ABSORÇÃO E REDISTRIBUIÇÃO DE NITROGÊNIO (15N) EM Citrus mitis Bl1

WILLIAM NATALE² e JEAN MARCHAL³

RESUMO - Com a avaliação da eficiência de uso do nitrogênio, tem-se melhor entendimento dos aspectos nutricionais e respostas à adubação. O presente ensaio teve por objetivo estudar a absorção e redistribuição de nitrogênio (15N) em *Citrus mitis* Bl.. As fontes de fertilizante utilizadas foram: sulfato de amônio, uréia, nitrato de cálcio e nitrato de potássio. O delineamento experimental utilizado foi inteiramente casualizado, com 4 tratamentos e 3 repetições. Foram realizadas duas amostragens, aos 10 e 20 dias após a aplicação do adubo marcado, a fim de determinar os teores de N nas diferentes partes da planta. Através dos resultados, verificou-se que não houve efeito dos tratamentos sobre o peso de matéria seca e conteúdo de N nas plantas. A eficiência de absorção de N variou com a natureza do fertilizante nitrogenado e com a época de amostragem, ao passo que a redistribuição do N não foi afetada. A eficiência máxima de absorção do N variou de 14% (uréia) e 31% (sulfato de amônio), respectivamente, aos 10 e 20 dias após a aplicação do ¹⁵N.

Termos para indexação: Citros, fruto, adubação N, isótopo de nitrogênio, traçadores.

ABSORPTION AND DISTRIBUTION OF NITROGEN (15N) IN Citrus mitis Bl

ABSTRACT - The absorption of nitrogen fertiliser labelled with ¹⁵N was studied in *Citrus mitis* Bl. The sources of N fertiliser used were ammonium sulfate, urea, calcium nitrate and potassium nitrate. All of them were applied in soil. A completely randomised design was utilised. The distribution of N in the different parts of the plants was determined after 10 and 20 days. There were no difference among treatments on plant dry matter weight and N content. The highest recovery of labelled N after 10 days was obtained with urea (14%). In the second sampling (20 days), the highest recovery was accomplished with ammonium sulfate (31%).

Index terms: Citrus, fruit, N fertilization, nitrogen isotope, ¹⁵N.

INTRODUÇÃO

As plantas frutíferas são altamente responsivas à adição de fertilizantes. O aspecto nutricional é particularmente importante para os frutos, visto a influência que os elementos exercem sobre sua qualidade. Em muitos casos, a adubação e, conseqüentemente, o estado nutricional das culturas podem afetar não apenas a produtividade, mas o tamanho e o peso do fruto, a qualidade, a conservação pós-colheita, a resistência a pragas e doenças, etc..

Apesar de a citricultura ser uma importante atividade econômica, com expressiva contribuição para as divisas do Brasil, muitos aspectos relativos à nutrição e adubação dos citros necessitam de pesquisas, de acordo com Malavolta *et al.* (1996). Ainda segundo os mesmos autores, a produtividade dos pomares citrícolas é baixa, como resultado da falta de informações básicas sobre esse assunto.

A agricultura, baseada em altas produtividades, pressupõe elevadas aplicações de insumos, a fim de suprir a demanda nutricional das plantas. O nitrogênio é, normalmente, o nutriente mineral mais abundante no tecido vegetal, refletindo a alta exigência em N das culturas. Entretanto, segundo Mortvedt *et al.* (1999), a eficiência no aproveitamento do fertilizante nitrogenado adicionado ao solo, em particular nas regiões tropicais, está em torno de 50-70%, fazendo com que parte do investimento em adubação não tenha o retorno esperado.

O nitrogênio desempenha papel essencial no desenvolvimento dos citros, influindo no crescimento, na floração, na produção e na qualidade dos frutos, conforme ampla revisão feita por Lovatt *et al.* (1992). O nitrogênio é, depois do cálcio, o elemento mais extraído pela parte vegetativa da laranjeira (Marchal & Lacoeuilhe, 1969). Entretanto, a exportação de nutrientes pelos frutos sofre modificações, com o nitrogênio sendo o elemento mais exportado, depois do potássio.

Desse modo, seja pelo papel que o nitrogênio desempenha quando aplicado às plantas frutíferas, pela dinâmica do elemento no solo, seja pelo alto custo de produção desses fertilizantes, o N é um nutriente que merece máxima atenção. Entretanto, de acordo com Syvertsen & Smith (1996), estudos sobre a eficiência da adubação nitrogenada em pomares citrícolas são escassos na literatura. Assim, acompanhar a movimentação do nutriente nos diferentes compartimentos do sistema em estudo é de grande importância e isto pode ser realizado através do método de traçadores, que emprega isótopos como o 15N.

Existem poucos trabalhos na literatura empregando o isótopo estável de nitrogênio (15N) em frutíferas. Legaz *et al.* (1982) estudaram a absorção e distribuição do nitrogênio, a partir de adubo marcado, em *Citrus*. Verificaram que 26% do nutriente se acumulava nos órgãos mais velhos (folhas e ramos), 35% nos órgãos mais novos e o restante nas raízes.

Legaz & Primo-Millo (1984), utilizando ¹⁵N em laranjeiras Valência com 4 anos de idade, observaram que as maiores

^{1 (}Trabalho 058/2001). Recebido: 02/03/2001. Aceito para publicação: 04/10/2001.

² Professor Adjunto, Departamento de Solos e Adubos, FCAV/UNESP, campus de Jaboticabal, 14870-000 Jaboticabal-SP. E-mail: natale@fcav.unesp.br Bolsista da FAPESP

³ Pesquisador, CIRAD/FLHOR, Montpellier-França

quantidades de N foram determinadas nas folhas, seguida das raízes e tronco.

Feigenbaum *et al.* (1987) relataram, após 8 meses da aplicação do ¹⁵N ao solo, uma recuperação média de 48% do adubo marcado, sendo 11% nos frutos, 15% nas folhas, 14% no tronco e 8% nas raízes de laranjeira Shamouti, cultivada em condições de campo.

A avaliação da eficiência de uso do nutriente aplicado via fertilizante na matéria seca contribui para um melhor entendimento dos aspectos nutricionais e das respostas à adubação. Como consequência do uso racional de fertilizantes, há melhoria da relação custo/benefício através do incremento na produtividade.

Outro aspecto de interesse é que, devido à dinâmica do N na natureza, as perdas são normalmente elevadas, com consequente contaminação do ambiente. Há relatos na literatura indicando diferenças na cinética de absorção de N sob diferentes formas de adubo. Estudos desse tipo podem mostrar que uma dada fonte de fertilizante é melhor aproveitada pelas plantas, correndo menos risco de ser lixiviada no solo (Marchal & Pinon, 1980; Marchal *et al.*, 1987).

O presente trabalho teve por objetivo estudar a absorção e redistribuição de nitrogênio aplicado em plantas cítricas, utilizando-se do isótopo estável ¹⁵N, comparando-se, ainda, a eficiência de absorção do elemento em função da natureza do fertilizante nitrogenado empregado.

MATERIAL E MÉTODOS

Plantas de *Citrus mitis* Bl. com cerca de 18 meses de idade, cultivadas em vasos plásticos de 1 dm³ contendo uma mistura de podzolana + turfa, foram utilizadas no experimento. Esse tipo de planta é conveniente para trabalhos em casa de vegetação, devido ao seu tamanho restrito e à abundante floração e frutificação. A estufa climatizada foi mantida com temperatura em torno de 25 °C.

O delineamento experimental foi inteiramente casualizado, com quatro tratamentos e três repetições. Compararam-se quatro fontes de adubo nitrogenado: nitrato de cálcio, nitrato de potássio, sulfato de amônio e uréia, com as seguintes taxas de marcação em ¹⁵N: 34%, 85,5%, 10,7% e 10,6%, respectivamente. A aplicação dos fertilizantes foi feita no substrato, utilizando-se de 100 mL de solução aquosa contendo 63 mg de N e um excesso em ¹⁵N correspondente a 3,99%, 3,92%, 3,96% e 3,97% dos referidos adubos, respectivamente. A aplicação da solução e as regas posteriores foram realizadas cuidadosamente, para evitar a perda de nitrogênio junto com a água.

Realizaram-se duas amostragens, aos 10 e 20 dias após a aplicação dos adubos, a fim de acompanhar a cinética de absorção e redistribuição do nitrogênio. A cada amostragem, as plantas de cada tratamento foram cortadas, separando-se as raízes da parte aérea e, esta, em ramos, folhas e flores + frutos.

A seguir, cada órgão foi pesado, a fim de obter um balanço completo (material fresco), lavado e seco em estufa de circulação forçada a 65° C até peso constante. O material foi em seguida pesado, moído e analisado quanto aos teores de N total pelo método Kjeldahl (Tedesco et al., 1995) e N enriquecido por espectrometria de massa (Bremner, 1965).

Com os resultados de N total e de ¹⁵N, calculou-se a porcentagem de átomos de ¹⁵N no tecido vegetal e, com a matéria seca, obteve-se a quantidade de N proveniente dos fertilizantes marcados em cada órgão da planta. Determinou-se, ainda, a eficiência de uso ou coeficiente de utilização do N marcado, pela relação entre a quantidade de nitrogênio absorvido pela planta e a quantidade de N aplicado no substrato via fertilizante marcado.

Os resultados foram submetidos à análise de variância e as médias comparadas pelo teste F, a 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Através da Tabela 1, pode-se observar os pesos de matéria seca dos órgãos das plantas de *Citrus mitis* Bl. em cada tratamento e em cada uma das duas épocas de amostragem, não se verificando diferenças estatísticas significativas. As folhas e os ramos representam sempre a massa vegetativa seca mais importante das plantas. Apesar de os frutos serem a massa vegetativa fresca, normalmente mais pesada, contêm mais água que os demais órgãos, resultando num peso de matéria seca menor. Determinou-se, em média, 42; 46; 27 e 17% de peso de matéria seca, em relação ao material fresco, para raízes, ramos, folhas e flores + frutos, respectivamente.

Com referência à distribuição do peso de matéria seca nas várias partes da planta, verificou-se que, em média, 18% do total forma as raízes, 29% os ramos, 29% as folhas e cerca de 24% as flores + frutos. Legaz & Primo-Millo (1984) observaram valores de 35; 42 e 23% do peso total de matéria seca, respectivamente, para raízes, tronco e folhas de laranjeira Valência com 4 anos de idade.

Na Tabela 2, são apresentadas as médias de teores de N total, órgão por órgão, bem como a imobilização do nitrogênio pelas plantas cítricas aos 10 e 20 dias após a aplicação dos fertilizantes. Observa-se que não há diferenças estatísticas significativas devido à adubação nitrogenada em qualquer das variáveis avaliadas, independentemente da época de amostragem e da forma do fertilizante. Os frutos e as folhas são os órgãos nos quais os teores em N são mais elevados e os ramos os mais pobres no elemento.

Os resultados obtidos neste experimento confirmam aqueles de Marchal & Lacoeuilhe (1969) que observaram que a exportação de N pelos frutos representa 30 a 50% da massa do nitrogênio da parte vegetativa, enquanto 33 a 49% do N estão nas folhas.

Apesar de o fertilizante nitrogenado aplicado ao substrato não ter provocado alterações significativas no teor de N total das plantas, verifica-se, através da Tabela 3, que a técnica isotópica permite detectar a rápida absorção do nutriente pelo *Citrus*, constatando-se maiores valores na amostragem realizada aos 20 dias.

As raízes apresentam a maior taxa de enriquecimento isotópico aos 10 dias após a aplicação do adubo ao substrato. É nas folhas, porém, que são observadas as porcentagens mais elevadas de ¹⁵N na segunda amostragem, exceto no tratamento com sulfato de amônio. Legaz *et al.* (1982) determinaram as maiores concentrações de ¹⁵N nas folhas, seguido das raízes e finalmente dos ramos de plantas cítricas, em ensaio com duração de um ano. O trabalho de Feigenbaum *et al.* (1987) confirma a

presença de ¹⁵N nos órgãos mais novos (folhas, frutos e brotos) seguido dos ramos e raízes de *Citrus*.

Através da Tabela 3, observam-se, também, as quantidades de nitrogênio provenientes dos fertilizantes, determinadas em cada órgão. Pode-se verificar que, na segunda amostragem, a quantidade de ¹⁵N presente nas plantas é mais elevada que na primeira, exceto no caso do nitrato de cálcio, que foi, provavelmente, devolvido ao solo pelas plantas, conforme explicação de Martin-Prével *et al.* (1980). A possível extrusão ou liberação pelas raízes poderia estar ligada às duas fases geralmente admitidas na absorção do elemento: uma fase de penetração rápida e não metabólica no espaço livre-aparente do tecido celular, que pode ser reversível, e uma fase metabólica, ativa, mais lenta, irreversível, ligada a fenômenos físico-químicos (Marchal & Pinon, 1980).

Observa-se, ainda, que a uréia é o adubo mais rapidamente absorvido pelas plantas (1ª amostragem), mas, na segunda amostragem, foi o sulfato de amônio o fertilizante mais recuperado. Na cultura do abacaxi, Marchal & Pinon (1980) já haviam feito observações semelhantes, o que seria uma vantagem da uréia,

ficando menos suscetível à lixiviação. Verificaram, porém, que o sulfato de amônio é absorvido de maneira gradual pelas plantas, o que estaria mais de acordo com as suas necessidades.

Para as flores e frutos, observa-se que a taxa de enriquecimento isotópico aos 10 e 20 dias foram semelhantes para todos os fertilizantes estudados, podendo-se inferir que os mesmos apresentam comportamento semelhante quanto à taxa de redistribuição.

Verifica-se, através da Tabela 4, que os adubos nitrogenados aplicados na forma de nitrato são menos determinados nas plantas que a uréia e o sulfato de amônio, possuindo, conseqüentemente, menores coeficientes de utilização. Trabalhando com a cultura da bananeira, Martin-Prével et al. (1980) observaram que o adubo nitrogenado aplicado na forma amoniacal é absorvido em maior quantidade que na forma nítrica, evidenciando um comportamento diferente entre plantas tropicais e de clima temperado. Marchal et al. (1984) estudaram a influência de duas temperaturas (25 e 30°C) sobre as taxas de absorção de nitrogênio pelas raízes de bananeira, na presença de soluções contendo ¹⁵N nas formas amoniacal e nítrica em

TABELA 1 – Matéria seca dos órgãos e da planta inteira de Citrus mitis Bl.. (Média de três repetições)

				Flores +	Planta			
FERTILIZANTE	Raízes	Ramos	Folhas	Frutos	inteira			
_	g.planta ⁻¹							
	1 Amostrage m ⁽¹⁰⁾							
Nitrato de potássio	4,30	6,60	6,80	5,17	22,87			
Uréia	3,13	5,10	5,07	5,10	18,40			
Nitrato de cálcio	4,63	6,33	7,03	4,50	22,49			
Sulfato de amônio	4,27	6,97	7,30	3,97	22,51			
Teste F	0,68 ^{ns}	0,76 ^{ns}	0,88 ^{ns}	0,97 ^{ns}	0,51 ^{ns}			
C.V. (%)	13	12	14	12	24			
			2 Amostra	g e m ⁽²⁰⁾				
Nitrato de potássio	4,53	7,10	6,97	7,70	26,30			
Uréia	5,80	7,75	5,85	4,65	24,05			
Nitrato de cálcio	3,55	7,25	5,75	7,10	23,65			
Sulfato de amônio	3,83	7,00	8,27	7,07	26,17			
Teste F	0,81 ^{ns}	0,55 ^{ns}	1,48 ^{ns}	1,31 ^{ns}	0,48 ^{ns}			
C.V. (%)	12	9	14	15	20			

^{(10) -} Dez dias após a aplicação dos fertilizantes.

^{(20) -} Vinte dias após a aplicação dos fertilizantes.

^{ns} - Não significativo.

TABELA 2 – Nitrogênio total nos órgãos e na planta inteira de Citrus mitis Bl.. (Média de três repetições)

				Flores +	Planta
FERTILIZANTE	Raízes	Ramos	Folhas	Frutos	Inteira
		N, mg.planta ⁻¹			
		1	^a A mostrage m	(10)	
Nitrato de potássio	19,3	14,7	26,7	28,6	509,43
U ré ia	23,5	14,4	29,0	24,9	421,02
Nitrato de cálcio	23,6	16,2	31,6	34,3	588,32
Sulfato de amônio	20,2	15,7	28,6	35,2	544,20
Teste F	0,63 ns	0,86 ns	0,60 ^{ns}	0,99 ^{ns}	1,01 ^{ns}
C.V. (%)	7	5	7	9	16
			Amostragem	(20)	
Nitrato de potássio	19,9	14,6	29,4	9,06	636,66
U ré ia	21,6	12,9	30,1	31,0	545,50
Nitrato de cálcio	16,7	12,8	18,7	27,6	455,58
Sulfato de amônio	21,1	11,4	25,4	21,3	521,26
Teste F	0,61 ^{ns}	0,69 ^{ns}	1,39 ^{ns}	1 ,6 1 ^{n s}	1,69 ^{ns}
C.V. (%)	6	7	11	8	17

TABELA 3 – Porcentagem de átomos de ¹⁵N e quantidade de nitrogênio proveniente do fertilizante em cada órgão e na planta inteira do Citrus mitis Bl.. (Média de três repetições)

FERTILIZANTE	Raízes	Ramos	Folhas	Flores+ Frutos	Raízes	Ramos	Folhas	Flores+ Frutos	Planta Inteira
		% átomo	s de ¹⁵ N _				N ^(x) , mg.plant		
				1	Amostragen	n ⁽¹⁰⁾			
Nitrato de potássio	0,445b	0,428b	0,421b	0,387	1,662	1,522	2,561	0,796	6,541c
Uréia	0,544 ^a	0,471a	0,456a	0,377	3,296	1,935	3,344	0,361	8,936a
Nitrato de cálcio	0,460b	0,440ab	0,419b	0,376	2,563	1,899	2,951	0,391	7,804bc
Sulfato de amônio	0,463b	0,440ab	0,431ab	0,388	2,111	2,053	3,416	0,776	8,356b
Teste F	18,13*	6,51*	8,30*	1,84 ^{ns}					11,88*
C.V. (%)	8	7	9	6					13
				2*	Amostragen	n ⁽²⁰⁾			
Nitrato de potássio	0,473b	0,505a	0,531a	0,401	2,461	3,665	8,605	2,106	16,837b
Uréia	0,499b	0,513a	0,545a	0,410	4,181	3,705	7,953	1,583	17,422b
Nitrato de cálcio	0,418c	0,434b	0,460b	0,384	0,773	1,584	2,536	0,896	5,762c
Sulfato de amônio	0,591 ^a	0,538a	0,534a	0,430	4,587	3,470	8,922	2,438	19,417a
Teste F	7,96*	8,12*	12,09*	2,99 ^{ns}					8,64*
C.V. (%)	10	7	6	13					12

^{(10) -} Dez dias após a aplicação dos fertilizantes.

 ^{(10) -} Dez dias após a aplicação dos fertilizantes.
(20) - Vinte dias após a aplicação dos fertilizantes.

ns - Não significativo.

^{(20) -} Vinte dias após a aplicação dos fertilizantes.

⁽x) - Nitrogênio proveniente do fertilizante marcado.

^{(*) -} Significativo a 5% de probabilidade. ns - Não significativo. Médias seguidas da mesma letra, em cada coluna, na mesma amostragem, não diferem significativamente entre si, pelo teste F, a 5% de probabilidade.

TABELA 4 – Coeficiente de utilização (%) do fertilizante marcado nos órgãos e na planta inteira de Citrus mitis Bl.

				Flores +	Planta			
FERTILIZANTE	Raízes	Ramos	Folhas	Frutos	Inteira			
	1 A m o s trag e m (10)							
Nitrato de potássio	2,64	2,42	4,07	1,26	10,39c			
U ré ia	5,23	3,07	5,31	0,57	14,18a			
Nitrato de cálcio	4,07	3,01	4,68	0,62	12,38bc			
Sulfato de amônio	3,35	3,26	5,42	1,23	13,26b			
Teste F					12,01*			
C.V. (%)					13			
			A mostrage m	70)				
Nitrato de potássio	3,90	5,82	13,66	3,34	26,72b			
U ré ia	6,64	5,88	12,62	2,51	27,65b			
Nitrato de cálcio	1,23	2,51	4,03	1,38	9,15c			
Sulfato de amônio	7,28	5,51	14,16	3,87	30,82a			
Teste F					8,38*			
C.V. (%)					12			

^{(10) -} Dez dias após a aplicação dos fertilizantes.

diferentes relações. Concluíram que o nitrogênio é absorvido em maiores quantidades na forma amoniacal que nítrica, sendo essa absorção mais elevada com o aumento da temperatura.

Os coeficientes de utilização obtidos no presente ensaio indicaram uma recuperação máxima de 31% do N aplicado na forma de sulfato de amônio, 20 dias após sua utilização. Syvertsen & Smith (1996) determinaram que a eficiência de absorção de N aplicado ao solo variou de 61 a 68%, dependendo do portaenxerto dos citros e da dose de fertilizante aplicado. Entretanto, o tempo de experimentação relatado pelos autores foi de 2,5 anos.

CONCLUSÕES

- A adubação nitrogenada não contribuiu para alterar significativamente o peso de matéria seca e o conteúdo de N das plantas.
- 2 A eficiência de absorção de N variou com a natureza do fertilizante nitrogenado e com a época de amostragem, ao passo que a redistribuição de N não foi afetada.
- 3 A eficiência máxima de absorção do N variou de 14% (uréia) a 31% (sulfato de amônio), respectivamente, aos 10 e 20 dias após a aplicação do ¹⁵N.

REFERÊNCIAS BIBLIOGRÁFICAS

BREMNER, J.M. Isotope - ratio analysis of nitrogen in nitrogen 15 tracer investigation. In: **Methods of soil analysis.** A.S.A. 1965.

part 2; 1256-1286.

FEIGENBAUM, S.; BIELORAI, H.; ERNER, Y.; DASBERG, S. The fate of N¹⁵ labeled nitrogen applied to mature citrus trees. **Plant and Soil**, Dordrecht, v.97, p.179-187, 1987.

LEGAZ, F.; PRIMO-MILLO, E. Influence of flowering, summer and autumn flushes on the absorption and distribution of nitrogen compounds in the citrus. **Proc. Intl. Soc. Citriculture**, Brazil, 1984. v.1, 224-233.

LEGAZ, F.; PRIMO-MILLO, E.; PRIMO-YUFERA, E.; GIL, C.; RUBIO, J.L. Nitrogen fertilization in citrus. I Absortion and distribuition of nitrogen in calamondin trees (*Citrus mitis* Bi) during flowering, fruit set and initial fruit developments periods. **Plant and Soil**, Dordrecht, v.66, p.339-351, 1982.

LOVATT, C.L.; SAGEE, O.; ALI, A.G.; ZHENG, Y. Influência do nitrogênio, carboidratos e reguladores de crescimento de plantas no florescimento, frutificação e produção de citros. In: SEMINÁRIO INTERNACIONAL DE CITROS, 2., 1992. **Anais...** p.27-42.

MALAVOLTA, E.; LIMA FILHO, O.F.; PICCIN, C.R.; CASALE, H. A adubação dos citros no Brasil-O estado da arte. In: SEMINÁRIO INTERNACIONAL DE CITROS - NUTRIÇÃO E ADUBAÇÃO, 4., 1996. **Anais...** p. 1-14.

MARCHAL, J.; LACOEUILHE, J.J. Bilan minéral du mandarinier

^{(20) -} Vinte dias após a aplicação dos fertilizantes.

^{(*) -} Significativo a 5% de probalidade. Médias seguidas da mesma letra, em cada coluna, na mesma amostragem, não diferem significativamente entre si, pelo teste F, a 5% de probabilidade.

'Wilking'. Influence de la production et de l'état végétatif de l'arbre sur sa composition minérale. **Fruits**, Paris, v.24, p.299-318,1969.

MARCHAL, J.; PINON, A. Nutrition azotée de l'ananas: etude des voies d'absorption de l'azote par la technique de la dilution isotopique. **Fruits**, Paris v.35, p.29-38, 1980.

MARCHAL, J.; BURGUENO-CAMACHO, J.; FOLLIOT, M.; ROMERO, J.; MARTIN-PREVEL, P. Absorption de l'azote par le bananier. Influence de la température et du rapport azote nitrique/azote amoniacal. In: COLLOQUE INTERNATIONAL POUR L'OPTIMISATION DE LA NUTRITION DES PLANTES.7., 1984, Montpellier, France. v.4, p.1131-1138.

MARCHAL, J.; PINON, A.; FOLLIOT, M.; ROMERO, J. Cinétique de l'absorption de l'azote par l'ananas après le traitement de floraison. Etude par marquage isotopique. **Fruits**, Paris, v.42, p.3-11, 1987.

MARTIN-PRÉVEL, P.; PLAUD, G.; MARCHAL, J. Absorption et utilisation comparées de ¹⁵NO₃⁻ et ¹⁵NH₄⁺ par le bananier: premiers résultats. In: COLLOQUE INTERNATIONAL SUR LE CONTRÔLE DE L'ALIMENTATION DES PLANTES CULTIVÉES. 5., 1980, Castel Franco, Veneto. v.2, p. 970-981.

MORTVEDT, J.J.; MURPHY, L.S.; FOLLETT, R.H. Fertilizer technology and application. Ohio: Meister Publ., 1999. 199 p.

SYVERTSEN, J.P. & SMITH, M.L. Nitrogen uptake efficiency and leaching losses from lysimeter-grown *Citrus* trees fertilized at three nitrogen rates. **Journal American of the Horticultural Science**, Alexandria, v.121, p.57-62,1996.

TEDESCO, M.J.; GIANELLO, C.; BISSANI, C.A.; BOHNEN, H.; VOLKWEISS, S.J. **Análise de solos, plantas e outros materiais.** Porto Alegre: Universidade Federal do Rio Grande do Sul, 1995. 174p. (Boletim técnico, 5).