ψ− + ∆ψ?−ψ?+ −
∆?∆
G

. (314)

From their coupling to the electrons, we infer that
∆(x),∆?(x) have spin zero and electric charge

Q∆ = −2, Q∆? = 2. (315)

From Eq. (309) it easily follows that our theory does
conserve the electric charge

∂tρ+∇ · j = 0 (316)

with ρ =
∑
σ ψ

?
σψσ, j =

∑
σ ψ

?
σ∇ψσ. This conservation

law also follows from symmetry arguments. The classical
Noether theorem tells us: To every continuous symme-
try there corresponds a conservation law. Although this
is true in classical physics it may fail in the quantum
domain. Yet in our case it is true. Our Lagrangian
density L[ψ,∆] Eq. (314) is invariant under the following
U(1) transformations

∆i → e2ıα∆i

∆?
i → e−2ıα∆?

i

ψi → eıαψi
ψ?i → e−ıαψ?i ,

(317)

the starred variables transforming as complex conjugates
of the un-starred ones.
To address the statistical-mechanical description of

superconductivity, perform the analytic continuation t =
−ıτ to obtain the finite temperature partition function
using Eq. (238)

Z(β) =
∫
D[ψ,ψ?]D[∆,∆?]e−S[β,ψ,∆] (318)

with the action

S[β, ψ,∆] =
∫ β

0
dτ

∫
d3xLE [ψ,∆], (319)

where

LE [ψ,∆] =
∑
i=±

ψ?i
(
∂τ + 1

2m∇
2 + µ

)
ψi

−∆?ψ+ψ− −∆ψ?−ψ?+ + ∆?∆
G

. (320)

Assemble the fermions into Nambu-spinors, as

Ψ̄ = (ψ?+, ψ−),Ψ =
( ψ+
ψ?−

)
. (321)

In terms Ψ̄,Ψ we get

S[β, ψ,∆] =
∫ β

0
dτ

∫
d3x

[
Ψ̄OΨ + ∆?∆

G

]
(322)

with

O(τ,x) =
(O+ ∆

∆? O−

)
, (323)

where

O+ = ∂τ +
(
∇2

2m + µ

)
O− = ∂τ −

(
∇2

2m + µ

)
.

With respect to O− notice that

ψ?−∂τψ− = ∂τ (ψ?−ψ−)− (∂τψ?−)ψ−
µψ?−ψ− = −µψ−ψ?−

ψ?−∇2ψ− = ∇(ψ?−∇ψ−)− (∇ψ?−)(∇ψ−)

= ∇(ψ?−∇ψ−) + (∇2ψ?−)ψ− −∇
(
∇ψ?−)ψ−

)
Although the ψ’s satisfy anti-periodic boundary condi-
tion, the ψψ?-terms satisfy periodic ones. Therefore the
total derivative terms cancel in the action and we get

ψ?−
(
∂τ + 1

2m∇
2 + µ

)
ψ−

= ψ−
{
∂τ − ( 1

2m∇
2 + µ)

}
ψ?− = O−.

Since S[β, ψ,∆] is quadratic in the fermion variables,
we integrate them out using Eq. (248) and include the
determinant in the exponent to get

Z[β] =
∫
D[∆,∆?]e−S[β,∆] (324)

with the action

S[β,∆] =
∫ β

0
dτ

∫
d3x
|∆|2
G
− ln detO[∆]. (325)

From here proceed as in the previous ferromagnetic
section, except for the different O[∆]. In the Fe-case the
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system had rotational symmetry in R3, whereas now we
have rotational symmetry in a two-dimensional complex
plane, as seen from Eqs. (317). We again factor out O[0],
which now involves σ3, as

O[0] = ∂τ +
(
∇2

2m + µ

)
σ3, (326)

to get

O[∆] = O[0] + σ ·∆ = O[0]
(
1 +O[0]−1σ ·∆

)
,

(327)

where for notational convenience we changed

∆→∆ = [Re∆,−Im∆, 0]. (328)

The propagator

DS = O[0]−1 =
[
∂τ +

(
∇2

2m + µ

)
σ3

]−1

(329)

has the momentum-space representation DS(k) =∫
d4xeı(ωτ+k·x)DS(x)

DS(k) = −ıω − εkσ3

ω2
k + ε2k

(330)

with εk = k2

2m − µ.
There is no closed form available for the generating

functional Z(β) Eq. (324). We therefore have to resort
to a perturbation analysis or some other approximation.
Before discussing these, we add the following comments

• ∆ = ρeıφ is complex and therefore not an observ-
able quantity.

• Using OQFT-parlance: since ∆ has charge two,
yet the Hamiltonian conserves charge, it follows
that ∆ does not commute with the Hamiltonian.
Therefore there does not exist a common set of
eigenvectors.

• If we select a particular value for ∆, we have also
have to choose a particular value for its phase: we
are spontaneously breaking charge conser-
vation. Yet any value for the phase will give
equivalent results! Due to the symmetry, the
action does not depend on the phase φ.

• In the ferromagnetic case we had to choose a par-
ticular value for the direction of the magnetization,
thereby breaking rotational symmetry. We are used
to a ferromagnet pointing in a particular direction,
blaming all kinds of small external fields for the
breaking. Yet in the present case, who is supplying
the charge, since charge conservation is broken?
We can argue as follows. SSB occurs only in the
thermodynamic limit M → ∞. Nature may be
very large, yet she is finite.47 In real life, we may
therefore approximate to any precision the SSB-
state by a superposition of charge-conserving states
and nobody will create charges from the vacuum!

47 For small enough samples one observes finite-size effects!

6.4. The BCS model for spontaneous symmetry
breaking

We will study the phase transition, using a saddle-
point approximation for Z(β). Thus we look for
extrema of the action S[β,∆], where the integrand
dominates the integral

∫
D[∆]. This selects the ∆(x)’s,

which satisfy
δS[β,∆]
δ∆(y) = 0. (331)

Here S[β,∆] is given by Eq. (325)

S[β,∆] =
∫ β

0
dτ

∫
d3x
|∆(x)|2
G

−Trx,σ lnO[∆]. (332)

The derivative of the first term as∫
d4y|∆(y)|2/G
∂∆(x) = 2∆?(x)/G.

To illustrate, how to compute the derivative of a term
like trx ln (1 +A[z]) with z = ∆(x), take an arbitrary
function f(A[z]), expand it in a Taylor series and take
the derivative dz ≡ d/dz term by term

dztr
(
f(A)

)
= dz

∞∑
n=0

f(0)(n)

n! tr(An)

=
∞∑
n=1

f (n)(0)
n! tr[dzAA . . .A

+AdzA . . .A+ · · · AA . . . dzA].

Now use the circular property of the trace get

dztr
(
f(A)

)
=
∞∑
n=1

f (n)(0)
(n− 1)! tr

{
An−1dzA

}
= tr

(
f ′(A)dzA

)
, (333)

where f ′(A)dzA is a matrix product with a sum/integral
over common indices!
Thus we obtain – with ∆(x) ≡ ∆x for notational

simplicity – for the functional derivative
δ

δ∆x
try
{

ln(A[∆y]
}

= try

{(
A[∆y]

)−1 ∂A[∆y]
∂∆x

}
.

(334)

This yields with the trace taken in x- and σ-space
δ

δ∆x
Tr
{

ln(O[∆y]
}

= δ

δ∆(x)Tr ln {[O[0] + ∆(y) · σ]}

= Tr

{(
O[0] + ∆(y) · σ

)−1
(

0 δ(4)(x− y)
0 0

)}
= Tr

{(
O[0] + ∆(x) · σ

)−1
(

0 1
0 0

)}
. (335)
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to get the gap-equation

2∆?(x)
G

= Tr

{(
O[0] + ∆(x) · σ

)−1
(

0 1
0 0

)}
.

(336)

We first seek solutions for constant ∆(x) = ∆̄. To
compute the trace in the rhs, we go to Fourier space and
use Eq. (330) for DS(k). The matrix O[∆̄] in the trace
to be inverted is block diagonal in momentum space, so
that the inversion replaces the 2 × 2 blocks by their
inverses. We have recalling Eq. (323)

Trxσ

{(
O[0] + ∆̄ · σ

)−1
(

0 1
0 0

)}
= Trkσ

{(
O[0] + ∆̄ · σ

)−1
(

0 1
0 0

)}

= Trkσ

{(
ıω − εk ∆̄

∆̄? ıω + εk

)−1(0 1
0 0

)}

= Trkσ

{(
ıω + εk −∆̄
−∆̄? ıω − εk

) ∣∣∣
21

−1
ω2 + ε2k + |∆̄|2

}

= trk
∆̄?

ω2 + ε2k + |∆̄|2
, (337)

where the indices i = 1, j = 2 label the matrix element in
the 2×2 matrix selecting −∆̄. The expression ξ2

k = ε2k+
|∆̄|2 is called the dispersion relation for the Bogoliubov
quasi-particles  [7], pg. 272.

Thus the mean-field gap equation is

2∆̄

G
= trk

∆̄

ω2 + ξ2
k

(338)

The ω-integral in the trk ≡
∫
dω
∫
d3k is actually a

fermionic Matsubara sum48. With ω → ωn = π(2n+1)
β

we get

trk →
1
β

∞∑
n=−∞

∫
d3k

(2π)3 .

If we want to describe the phase transition occurring
in some real material, we have to inject here some
information about its physical details. They are thus
non-universal inputs. To execute the

∫
d3k, recall that

the attractive phonon-mediated interaction responsible
for the BCS superconductivity, occurs only in a thin shell
of the order of the Debye frequency ωD � εF around the
Fermi surface –  [7], pg. 269. Therefore we have∫

d3k

(2π)3 ≡
∫
ν(ε)dε ∼ ν(εF )

∫ ωD

−ωD
dε, (339)

where ν(εF ) is the electron density of states at the Fermi
surface.

48 Remember that O[0] and therefore DS are fermionic operators!

The gap-equation in this saddle-point or mean field
approximation is

0 = ∆̄

{
− 1
G′

+ kBTν(εF )
∫ ωD

−ωD
dε

∞∑
n=−∞

(
1

ω2
n + ξ2

k

)}
(340)

with G′ = G/2 required to be positive and ξ2
k = ε2k +

|∆̄|2. The solution of this non-linear integral equation
yields the temperature dependence ∆̄(T ) of the order
parameter. Concerning the phase of ∆̄, we again have
now two possibilities

1. Either ∆̄ = 0, in which case the phase is irrelevant.
2. Or ∆̄ = ρeıφ 6= 0, in which case we have identical

physics for all values of the phase φ. The theory
only tells us that ∆̄ lies on a circle of radius
ρ 6= 0. In the jargon of the trade we say: the
selection of a particular phase φ spontaneously
breaks charge conservation! We choose the
phase of ∆̄ to be zero for convenience.

Choosing the solution with ∆̄ 6= 0, we have

1
G′

= kBTν(εF )
∫ ωD

−ωD
dε

∞∑
n=−∞

1
ω2
n + ε2 + |∆̄|2

Using

∞∑
k=−∞

1
x2 + (2k − 1)2 = π tanh(πx/2)

4x , (341)

yields with g = ν(εF )G′

1 = g

∫ ωD

0
dε

tanh
(√

ε2+|∆̄|2
2kBT

)
2
√
ε2 + |∆̄|2

. (342)

The superconducting phase is characterized by ∆̄ 6= 0
and it vanishes at the critical temperature Tc.
Setting ∆̄ = 0 in Eq. (342) we get an equation for the

critical temperature

1 = g

∫ ωD

0
dε

tanh( ε
2kBTc )

2ε . (343)

Since in many cases of interest ωD is large, we would like
to make our life easier setting ωD =∞. But the integral
in Eq. (343) would be divergent. In order to extract
the offending term, we integrate by part obtaining a
tame log-term and an exponentially convergent 1/ cosh2

term as∫ ωD

0
dx
thx

x
= lnωD tanhωD −

∫ ωD

0
dx

ln x
cosh2 x

.

(344)
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We approximate the second term, extending the integral
to ∞ to get for large ωD∫ ωD

0
dx

ln x
cosh2 x

∼=
∫ ∞

0
dx

ln x
cosh2 x

= − log(4B),

(345)

with B = eC/π. Further using tanh(ωD) ' tanh(∞) = 1
we obtain∫ ωD

0
dx
thx

x
∼= lnωD + ln(4B) ' ln(4ωDB). (346)

This yields

Tc ∼=
2eC
π

~ωDe−
1
g , (347)

with ~ reinstated to highlight the quantum effect. Notice
the non-analytic dependence on g. This equation for Tc
explicitly shows its non-universal characteristic.
To obtain the zero-temperature gap ∆̄(0) set T =) in

Eq. (342)

1 = g

∫ ωD

0

dε

2
√
ε2 + ∆̄2(0)

= 1
2 ln

ωD +
√
ω2
D + ∆̄2(0)

∆̄(0)
. (348)

or

∆̄(0)eg/2 = ωD +
√
ω2
D + ∆̄2(0). (349)

Comparing with Eq. (349) we get for large ωD

∆̄(0) ' kBTc
B

. (350)

We now extract the critical behavior of the order param-
eter straightforwardly and without approximations[21].
For this purpose we choose ∆̄ real and parametrize as49

∆̄(β) = a

(
β − βc
βc

)α
; β ∼ βc. (351)

This yields for the derivative ∂β∆2 ≡ ∂∆̄2

∂β as

lim
T→Tc

∂β∆2 =


0 α > 1/2
a2/βc α = 1/2
∞ α < 1/2

(352)

The non-linear integral equation Eq. (342) for the
order parameter has the solution ∆(β, ωD, g), depending
on three parameters. Substituting this solution into

49 Although the standard nomenclature for the order parameter’s
critical exponent is β, we use α to avoid confusion with β = 1/kBT .

Eq. (342) yields an identity. Differentiating this identity
with respect to β easily yields the following relation

∂β∆2(β, ωD, g) =

∫ ωD
0

dε

cosh2 βE
2∫ ωD

0
dε
E3

(
tanh βE

2 −
βE

2 cosh2 βE
2

)
(353)

with E =
√
ε2 + ∆̄2.

Taking the limit T → Tc,∆→ 0, we obtain

0 < a2 =
2(kBTc)2 tanh ωDβc

2∫ ωDβc
0

dx
x3

(
tanh x

2 −
x

2 cosh2 x
2

) <∞
(354)

implying α = 1/2, as is to be expected for a mean-field
theory. Notice that the above integrand is finite at x = 0.
As illustration we evaluate the integral for ωDβc = 10
to get

∆̄(T ) = 3.10 · kBTc
(

1− T

Tc

) 1
2
, T ∼ Tc. (355)

We therefore obtain the same universal critical expo-
nents as in the Fe-case as is expected for mean-field
models.

Also for the superconducting case, we can write
an effective action analogous to Eq. (295), which
includes lowest order spatial derivatives of ∆(x). Using
ln detO = Tr lnO, we expand the log in Eq. (325) as

Tr ln
(
1 +DS(x)∆ · σ

)
=
∞∑
n=1

1
n
Tr
{[
DS(x)∆ · σ

]n}
. (356)

Due to the tracelessness of σ - or just by symmetry -
all odd terms are forbidden. We therefore get including
only the even terms

Tr ln
(
1 +DS(x)∆ · σ

)
= 1

2

∞∑
n=1

1
n
Tr
{[
DS∆ · σDS∆ · σ

]n}
. (357)

Reintroducing the log, the action is

S[β,∆] =
∫ β

0
dτ

∫
d3x
|∆(x)|2
G

− 1
2Trx,σ ln

{
O[0]

×
[
1 +

(
DS∆ · σDS∆ · σ

)
(x)
]}
. (358)

Here we only compute the second order term in the log.
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Referring to Eq. (289), we tradem(k) for σ ·∆(k) to get

Trk,σ
[
DSσ ·∆DSσ ·∆

]
= trσ

∫
d4k

(2π)4

×
[∫

d4q

(2π)4σ ·∆
?(k)DS(q + k)σ ·∆(k)DS(q)

]
.

Here we have replaced σ ·∆(−k) by σ ·∆?(k) to expose
charge conservation. In Fig.(3) σ ·∆?(k) creates a
charge Q∆? = 2 at the left vertex, which is destroyed by
σ ·∆(k) at the right vertex.
Inserting the momentum-space propagator DS(q)

from Eq. (330) yields

DS(q)σ ·∆?(k)DS(q + k)σ ·∆(k)

=
∫

d4q

(2π)4

{
−ıωq − εqσ3

ω2
q + ε2q

σ

·∆?(k)−ıωq+k − εk+qσ3

ω2
q+k + ε2k+q

σ ·∆(k)
}
. (359)

To take the trσ, we choose axes such that Im∆ =
0 and only ∆1-terms survive.50 Using σ3σiσ3σj =
−1 for i = j = 1 we get[

DSσ ·∆?DSσ ·∆
]
(k)

= −
∫

d4q

(2π)4
∆?
i (k)∆j(q)

(ω2
q + ε2q)(ω2

q+k + ε2q+k)

×
(
δij(ωqωq+k + εqεq+k)

+ ı[σ3][ij](εqωq+k − ωqεq+k)
)
.

The trace over σ kills the σ3-term, resulting in

Trk,σ
[
DSσ ·∆DSσ ·∆

]
= −

∫
d4k

(2π)4 ∆?
i (k) Π(2)

ij (k) ∆j(k) (360)

with the polarization tensor up to second order

Π(2)
ij (k) = δij

∫
d4q

(2π)4
ωqωq−k + εqεq−k

(ω2
q + ε2q)(ω2

q−k + ε2q−k) . (361)

Expanding Π(2)(k) to second order in k, we get the
quadratic terms |∆|2, |∇∆|2 in a Ginzburg-Landau
action for ∆, analogous to Eq. (295). We complete the
Ginzburg-Landau action adding the zero-momentum
fourth order term |∆|4.

50 At any time we may invoke rotational symmetry to restore
general axes.

Comment 2

Here we are dealing with equilibrium statis-
tical mechanics, so that we have no time-
dependence. Therefore the absence of time-
dependence is not a shortcoming of the
saddle point, as is sometimes implied in the
literature. For example the classical saddle
point in Eq. (149) obviously does not exclude
time-dependent dynamics.
The gap equation Eq. (336) selects one
particular trajectory, meaning we aban-
don doing the path integral. Since in our
approach quantisation is effected by path
integrals, the gap equation is always a clas-
sical statement and we neglect quantum
effects associated with the path-integral over
∆. Quantum effects associated with ψ were
treated exactly.
So you may ask yourself how we got a
quantum result with ~ showing up explicitly
in e.g. the critical temperature Eq. (347)?
Recall, that an enormous amount of physics
was smuggled in, when we were required to
do the integral in Eq. (347) over d3k. Stuff
like the Fermi surface, Debye frequencies etc.
All of these are quantum effects.
Why in contrast to this in our modeling
ferromagnetism Eqs. (296) no quantum ves-
tige shows up? The quantum effects there
are hidden in the non-universal quantities
c1, c2, c4.

Exercise 6.4
Expand Π(2)(k) to second order in ∇k. Extract the ∆4-
term in the ln to obtain the Ginzburg-Landau action.
Exercise 6.5 (The Meissner effect)
We use the Ginzburg-Landau model for the doubly
charged field ∆(x), renamed ϕ to unclutter notation, of
the previous exercise to study how an applied magnetic
field penetrates the superconducting region.
As we are dealing with equilibrium statistical mechan-

ics, there is no time-coordinate. Thus we take as our
effective superconducting Euclidean Lagrangian for the
doubly charged field ϕ

LGL = 1
2M |ı∇ϕ|

2 + V (ϕ),

V (ϕ) = −1
2a(T )|ϕ|2 + 1

4b(T )|ϕ|4, (362)

where M = 2m. The coefficients a, b are non-universal,
but obey

a(T ) = a′(Tc − T ), a′ > 0, b(T ) > 0.

LGL is invariant under the U(1)-symmetry

ϕ(x)→ ϕ(x)eıqθ, θ = constant. (363)
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The standard way to couple an electromagnetic field
to charged matter, e.g. the charged field of sect. 3.4,
is the minimal coupling. This replaces the ordinary
derivative51 ∂µ by the covariant derivative

∂µ → Dµ = ∂µ + ıqAµ, (364)

where q is the charge of the matter field. Here we only
use the spatial part ∇ → ∇+ ıqA.
Show that under the gauge transformation

Aα(x)→ Aα(x)− ∂αη(x), ϕ(x)→ ϕ(x)eıqη(x)

(365)

Dµϕ transforms as ϕ(x) and therefore the combination
|Dµϕ|2 is invariant. This extends the symmetry of
Eq. (130) to the local gauge symmetry as required by the
electromagnetic Maxwell Lagrangian L = − 1

4FµνF
µν =

1
2 (E2−B2) with Fµν = ∂µAν − ∂νAµ and its Euclidean
version LE = 1

2 (E2 +B2).
Under minimal coupling our Euclidean Lagrangian

Eq. (362) becomes

Ls = 1
2M |(ı∇− qA)ϕ|2 + V (ϕ) + 1

2(∇×A)2,

(366)

where M = 2m, q = 2e and B = ∇×A and we added a
magnetic, but not an electric term.
We now make two comments.

Comment 3

Whatever transformation or field expansions
we perform, the gauge invariance Eq. (365)
will always hold. Otherwise we would not
even be able to compute the gauge-invariant
magnetic field as B = ∇×A. A gauge trans-
formation just changes the way we describe
the system, leaving the physics invariant.

Comment 4

We will use our gauge freedom to choose
particular gauges for our convenience. Recall
that choosing the Coulomb gauge ∇ ·A = 0,
instead of the relativistically invariant gauge
∂µA

µ = 0, is convenient, because the field
A will be transversal in this gauge. Yet this
does not mean that we are obliged to break
relativistic invariance.
Only gauge-invariant quantities are observ-
ables. Statements involving gauge dependent
fields likeA, ϕ, may be true in one gauge, but
not in another: they are gauge dependent and
may therefore be misleading.

51 We are using units c = ~ = 1.

Show that the equation of motion for A is

∇2A−∇(∇ ·A) = −∇×B = −j (367)

with the gauge invariant current

j = ıq

2 (ϕ?∇ϕ− ϕ∇ϕ?)− q2

M
|ϕ|2A. (368)

For T > Tc the potential V (ϕ) has a minimum at |ϕ| =
0, but for T < Tc the minimum is at

|ϕ|2 = a/b = ns,

where ns is the density of the superconducting carriers.
This minimum condition leaves the phase θ(x) of the
complex field ϕ(x) = ρ(x)eıθ(x) undetermined.
To simplify our life, we choose the particular gauge

in which ϕ(x) is real, i.e. we set θ(x) = 0. Choosing
this phase for ϕ(x), we have spontaneously broken the
U(1)-symmetry Eq. (363), although this is a gauge-
dependent statement. For T < Tc we expand around
the minimum as

ϕ(x) = √ns + χ(x), χ=real. (369)

The Lagrangian now becomes

Ls = 1
2M

[
(∇χ)2 + q2(√ns + χ

)2
A2
]

− V
(√
ns + χ

)
+ 1

2(∇×A)2

= 1
2M (∇χ)2 + a(T )χ2 + m2

2 A2 + 1
2(∇×A)2

+ q2

2M
(
2√nsχ+ χ2)A2 + (higher order χ terms)

(370)

with m2 = q2a
Mb = q2ns

M .
Taking the rotational of Eq. (367) yields, upon

neglecting fluctuations of the field χ

∇2B = m2B. (371)

Consider a superconducting material confined to the
half-space z > 0 with a magnetic field applied parallel to
the bounding surface, e.g. B = Bx̂. Show that inside the
superconducting medium, the magnetic field decreases
exponentially with magnetic length

ξB = 1
m2 =

√
bM

aq2 =

√
bM

a′q2 (Tc − T )−1/2. (372)

The χ-dependent quadratic part of Ls shows, that the
coherence length of the order parameter field χ is

ξχ = [2Ma′(Tc − T )]−1/2. (373)

Show that the equation of motion for ϕ is
1

2M (ı∇− qA)2ϕ− a(T )ϕ+ b(T )|ϕ|2ϕ = 0. (374)
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Using this equation show that

∇ · j = −q
2|ϕ|2

M
∇ ·A. (375)

In our gauge Eq. (368) becomes London’s equation

j = − q
2

M
(√ns + χ)2A. (376)

To check what happens, if we keep the θ-field, let us
neglect fluctuations in ρ and set ρ = √ns

ϕ(x) = √nseıθ(x). (377)

The Lagrangian then becomes, up to a constant

Ls = ns
2M (∇θ − qA)2 + 1

2(∇×A)2. (378)

We define a new gauge-invariant field Ã as

qÃ = qA−∇θ (379)

to get

Ls = m2

2 Ã2 + 1
2(∇× Ã)2. (380)

The θ-field has disappeared into the massive Ã-field and
there is no trace left of gauge transformations.
Exercise 6.6
Obtain the Lagrangian analogous to Eq. (378), keeping
a fluctuating ρ-field.
Exercise 6.7 (Resistance conduction)
The designation superconductor calls to mind the
absence of resistance to current flow. Current flow, unless
stationary, is a time-dependent phenomenon, outside of
equilibrium statistical mechanics. Yet, let us suppose
Eq. (368) to be true for slowly varying time-dependent
phenomena. Consider the situation, when the order
parameter is ϕ is constant – ∇ϕ = 0 – and take the
time-derivative of Eq. (368)

dj

dt
= −q

2ns
M

dA

dt
. (381)

Since we have not included the scalar potential A0 in
our formulation, we are obliged to use a gauge in which
A0 = 0 yielding E = −∂tA. Hence we get

dj

dt
= q2ns

M
E. (382)

Check that from Newton’s equation F = qE = M ∂v
∂t

and J = qnsv, we get exactly Eq. (382): current
flows without resistance! Resistive flow would modify
Newton’s equation as

M
∂v

∂t
= −M/τv +E, (383)

where τ is a time constant characterizing the friction.

Comment 5

Suppose we include a τ dependence in our
GL model Eq. (366), adding the terms52

1
2M |(∂τ − qA0)ϕ|2, 1

4F0iF
0i,

which are dictated by gauge-invariance. One
then argues that this leads to the appearance
of an electric field through E = −ı∂τA and
taking the τ -derivative of Eq. (368) one gets

−ı∂τJ = q2ns
M

E.

Then, appealing to analytic continuation,
use −ı∂τ = ∂t to recover Eq. (382).
But notice, that we started from a the-
ory indexed by [t, x, y, z] and analytically
continued to [τ, x, y, z], having traded time
for temperature: we cannot have both! In
fact, if we now continue back reinstating a
time variable, we would describe a theory,
where our potential V (ϕ) would have time-
dependent coefficients a, b. This is not what
you want!
You may see many papers in the literature
about GL models including time depen-
dence, quantising them etc. Nothing wrong
with this, but this is not supported by
our microscopic model (which actually may
not mean that much, given that our model
is extremely simple, probably as simple as
possible with a lot of physics injected by
hand).

Exercise 6.8 (The Higgs Mechanism)
The Higgs mechanism is the relativistic analog of the
Meissner effect of the previous exercises. To illustrate
it, we will use our singly charged complex scalar field ϕ
with Lagrangian

LM = 1
2(∂αϕ)∗(∂αϕ)− V (ϕ) (384)

where V (ϕ) = − 1
2µ

2ϕ∗ϕ + 1
4λ(ϕ∗ϕ)2, λ > 0. LM is

invariant under the U(1) symmetry given by Eq. (130),
namely

ϕ→ ϕeıη (385)

with constant η. Minimally coupling ϕ to an electromag-
netic field with the substitution

∂α → Dα = ∂α + ıqAα, (386)

52 Notice that these time-dependent terms are unrelated the non-
commutativity of q and p. In fact in Eq. (211) we chose ∆t small
enough, in order to be able to ignore this effect.
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we get

L = −1
4FαβF

αβ + 1
2(Dαϕ)∗(Dαϕ)− V (ϕ).

(387)

L is now invariant under the gauge transformation (365).
For µ2 < 0 the potential V (ϕ) has a minimum at

ϕ = 0, but for µ2 > 0 the minimum is at the constant
non-zero value

|ϕ|2 = µ2

λ
≡ v2. (388)

We therefore expand the field ϕ(x) around this mini-
mum as

ϕ(x) = eıχ(x)/v (v + σ(x)) = v + σ + ıχ(x) + · · · .
(389)

The field χ(x) is called Nambu-Goldstone and σ(x) the
Higgs boson. Obviously we explicitly maintain gauge
invariance.
Show that the Lagrangian becomes

L = −1
4 F̃αβF̃

αβ

+ ∂ασ∂
ασ + (v + σ)2(qAα + ∂αχ/v)2 − V (v + σ).

(390)

As before we introduce the gauge-invariant field Ãα as

qÃα = qAα −
1
v
∂αχ. (391)

This absorbs the Nambu-Goldstone boson into the
Ãα-field and the Lagrangian becomes

L = −1
4 F̃αβF̃

αβ + m2
A

2 ÃαÃ
α

+ 1
2∂ασ∂

ασ − 1
2m

2
σσ

2

+ 1
2e

2σ(2v + σ)ÃαÃα − λvσ3/16− λσ4/4,

(392)

with the vector and boson field’s masses

m2
A = (ev)2 = e2µ2/λ,

m2
σ = µ2 + 3λv2/4 = 7µ2/4. (393)

The Nambu-Goldstone boson has disappeared from the
Lagrangian and we are left with a massive vector field
and no gauge freedom.
Exercise 6.9
Repeat the previous exercise using the gauge in which ϕ
is real.
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