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Introduction

For a long time, natural products have played an important 
role in drug discovery, since they and their derivatives have 

been sources of several important therapeutic agents (Koehn 
and Carter, 2005). Natural products and their derivatives 
continue to play a significant role in drug discovery (Cragg 
and Newman, 2013). In order to amplify the chances of 
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A B S T R A C T

The best time of production of the cyclohexadepsipeptide beauvericin by the endophytic 

fungus Fusarium oxysporum SS46 in Czapek medium was evaluated. The highest level of 

beauvericin production was found on day 21 of fermentative culture, as assessed by quan-

titative analysis by high performance liquid chromatography coupled with a photodiode ar-

ray detector. Precursor-directed biosynthesis experiments were carried out to produce new 

analogues of beauvericin by feeding F. oxysporum with ten analogues of L-phenylalanine. In 

order to evaluate which precursor analogues were incorporated by the microorganism, the 

obtained extracts were analyzed using matrix-assisted laser desorption ionization - time-

of-flight mass spectrometry (MALDI-TOF/TOF). The precursor-directed biosynthesis studies 

led to the biosynthesis of novel beauvericin derivatives by replacement of one, two, or all 

three L-phenylalanine residues in beauvericin with DL-3-fluorophenylalanine, L-3-fluoro-

phenylalanine, L-4-fluorophenylalanine, or L-tyrosine. Beyond these precursor analogues, 

one unit of L-4-aminophenylalanine, L-4-chlorophenylalanine, DL-4-bromophenylalanine, or 

L-4-bromophenylalanine was also incorporated by the endophyte F. oxysporum SS46. Units 

of L-4-nitrophenylalanine and L-histidine were not incorporated by the microorganism to 

produce unnatural beauvericins. 
© 2014 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. All rights reserved.
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finding new drugs, strategies are needed to obtain new 
natural products and their derivatives. There are several 
approaches to diversify the structures of natural products, 
one of which is precursor-directed biosynthesis (PDB). 
PDB is the derivatization of a natural product by feeding 
biosynthetic precursor analogues to the fermentation broth 
of the producer organisms (Thiericke and Rohr, 1993). This 
technique is an efficient and easy method in which addition 
of biosynthetic precursor analogues to the growth medium 
allows the production of modified metabolites exclusively by 
microorganisms and their biosynthetic machinery (Thiericke 
and Rohr, 1993). This procedure has been successfully applied 
to the industrial production of antibiotics such as penicillin 
(Halliday and Arnstein, 1956).

The literature presents some interesting examples 
of PDB such as the production of derivatives of the 
antibiotic pacidamycin, which acts specifically against 
Pseudomonas aeruginosa and displays a very narrow 
spectrum of antibacterial activity. Tryptophan analogues 
(substituted with chloro, bromo, and methyl groups) were 
incorporated by Streptomyces coeruleorubidus, opening 
possibilities to obtain new pacidamycins (Grüschow et 
al., 2009). Cyclohexadepsipeptides can also be produced 
by PDB experiments. A study was conducted using the 
fungus Paecilomyces tenuipes BCC 1614 in which the culture 
medium was supplemented with four isomers of isoleucine 
to produce unnatural derivatives; all three positions in 
beauvericin were equally replaced with the precursors 
(Nilanonta et al., 2002). The filamentous fungus Beauveria 
bassiana ATCC 7159 was also used to obtain analogues of 
beauvericin. Appropriate strategies of feeding analogues 
of D-2-hydroxyisovalerate and L-phenylalanine led to the 
biosynthesis of novel compounds, some with improved 
cytotoxicity (Xu et al., 2007). 

Endophytic fungi, microorganisms that live within plant 
tissues without causing diseases, have been recognized 
as prolific producers of novel and bioactive secondary 
metabolites (Borges et al., 2009). The endophytic fungus 
Fusarium oxysporum SS46, isolated from the host plant 
Smallanthus sonchifolius (Gallo et al., 2009), is a producer of 
the cyclohexadepsipeptide beauvericin (Nascimento et al., 
2012). Beauvericin has antibiotic, antifungal, insecticidal, 
antimycobacterial, antiplasmodial, and nematicidal 
properties, and also inhibits angiogenesis, cell migration, 
and cancer cell proliferation (Xu et al., 2007; Zhan et al., 
2007; Zhang et al., 2007; Xu et al., 2009; Shimada et al., 2010). 
Recently, beauvericin displayed promising activity against 
Leishmania braziliensis (Nascimento et al., 2012). Thus, this 
compound has interesting pharmacological properties that 
suggest its potential as a candidate for drug development 
(Tedjiotsop Feudjio et al., 2010). Herein we describe the 
beauvericin production by F. oxysporum SS46, as well as  
the PDB experiments by feeding amino acid precursor 
analogues into the cultures that led to the production of 
twelve beauvericin analogues analyzed by matrix-assisted 
laser desorption ionization - time-of-flight mass spectrometry 
(MALDI-TOF/TOF): three beauvericin analogues (2-4) 
previously described in the literature (Xu et al., 2007) and 
nine new beauvericin analogues (5-13).

Material and methods

Reagents 

Commercial culture media were used for fungal growth: po-

tato dextrose agar (Acumedia), yeast extract (Fluka), malt ex-

tract (Acumedia). Other reagents used were: sucrose (Synth), 

dextrose (Sigma-Aldrich), triptone (HiMedia Laboratories Pvt. 

Ltd.), hydrochloric acid (J. T. Baker), NaNO3 (Sigma-Aldrich), 

K2HPO4 (Synth), MgSO4.7H2O (Synth), KCl (Synth), FeSO4.7H2O 

(Merck), resazurin and cicloheximide (Actidione®). The ami-

no acid precursor analogues used in PDB experiments were: 

DL-3-fluorophenylalanine (DL-3-FPA), L-3-fluorophenylalanine 

(L-3-FPA), L-4-fluorophenylalanine (L-4-FPA), L-4-chlorophe-

nylalanine (L-4-ClPA), L-4-bromophenylalanine (L-4-BrPA), 

DL-4-bromophenylalanine (DL-4-BrPA), L-4-nitrophenylalanine 

(L-4-NOPA), L-4-aminophenylalanine (L-4-NHPA), L-tyrosine 

(L-Tyr), and L-histidine (L-His), all from Sigma-Aldrich. The sol-

vents used were PA grade (hexane, ethyl acetate, methanol, 

and ethanol) and HPLC grade (acetonitrile and methanol) from 

Synth, Mallinckrodt, Merck, and J.T. Baker.

Endophytic microorganism and PDB experiments

In the microbial collection of the laboratory of Professor 
Mônica T. Pupo, the endophytic fungus Fusarium oxysporum 
SS46 was maintained in sterile water according to the 
Castellani method (Castellani, 1939). F. oxysporum SS46 was 
inoculated onto potato dextrose agar in Petri dishes and 
incubated at 30°C for 12 days. After this period, three agar 
plugs (0.5 cm diameter) were cut and inoculated in 10 ml of 
seed medium (each in 50 ml Falcon flasks, supplemented with 
0.5% tryptone, 1.0% dextrose, 0.3% yeast extract, 1.0% malt 
extract, pH adjusted to 6.2 ± 0.2 with 1M HCl), and the pre-
cultures were maintained at 120 rpm and 30°C for 7 days. 
Later, 20 ml of pre-culture was transferred to 500 ml flasks, 
each containing 180 ml of Czapek medium (3% sucrose; 0.2% 
NaNO3; 0.1% K2HPO4; 0.05% MgSO4.7H2O; 0.05% KCl; 0.001% 
FeSO4.7H2O, pH adjusted to 6.2 ± 0.2 with 1M HCl), and the 
cultures were maintained at 120 rpm and 30ºC for variable 
times ranging between 5 and 29 days. A control experiment, 
one without addition of the fungus, was conducted to obtain 
extracts from the culture medium. In order to ensure that 
the concentrations of the precursor analogues used in PDB 
experiments would be innocuous to the microorganism, the 
toxicity of the substrates was first evalutated by growing F. 
oxysporum on microdilution plates containing serial dilutions 
of the precursor analogues (32 mM; 16 mM; 8 mM; 4 mM; 
2 mM; 1 mM; 0.5 mM; 0.25 mM; 0.125 mM; 0.0625 mM; 
0.03125 mM; and 0.015625 mM). For the PDB experiments, 
culture conditions were the same as described above, but 
after the first 24 hours of fermentation, stock solutions of 
the precursors, prepared in sterile water and adjusted to pH 
9 with 0.1M NaOH, were added to the cultures in variable 
concentrations (0.0625-8 mM). Cultivation was continued 
for additional 20 days to reach the best time of beauvericin 
production. Table 1 shows the analogues used and their 
concentrations in the cultures at the beginning of fungal 
fermentation.
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Extraction and analyses by HPLC and MALDI-TOF/TOF

On days 5, 9, 13, 17, 21, 25, and 29 of culture, two flasks were 
extracted yielding duplicate fungal extracts. About 200 ml 
of ethanol were added to each culture flask and the mixture 
was stirred. After 24 h, the resulting suspension was filtered 
through filter paper in a Büchner funnel and extracted with 
ethyl acetate (3 × 400 ml). The organic phases were combined 
and concentrated under reduced pressure to obtain crude 
extracts from the culture medium. The resulting mycelia were 
extracted with 300 ml of methanol for 48 h to yield the crude 
mycelial extracts. The production of natural beauvericin was 
analyzed by high performance liquid chromatography coupled 
with a photodiode array detector (HPLC-PDA), by comparison 
with a previously isolated beauvericin standard (Nascimento et 
al., 2012). HPLC analyses were carried out by a Shimadzu® HPLC 
with LC-6AD pumps, a SCL-10AVP system controller, a diode 
array detector UV/VIS SPD-M10AVP and RID-10A, SIL-10AF 
autosampler, and Class VP software. The mass of beauvericin 
in the crude extracts was calculated from a standard 
calibration curve (Peak Area=35238*(Concentration)+214360 
and R2=1). Standard solutions of beauvericin were prepared 
in acetonitrile (ACN) (60, 180, 300, 420, and 540 µg/ml), and 
injected in triplicate. The analyses were carried out using a 
CLC-ODS (C-18) column, isocratic mobile phase ACN:H2O 
(85:15 v/v), 1.0 ml min-1 flow rate and detection at 225 nm. 
The detection of natural and unnatural beauvericin from PDB 
experiments was monitored by a MALDI-TOF/TOF instrument 
(Bruker Daltonics, Bremen, Germany) using the reflectron 
and positive modes. For external calibration, a mixture of 
standard peptides was used, and the beauvericin produced was 
the internal calibrant. Instrument settings were: pulsed ion 
extraction 120 ns and laser frequency 1000 Hz. The matrix used 
was 2,5-dihydroxybenzoic acid at 20 mg/ml (in 30% acetonitrile 
and 70% water with 0.1% trifluoroacetic acid) concentration.

Results and discussion

In order to follow the production of beauvericin, the 
fermentative cultures were monitored from day 5 through 
day 29 of culture to determine the time of highest production 
of beauvericin. HPLC-PDA analyses showed that the highest 
level of beauvericin production was found on day 21 (Fig. 1), 
reaching a concentration of 444.5 mg/l in the crude extracts. 
The establishment of the best time to obtain higher levels 
of beauvericin was required for further PDB experiments, 
which were carried out for 21 days. Through serial dilutions 
of the precursor analogues, it was possible to determine the 
concentrations of the substrates that were not toxic to F. 
oxysporum. These concentrations are described in Table 1 and 
were used to carry out the PDB experiments.

To evaluate which precursor analogues were incorporated 
by F. oxysporum, all extracts obtained in the PDB experiments 
were directly analyzed by MALDI-TOF/TOF. MALDI is a 
soft ionization technique widely used to analyze proteins, 
oligosaccharides, oligonucleotides, and polymers (Karas et al., 
1985; 1987). However, MALDI has been recently used to analyze 
compounds of low molecular weight (< 800 Da), but this is still 
a great challenge (Cohen and Gusev, 2002). The most important 
advantages of MALDI are the high sensitivity, an unnecessary 
clean-up process for some samples, and main suppression 
effects of ionization that are less intense compared with 
electrospray ionization (Greis et al., 2006).

Analyses  by  MALDI-TOF/TOF showed that  the 
supplementation of F. oxysporum with L-4-BrPA, DL-4-
BrPA, L-4-ClPA, and L-4-NHPA (Figs. S11-S13; S14-S16; S17-
S20; and S23-S26 in the Supporting Information) afforded 
compounds 8-10, with replacement of one L-phenylalanine 
residue in beauvericin (Table 1). The incorporation of L-3-
FPA, DL-3-FPA, and L-4-FPA by the fungus was very efficient 

Figure 1 – Yields of beauvericin in crude extracts (days 5-29).
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Precursors Conc.a (mM) Ions observed (m/z)/error (ppm) Molecular formula Products

L-3-FPA-b 1 824.3826 [M+Na]+ / 8.10 C45H56FN3O9 (1)

840.3672 [M+K]+ / 4.74

842.3726 [M+Na]+ / 8.62 C45H55F2N3O9 (3)

858.3466 [M+K]+ / 8.38

860.3636 [M+Na]+ / 7.94 C45H54F3N3O9 (4)

876.3480 [M+K]+ / 4.12

L-3-FPA-m 1 - -

DL-3-FPA-b 1 824.3913 [M+Na]+ / 2.45 C45H56FN3O9 (2)

840.3620 [M+K]+ / 1.45

842.3783 [M+Na]+ / 1.85 C45H55F2N3O9 (3)

858.3511 [M+K]+ / 3.14

860.3657 [M+Na]+ / 5.50 C45H54F3N3O9 (4)

876.3411 [M+K]+ / 3.73

DL-3-FPA-m 1 - -

L-4-FPA-b 0.0625 824.3893 [M+Na]+ / 0.02 C45H56FN3O9 (5)

840.3619 [M+K]+ / 1.57

842.3743 [M+Na]+ / 6.60 C45H55F2N3O9 (6)

858.3486 [M+K]+ / 6.05

860.3696 [M+Na]+ / 0.97 C45H54F3N3O9 (7)

876.3449 [M+K]+ / 0.68

L-4-FPA-m 0.0625 824.3899 [M+Na]+ / 0.75 C45H56FN3O9 (5)

842.3748 [M+Na]+ / 6.00 C45H55F2N3O9 (6)

860.3681 [M+Na]+ / 2.71 C45H54F3N3O9 (7)

L-4-BrPA-b 0.25 884.3065 [M+Na]+ / 3.57 C45H56BrN3O9 (8)

886.3018 [M+2+Na]+ / 2.66

900.2779 [M+K]+ / 3.45

902.2764 [M+2+K]+ / 4.33

L-4-BrPA-m 0.25 - -

DL-4-BrPA-b 0.25 884.3066 [M+Na]+ / 2.95 (8)

886.3074 [M+2+Na]+ / 0.13 C45H56BrN3O9

900.2805 [M+K]+ / 2.94

902.2797 [M+2+K]+ / 1.91

DL-4-BrPA-m 0.25 - -

L-4-ClPA-b 8 840.3580 [M+Na]+ / 2.06 C45H56ClN3O9 (9)

856.3327 [M+K]+ / 1.13

L-4-ClPA-m 8 840.3576 [M+Na]+ / 2.53 C45H56ClN3O9 (9)

856.3391 [M+K]+ / 6.35

L-4-NOPA-b 8 - -

L-4-NOPA-m 8 - -

L-4-NHPA-b 8 821.4129 [M+Na]+ / 4.02 C45H58N4O9 (10)

837.3875 [M+K]+ / 4.73

L-4-NHPA-m 8 821.4054 [M+Na]+ / 5.11 C45H58N4O9 (10)

L-Tyr-b 8 822.3881 [M+Na]+ / 6.71 C45H57N3O10 (11)

838.3952 [M+Na]+ / 7.99 C45H57N3O11 (12)

854.3803 [M+Na]+ / 3.68 C45H57N3O12 (13)

L-Tyr-m 8 822.3887 [M+Na]+ / 5.98 C45H57N3O10 (11)

L-His-b 2 - -

L-His-m 2 - -

aConcentrations of precursor analogues at the beginning of fermentations; L-3-FPA (L-3-fluorophenylalanine), DL-3-FPA (DL-3-fluorophenylalanine), 
L-4-FPA (L-4-fluorophenylalanine), L-4-BrPA (L-4-bromophenylalanine), DL-4-BrPA (DL-4-bromophenylalanine), L-4-ClPA (L-4-chlorophenylalanine), 
L-4-NOPA (L-4-nitrophenylalanine), L-4-NHPA (L-4-aminophenylalanine), L-Tyr (L-tyrosine), L-His (L-histidine); b-extracts from the liquid broth; 
m-extracts from the mycelia.

Table 1
Precursor analogues used for PDB experiments and the ions observed at the mass spectra.
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and yielded compounds 2-7, showing that these precursors 
were recognized by fungal enzymes replacing one, two, 
or all three L-phenylalanine residues in beauvericin. The 
supplementation with L-Tyr also led to replacement of all 
three L-phenylalanine residues in beauvericin, producing 
compounds 11-13. 

nitrophenylalanine (L-4-NOPA) and L-histidine (L-His) were 
not incorporated by the microorganism, probably due to a 
defective enzymatic recognition of these precursors by the 
NRPS. Therefore, our data support that the NRPS modules 
were able to replace the three L-phenylalanine residues 
in the beauvericin scaffold with the unnatural precursors 

L-4FPA, DL-3-FPA, L-3-FPA, and L-Tyr.
In conclusion, we describe beauvericin production by F. 

oxysporum SS46 and PDB experiments, in which amino acid 
precursor analogues were added to cultures of F. oxysporum, 
generating twelve beauvericin analogs: three known 
beauvericin analogues (2-4) previously produced by the fungus 
Beauveria bassiana (Xu et al., 2007) and nine new unnatural 
beauvericin analogues (5-13), all of which were analyzed by 
MALDI-TOF/TOF. Therefore, precursor-directed biosynthesis 
strategy could provide an opportunity to rationally design 
a broad variety of new molecules and to improve their 
pharmacological properties with lower toxicity and higher 
therapeutic effects.

Authors’ contributions

MVT (undergraduate student) contributed in running the 
laboratory work, analyzing the data and drafting the paper. 
AAL contributed in running the laboratory work and analyzing 
the data. DBS and NPL were responsible for MALDI-TOF/TOF 
analyses and contributed in analyzing the data. MTP supervised 
the laboratory work, analyzed data and contributed to critical 
reading of the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by grant #2008/09540-0 FAPESP, 
CNPq, and CAPES. This research is part of the studies 
performed at Instituto Nacional de Biotecnologia Estrutural e 
Química Medicinal em Doenças Infecciosas (INCT-INBEQMeDI), 
supported by CNPq, MCT, and FAPESP; CEPID-CIBFar Centro 
de Inovação em Biodiversidade e Fármacos, supported by 
grant#2013/07600-3 FAPESP; and Núcleo de Apoio à Pesquisa em 
Produtos Naturais e Sintéticos, supported by the University of 
São Paulo. MVT thanks PIBIC-CNPq for providing a scholarship 
(grant#146422/2011-2), and NPL and MTP are grateful to CNPq 
for their researchers’ fellowships. 

R E F E R E N C E S

Borges, W.S., Borges, K.B., Bonato, P.S., Said, S., Pupo, M.T., 
2009. Endophytic fungi: natural products, enzymes and 
biotransformation reactions. Curr. Org. Chem. 13, 1137-1163. 

Castellani, A., 1939. Viability of some pathogenic fungi in distilled 
water. J. Trop. Med. Hyg. 42, 225-226. 

Beauvericins are biosynthesized in a process of stepwise 
condensations by nonribosomal peptide synthetases (NRPS) 
through the continuous use of their modules (Xu et al., 
2008). It seems that NRPS of F. oxysporum tolerate a variety of 
substitutions on the benzene ring of phenylalanine, especially 
fluorine analogues, as molecular recognition is probably 
due to the hydrogen and fluorine bioisosterism. Moreover, 
the presence of sodium and potassium adduct ions was 
notable, since the chemical scaffold of beauvericin is able to 
form complexes with different metal ions instead of proton 
interactions (Lopes et al., 2002). 

The incorporation of the precursor analogues DL-3-
FPA, L-3-FPA, L-4-BrPA, and DL-4-BrPA into beauvericin was 
found only in the extracts of culture supernatants, while 

L-4-FPA, L-4-ClPA, L-4-NHPA, and L-Tyr were present in 
both liquid broth and mycelia extracts. The analogues L-4-



438 Mayra Vendramini Tuiche et al. / Rev Bras Farmacogn 24(2014): 433-438

Cohen, L.H., Gusev, A.I., 2002. Small molecule analysis by MALDI 
mass spectrometry. Anal. Bioanal. Chem. 373, 571-586.

Cragg, G.M., Newman, D.J., 2013. Natural products: a continuing 
source of novel drug leads. Biochim. Biophys. Acta. 1830, 
3670-3695.

Gallo, M.B.C., Chagas, F.O., Almeida, M.O., Macedo, C.C., 
Cavalcanti, B.C., Barros, F.W.A., Moraes, M.O., Costa-Lotufo, 
L.V., Pessoa, C., Bastos, J.K., Pupo, M.T., 2009. Endophytic 
fungi found in association with Smallanthus sonchifolius 
(Asteraceae) as resourceful producers of cytotoxic bioactive 
natural products. J. Basic Microbiol. 49, 142-151. 

Greis, K.D., Zhou, S., Burt, T.M., Carr, A.N., Dolan, E., Easwaran, 
V., Evdokimov, A., Kawamoto, R., Roesgen, J., Davis, G.F., 
2006. MALDI-TOF MS as a label-free approach to rapid 
inhibitor screening. J. Am. Soc. Mass Spectrom. 17, 815-822.

Grüschow, S., Rackham, E.J., Elkins, B., Newill, P.L.A., Hill, 
L.M., Goss, R.J.M., 2009. New pacidamycin antibiotics 
through precursor-directed biosynthesis. ChemBioChem. 
10, 355-360. 

Halliday, W.J., Arnstein, H.R.V., 1956. The biosynthesis of 
penicillin. 4. The synthesis of benzylpenicillin by washed 
mycelium of Penicillium chrysogenum. Biochem. J. 64, 380-384. 

Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F., 1987. 
Matrix-assisted ultraviolet laser desorption of non-volatile 
compounds. Int. J. Mass Spectrom. 78, 53-68.

Karas, M., Bachmann, D., Hillenkamp, F., 1985. Influence of the 
wavelength in high-irradiance ultraviolet laser desorption 
mass spectrometry of organic molecules. Anal. Chem. 57, 
2935-2939.

Koehn, F.E., Carter, G.T., 2005. The evolving role of natural 
products in drug discovery. Nat. Rev. Drug Discov. 4, 206-220. 

Lopes, N.P., Stark, C.B.W., Gates, P.J., Staunton, J., 2002. 
Fragmentation studies on monensin A by sequential 
electrospray mass spectrometry. Analyst 127, 503-506.

Nascimento, A.M., Conti, R., Turatti, I.C.C., Cavalcanti, B.C., 
Costa-Lotufo, L.V., Pessoa, C., Moraes, M.O., Manfrim, V., 
Toledo, J.S., Cruz, A.K., Pupo, M.T., 2012. Bioactive extracts 
and chemical constituents of two endophytic strains of 
Fusarium oxysporum. Rev. Bras. Farmacogn. 22, 1276-1281. 

Nilanonta, C., Isaka, M., Kittakoop, P., Trakulnaleamsai, S., 
Tanticharoen, M., Thebtaranonth, Y., 2002. Precursor-
directed biosynthesis of beauvericin analogs by the 
insect pathogenic fungus Paecilomyces tenuipes BCC 1614. 
Tetrahedron 58, 3355-3360.

Shimada, A., Fujioka, S., Koshino, H., Kimura, Y., 2010. 
Nematicidal activity of beauvericin produced by the fungus 
Fusarium bulbicola. Z. Naturforsch. 65c, 207-210.

Tedjiotsop Feudjio, F., Dornetshuber, R., Lemmens, M., 
Hoffmann, O., Lemmens-Gruber, R., Berger, W., 2010. 
Beauvericin and enniatin: emerging toxins and/or remedies? 
World Mycotoxin J. 3, 415-430.

Thiericke, R., Rohr, J., 1993. Biological variation of microbial 
metabolites by precursor-directed biosynthesis. Nat. Prod. 
Rep. 10, 265-289. 

Xu, Y., Orozco, R., Wijeratne, E.M.K., Gunatilaka, A.A.L., Stock, 
S.P., Molnár, I., 2008. Biosynthesis of the cyclooligomer 
depsipeptide beauvericin, a virulence factor of the 
entomopathogenic fungus Beauveria bassiana. Chem. Biol. 15, 
898-907.

Xu, Y., Wijeratne, E.M.K., Espinosa-Artiles, P., Gunatilaka, 
A.A.L., Molnár, I., 2009. Combinatorial mutasynthesis 
of scrambled beauvericins, cyclooligomer depsipeptide 
cell migration inhibitors from Beauveria bassiana.  
ChemBioChem. 10, 345-354.

Xu, Y., Zhan, J., Wijeratne, E.M.K., Burns, A.M., Gunatilaka, A.A.L., 
Molnár, I., 2007. Cytotoxic and antihaptotactic beauvericin 
analogues from precursor-directed biosynthesis with the 
insect pathogen Beauveria bassiana ATCC 7159. J. Nat. Prod. 
70, 1467-1471. 

Zhan, J., Burns, A.M., Liu, M.X., Faeth, S.H., Gunatilaka, A.A.L., 
2007. Search for cell motility and angiogenesis inhibitors 
with potential anticancer activity: beauvericin and 
other constituents of two endophytic strains of Fusarium 
oxysporum. J. Nat. Prod. 70, 227-232. 

Zhang, L., Yan, K., Zhang, Y., Huang, R., Bian, J., Zheng, C., 
Sun, H., Chen, Z., Sun, N., An, R., Min, F., Zhao, W., Zhuo, 
Y., You, J., Song, Y., Yu, Z., Liu, Z., Yang, K., Gao, H., Dai, 
H., Zhang, X., Wang, J., Fu, C., Pei, G., Liu, J., Zhang, S., 
Goodfellow, M., Jiang, Y., Kuai, J., Zhou, G., Chen, X., 2007. 
High-throughput synergy screening identifies microbial 
metabolites as combination agents for the treatment of 
fungal infections. Proc. Natl. Acad. Sci. USA 104, 4606-
4611. 


