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Communicating vessels: a non-linear dynamical system
Vasos comunicantes: um sistema dinâmico não linear
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The dynamics of an ideal fluid contained in two communicating vessels is studied. Despite the fact
that the static properties of this system have been known since antiquity, the knowledge of the dynamical
properties of an ideal fluid flowing in two communicating vessels is not similarly widespread. By means
of Bernoulli’s equation for non-stationary fluid flow, we study the oscillatory motion of the fluid when
dissipation can be neglected.
Palavras-chave: Bernoulli’s equation, non-stationary fluid, fluid dynamics

Estuda-se a dinâmica de um fluido ideal contido dentro de dois vasos comunicantes. Embora as
propriedades estáticas desse sistema sejam conhecidas desde a Antiguidade, são bem menos conhecidas
as propriedades dinâmicas do fluxo de dois fluidos ideais contidos vasos comunicantes. Utilizando a
equação de Bernoulli para um fluxo não estacionário, nós estudamos o movimento oscilatório do fluido
na ausência de dissipação.
Keywords: equação de Bernoulli, fluxo não estacionário, mecânica dos fluidos.

1. Introduction

The topic of communicating vessels is often adop-
ted as a common example in physics teaching [1].
The static property of this system is also used in
other subject areas as, for example, sociology and
economics [2] and in metaphoric expressions. In fact,
it is a widespread common knowledge that a fluid
in adjacent containers reaches the same height, me-
asured with respect to a common reference point,
independently of the shape of the vessels. However,
reference to the dynamical properties of these types
of physical systems in physics teaching books is ra-
rely found. One of this rare examples can be found
in ref. [3], where it is reported that the height of an
ideal fluid contained in a U-shaped tube is seen to
oscillate harmonically with a frequency ω given by:

ω =
√

2g
L
, (1)

L being the total length of the fluid in the tube.
Therefore, although the dynamics of these systems
∗Endereço de correspondência: rdeluca@unisa.it.

have been studied in quantum mechanical and clas-
sical contexts [4-6], it is still not much studied at
elementary levels. In particular, we would like to
mention a specific technological application of this
system in structural engineering [6]. In this speci-
fic field, U-tube-like containers, called tuned-liquid
column dampers, are used to mitigate earth-quake
induced vibrations in tall buildings.

In the present work we thus consider the dyna-
mics of two communicating vessels of unequal cross-
sectional areas, say S1 and S2, as those shown in
Fig.1 . Therefore, the mechanical properties of the
system shown in Fig. 1 are analyzed by means of
Bernoulli’s equation for non-stationary states. We
write the nonlinear differential equations governing
the motion of the system and point out that the
result in equation (1) can be obtained by taking two
equal sections; i.e., by writing S1 = S2. In this case
a harmonic solution is obtained. We also notice, by
a phase plane numerical analysis, that the solutions
for the heights y1 and y2 is still periodic in the most
general case S1 6= S2. In this general dynamical
system the fixed point is identified with the static
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Figura 1: Communicating vessels containing an ideal fluid
out of equilibrium. The first vessel has cross-sectional area
S1 and the fluid column reaches an height y1. The second
vessel has cross-sectional area S2 and the fluid in it is at an
height y2. The connection channel is positioned at the base
of the two vessels and is supposed to be sufficiently small.

equilibrium solution; i.e., the common height ye of
the two fluids. Further generalizations are proposed
as, for example, the possibility of allowing leakage
from the system.

2. Preliminary dynamical notions

We start by writing the continuity equation for the
fluid [5]:

S1ẏ1 + σ12= 0, (2a)

S2ẏ2 − σ12= 0, (2b)

where σ12 is the flux flow rate in the connecting
channel, as shown in Fig. 1. Summing the above
equations, we have:

S1ẏ1 + S2ẏ2= 0. (3)

In equation (3) the static solution is implicitly de-
fined. In fact, by integrating with respect to time,
we get:

S1y
(0)
1 + S2y

(0)
2 = λ (S1 + S2) , (4)

where λ is the equilibrium height.
In order to tackle the dynamical problem, we

need to specify the type of fluid we are dealing
with. In what follows we shall thus assume that the
fluid is ideal and that Bernoulli’s equation, written
for the non-stationary regime of the fluid, holds. A
derivation of this equation can be found in ref. [7].
Naturally, different behaviour is expected when the
fluid is not ideal. We therefore write, for two points
in the fluids, one at an height y1, corresponding

to the free liquid surface in the left container, the
second at y0, corresponding to point O in Fig. 1:∫ y1

y0

∂v

∂t
dy+ 1

2v
2
1 + p1

ρ
+ gy1 = 1

2v
2
0 + p0

ρ
+ gy0, (5)

Setting p1 = pa and v1 ≈ v0 in equation (5), we
have:

pa − p0
ρ

= −y1ÿ1 − gy1, (6)

where we have assumed that the velocity profile does
not appreciably vary with the height y and where
the dot stands for “derivative with respect to time”.
Similarly, for the second vessel, by considering one
point corresponding to the free liquid surface and
the other at y0′ , we may set:

pa − p0′

ρ
= −y2ÿ2 − gy2. (7)

In this second case, we have considered p2 = pa and
v2 ≈ v0′ . By now combining equations (6) and (7),
we obtain:

p0 − p0′

ρ
= y1ÿ1 − y2ÿ2 + g (y1 − y2) . (8)

Because of equation (3), we have ÿ2 = − (S1/S2) ÿ1 =
−γÿ1, with the obvious definition of the parameter
γ. On the same token, by equation (4), we may also
set

γy1+y2 = k = λ (1 + γ) =⇒ y2 = −γy1+λ (1 + γ) .
(9)

Therefore, equation (8) can be written only in terms
of the variable y1 as follows:

p0 − p0′

ρ
= (1 + γ) [(1− γ) y1 + λγ] ÿ1

+ g (1 + γ) [y1 − λ] . (10)

If we now go in horizontal from point O to point O′,
assuming the connection channel to be sufficiently
small, equation (5) gives:

1
2v

2
0 + p0

ρ
= 1

2v
2
0′ +

p0′

ρ
, (11)

so that, because v1 ≈ v0 and v2 ≈ v0′ , we may
rewrite equation (11) as follows:

p0 − p0′

ρ
= 1

2
(
ẏ2

2 − ẏ2
1

)
= 1

2
(
γ2 − 1

)
ẏ2

1. (12)

Finally, by combining equation (10) and equation
(12), we have:

[(1− γ) y1 + λγ] ÿ1 + 1− γ
2 ẏ2

1 + g [y1 − λ] = 0.
(13)
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By now making the change variable y = y1 − λ, we
may rewrite equation (13) as follows:

(1− γ) y + λ

g
ÿ + (1− γ)

2g ẏ2 + y = 0. (14)

For γ = 1 we find the already known result [3]:

ÿ + g

λ
y = 0. (15)

In this way, for γ = 1, the liquid is seen to oscillate
with a period T = 2π

√
λ
g . A trivial solution y2 = λ

can be found for γ = 0. For 0 < γ < 1, on the other
hand, we can proceed in normalizing the variable y
and t as follows:

ξ = y

λ
, (16a)

τ =
√
g

λ
t. (16b)

In this way, we obtain the following non-linear second-
order ordinary differential equation:

[εξ + 1] ξ′′ + 1
2εξ

′2 + ξ = 0, (17)

where ε = 1−γ = 1−S1/S2, and the prime stands for
“derivative with respect to τ”. The above equation
can be cast in the form of two first-order differential
equations as follows:

ξ
′ = v, (18a)

v
′ = −ξ + εv2/2

εξ + 1 . (18b)

Equations (18a) and (18b), under the condition
0 ≤ ε < 1, are sufficient to describe the dynamics
of the system. Notice that, for ε = 0, the harmonic
oscillator equation is obtained from (18a) and (18b).

3. Analysis of the dynamical system

By considering equation (18a) and (18b) we can
start by describing the dynamical propertied of the
system by means of a phase-plane analysis. In fact,
by noticing that equation (15) gives a periodic so-
lution of the problem, we expect that, at least for
small values of the quantity ε = 1− γ, the solution
ξ = ξ (τ) of equation (17) to be periodic with an
attraction point corresponding to (ξ, v) = (0, 0). In
order to detect this property, let us consider the
phase-plane representation of the coupled first-order

ordinary differential equations (18a) and (18b). By
considering the initial conditions

ξ(0) = y1(0)− λ
λ

= ξ0, v(0) = 0, (19)

we preliminary notice that the value of ξ0 must fall
within the interval [−1, 1]. In fact, the dimensionless
quantity ξ represents the normalized deviation from
the equilibrium position of the height of the liquid
in the first column. In this way, we take the fluid to
be initially at rest and completely contained in the
right vessel or in the left vessel for ξ0 = −1.0 and
ξ0 = +1.0, respectively. As shown in Fig. 2a and 2b,
obtained by means of the software Mathematica, the
system shows periodical solutions, since the curves
are closed. In Fig. 2a we report solutions for ξ0 =
+1.0 and for different values of γ, corresponding
to different colours. In Fig. 2b, on the other hand,
solutions for ξ0 = 0.75 are shown for the same values
of γ as in Fig. 2a. The black dashed line represents,
in both Figs 2a and 2b, the harmonic solution to
equation (15). We notice that, for decreasing values
of ξ0, the v vs. ξ curves tend to collapse on the
harmonic solution.

Another useful hint on the periodicity of the solu-
tions of equation (17) can be given by perturbation
analysis. In fact, by writing

ξ (τ) ≈ ξ(0) (τ) + εξ(1) (τ) , (20)

where ξ0 (τ) and ξ1 (τ) are functions to be found,
we may rewrite equation (17) as follows:

[
εξ(0) + 1

] (
ξ(0)

′′

+ εξ(1)
′′)

+1
2εξ

(0)
′ 2 + ξ(0) + εξ(1) = 0, (21)

where second and higher order terms in ε have been
neglected. By carrying out further algebra and by
still retaining only first-order terms in ε, we write:

ξ(0)
′′

+ ξ(0) + ε

(
ξ(1)

′′

+ ξ(1)

+ξ(0)ξ(0)
′′

+ 1
2ξ

(0)
′ 2)

= 0. (22)

Therefore, the above equation splits into two diffe-
rent parts, one for the unperturbed solution ξ0 only,
one for the perturbed term ξ1, so that, we have:

ξ(0)
′′

+ ξ(0) = 0, (23a)
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Figura 2: Phase-plane representation of the solution of the problem of communicating vessels. The initial conditions are
the following: a) ξ0=1.0, v=0; b) ξ0=0.75, v=0. The colours magenta, red, orange, green cyan correspond to the following
values of γ : 0.15, 0.25, 0.40, 0.55, 0.70. The dashed black circle corresponds to the solution for γ =1. Periodicity of the
solution can be argued by the closing of all curves.

ξ(1)
′′

+ ξ(1) = −
(
ξ(0)ξ(0)

′′

+ 1
2ξ

(0)
′ 2)

. (23b)

Notice that the differential equation (23a) describes
free harmonic oscillations, whose solution is

ξ(0) (τ) = A sin (τ + φ) , (24)

where the constants A and φ are to be determined
by means of the initial conditions (19) applied to
the solution ξ (τ). However, notion of the solution
to equation (23a) is necessary to solve equation
(23b). In this way, by substituting equation (24)
into equation (23b) we obtain a differential equa-
tion describing the motion of a forced harmonic
oscillator:

ξ(1)
′′

+ ξ(1) = A2

4 [1− 3 cos (2τ + 2φ)] . (25)

where a higher harmonic term appears. A general
solution to equation (25) can be found by writing
it as the sum of the homogeneous and particular
solutions as follows:

ξ(1) (τ) = B sin (τ + ψ) + A2

4 [1 + cos (2τ + 2φ)] .
(26)

In this way, the approximate solution ξ (τ) is, accor-
ding to equation (20), the following:

ξ (τ) = A sin (τ + φ) + εB sin (τ + ψ)

+ ε
A2

4 [1 + cos (2τ + 2φ)] . (27)

where A, B, φ, and ψ need to be evaluated according
to (19), so that:

ξ0 = A sinφ+ εB sinψ + ε
A2

4 [1 + cos 2φ] ; (28a)

0 = A cosφ+ εB cosψ + ε
A2

2 sin 2φ. (28b)

We thus find the following solution by separating
the zero-order and the first-order terms:

A = ξ0; B = 0; φ = π

2 ;ψ = 0. (29)

Finally, we write equation (27) as follows:

ξ (τ) = ξ0 cos τ + ε
ξ2

0
4 [1− cos 2τ ] . (30)

By taking the derivative with respect to τ , we can
also write:

v (τ) = −ξ0 sin τ + ε
ξ2

0
2 sin 2τ . (31)

We can thus rewrite these solutions in terms of the
original variable y1:

y1 (t) = λ

{
1 + ξ0 cos

(√
g

λ
t

)
+ ε

ξ2
0
4

[
1− cos

(
2
√
g

λ
t

)]}
. (32)
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By taking the derivative with respect to t, we can
also write:

ẏ1 (t) = −λξ0

√
g

λ
sin
(√

g

λ
t

)[
1− εξ0 cos

(√
g

λ
t

)]
.

(33)
The constant ξ0 is defined in equation (19) and the
quantities y2 and ẏ2 can be known by means of
equation (9).

The above solutions are periodic. In fact, we can
now prove that the maximum deviation from a cir-
cular path in the phase plane of the functions ξ and
v is a first-order term in ε. By considering equation
(30) and (31) we can see that

ξ2 + v2 = ξ2
0 − εξ3

0 cos τ sin2 τ. (34)

Let us now consider the radial distance ∆r from the
circumference ξ2 + v2 = ξ2

0 in the phase plane and
the curve in (34):

∆r = ξ0

∣∣∣∣1−√1− εξ0 cos τ sin2 τ

∣∣∣∣ . (35)

To first order in ε, we can write:

∆r ≈ εξ
2
0
2 |cos τ | sin2 τ. (36)

The maximum value of ∆r can be found by maxi-
mizing the time dependent term in (36), obtaining:

∆r = ε
ξ2

0
3
√

3
. (37)

Therefore, the effects due to non-linearity of the
ordinary differential equation (17) are rather weak
when very small values of ε are considered. A com-
parison between the numerical solutions of equation
(18a) and (18b) and the analytical solutions (30)
and (31) obtained by means of the above pertur-
bation approach for ε =0.1 and ε =0.2 is shown in
Fig 3a and 3b. The latter figures, as for Fig. 2a and
2b, have been obtained by means of the software
Mathematica.

4. Conclusions

The celebrated system of communicating vessels,
which also finds applications in other subjects than
physics, has been seen to possess interesting dy-
namical properties. In the present work we have
considered two cylindrical vessels containing a non-
viscous fluid. The two cylinders are connected by

Figura 3: Phase-plane representation of the numerical
(dashed) and approximated (full line) solution. The lat-
ter solution has been obtained by means of a perturbation
analysis to first order in the parameter ε. The following
values of ε = 1 − γ have been chosen: ε=0.10 (a) and
ε=0.20 (b).

a small horizontal channel placed at their base. In
the symmetric case, in which the two containers
are perfectly identical, the system behaves like a
harmonic oscillator, whose angular frequency ω0 is
given by the following simple relation:

ω0 =
√
g

λ
, (38)

where λ is the height, measured with respect to the
bottom of the vessels, up to which the free surface of
the liquid rises at equilibrium. Surprisingly, when we
consider the asymmetric case, harmonic oscillations
recede because of non-linear effects. The resulting
non-linear differential equation preserves periodicity,
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as both a phase-plane analysis and a perturbation
approach suggest.

As for the didactical value of the present work, we
may affirm that the present study could be useful to
students approaching the topic of nonlinear dynami-
cal systems for the first time. In fact, the non-linear
effects in the dynamical properties of the system can
be seen either by means of a phase-plane analysis or
by a perturbation approach. Both methods confirm
periodic behavior of the system in the presence of
non-linearity. Moreover, as a starting point students
can rely on the harmonic oscillator mechanical equi-
valent system when the parameter ε = 1 − S1/S2,
defining the degree of asymmetry between the secti-
ons S1 and S2 of the two cylindrical vessels, is zero.
Nonlinear effects can be seen to gradually arise as ε
increases. Finally, students may notice that, while
analytic solution of the problem is possible by me-
ans of a perturbation approach for small values of
the parameter ε, numerical analysis is necessary for
value of ε approaching one.
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