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Abstract: The concentrations of phycobiliproteins (phycoerythrin and 
phycocyanin), chlorophyll-a and total soluble proteins were determined monthly 
in three strains (red, green and brown) of Gracilaria domingensis (Kützing) 
Sonder ex Dickie, collected from natural populations on the coast of Rio 
Grande do Norte, Brazil. In all the strains, pigment and protein concentrations 
were higher in the months of less sunlight and greater nitrogen availability 
and decreased gradually with increased sunlight and decreased nutrient 
concentration. The red strain showed higher concentrations of phycoerythrin 
and total soluble proteins. The difference in the concentration of biochemical 
components over the course of the year indicates species acclimation to different 
environmental conditions.
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Introduction

 Marine macroalgae are important source of 
bioactive compounds to the pharmaceutical, cosmetic 
and food industries (Cardozo et al., 2007; Carignan et al, 
2009; Gressler et al., 2009; Gressler et al., 2010). In the 
marine environment, seaweeds exhibit a distinct and well-
defi ned vertical distribution pattern. Species that inhabit 
the intertidal zone are adapted to tidal variations, given 
that they are exposed during low tide and submersed at 
high tide. During this variation, the algae are subject to 
considerable environmental changes. They are gradually 
uncovered during low tide and, consequently, the 
incident irradiance also increases gradually. Moreover 
the incidence of light also varies depending on the water 
turbidity and the position of the sun during the day, as well 
as the time of year. Additionally, nutrient concentrations, 
salinity, temperature, and hydration are other factors that 
vary during tides (Benson et al., 1983).
 The main response mechanisms to sunlight 
variations occur in the photosynthetic system. High light 
exposure requires seaweeds to acclimatize, avoiding 
inhibition of photosynthesis and degradation of the 
photosynthetic apparatus (Cabello-Pasini et al., 2000). 
Protection against the harmful effects of superexcitation 
by supersaturating light intensity is a fundamental 
survival mechanism of seaweeds in the intertidal zone 
(Häder et al., 2002; Andersson et al., 2006; Cardozo et al., 

2006; Cardozo et al., 2008; Guaratini et al., 2009). On the 
other hand, during low photon flux conditions the algae 
have to harvest maximum light. Pigments, carotenoids, 
and phycobiliproteins act as protection mechanisms 
against excess light and play a key role in photosynthesis 
as harvesting pigments, helping in light absorption and 
radiant energy transfer to the reaction centers.
 The genus Gracilaria is commonly found in 
the intertidal zone, exhibiting a variety of physiological 
mechanisms in response to environmental alterations 
(Gómez et al., 2005). Because of this plasticity, color 
variants often occur, resulting in orange, brown, green, 
yellow, pink, and purple plants (Guimarães et al., 2003). 
This type of intraclonal variation takes place because 
of signifi cant differences in phenotype between the 
species derived from a number of genes that may result 
from a single factor or from a combination of effects 
provoked by several factors. These factors include 
differences in the surrounding microenvironment during 
growth, physiological differences and variations in the 
development of genetically identical species (Santelices 
et al., 1996; Santelices, 2001).
 The species Gracilaria domingensis is frequently 
found on the coast of Rio Grande do Norte, Brazil, and 
exhibits a wide color variation in natural populations, 
represented most commonly by the colors green, red, 
and brown. This color variation has been associated with 
differences in fi tness (response to environmental changes). 
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However, studies of the differences in the physiological 
characteristics of these strains in the field are scarce. In 
this work, protein, phycobiliproteins and chlorophyll-a 
were assessed seasonally in natural populations of G. 
domingensis in the green, red, and brown variants living 
in the same area and exposed to different environmental 
conditions during the year.

Materials and Methods

 The study was conducted between July, 2007, 
and April, 2008. Color variants (red, green, and brown) of 
Gracilaria domingensis Sonder ex Dickie (Gracilariaceae, 
Rhodophyta) were collected (n = 9) during low tide in the 
intertidal zone at the Rio do Fogo beach (5º 16’37.54” S; 
35º 22’37.34” W), Rio Grande do Norte, Brazil. There are 
two well-defined seasons in this region: the rainy season 
from March to July and the dry season from August to 
February.
 The study site is characterized by a wide 
intertidal zone (~250 m) with many sandstone rocks and 
shallow tide pools (~15 cm) that form during low tide. 
There is great species diversity in this zone, mainly of the 
genus Gracilaria, which remains completely exposed to 
atmospheric conditions during low tide. After collection, 
the seaweeds were taken to the laboratory in isothermal 
boxes containing sea water. They were cleaned of 
epiphytes and frozen. Before pigment and protein 
analysis, the seaweeds were lyophilized until constant 
weight was obtained.

Environmental parameters

 The environmental parameters temperature, 
salinity, pH and dissolved nutrients (NH4

+, NO3
-, NO2

- 
and PO4

3-) were determined simultaneously with seaweed 
collection. Dissolved nutrient concentrations were measured 
using the methodology described by Strickland & Parsons 
(1972). Rainfall and photosynthetically active radiation 
(PAR) data were obtained from the Meteorological Station 
of the Brazilian National Institute of Space Research 
(INPE). Rainfall was obtained by adding the daily values 
for each month and, for PAR values, a monthly mean was 
calculated from daily measurements with data collected 
between 6 and 18 h at intervals of 30 min.

Phycobiliproteins

 For each seaweed sample, one fragment (apex) 
of 90 mg DW was macerated in liquid nitrogen and 
submersed in 5 mL of 0.1 M phosphate buffer (pH 6.8). 
The extract with the seaweed was maintained in the dark 
overnight at 4 °C. It was then centrifuged at 10000 g for 
20 min. The supernatant was collected and absorption 
measurements were performed. Phycoerythrin (PE) 

and phycocyanin (PC) were calculated according to the 
formula proposed by Beer & Eshel (1985).

Total soluble proteins

 Total soluble proteins and biliproteins were 
determined in the same extract. The concentrations were 
measured according to Bradford (1976). Protein content 
was obtained on a UV-Vis absorption spectrophotometer 
at 595 nm using bovine serum albumin (BSA) solutions as 
standard.

Chlorophyll-a

 For each seaweed sample, a fragment (apex) of 75 
mg DW was macerated in liquid nitrogen and submersed in 
1.5 mL of methanol:dimethylformamide. The extract with 
the seaweed was submitted to ultrasound in an ultrasonic 
cleaning bath for 15 min (~10 °C) and maintained in the 
dark overnight at 4 °C. The extract was then centrifuged 
at 10000 rpm for 5 min. The supernatant was collected 
and filtered through a 0.45 µm filter. The pigment was 
separated by high-performance liquid chromatography 
(HPLC), according to Guaratini et al (2005).

Statistical analyses

 The differences in environmental parameter 
values between the different months of the study were 
tested using analysis of variance (one-way ANOVA or 
the corresponding non-parametric Kruskal-Wallis). The 
differences in the mean concentrations of proteins and 
pigments between the different strains of G. domingensis 
and over the different months of the study were tested 
using analysis of variance (two-way ANOVA), along with 
the Student Newman-Keuls test for multiple comparisons. 
The protein and pigment concentrations in each strain 
were correlated (using multiple regression) with the 
environmental parameters to estimate the environmental 
response of each strain studied.

Results

 All of the environmental parameters determined 
varied significantly throughout the year (Table 1). Rainfall 
and PAR showed inverse tendencies (Figure 1).

Total Soluble Proteins

 The highest mean concentration was recorded 
in the red variant (27.04±1.07 mg.g-1 DW), followed 
by the brown strain (20.24 mg.g-1 DW); the green strain 
(0.88 mg.g-1 DW) presented the lowest concentration. 
The three strains followed the same trend during the 
year and showed significant statistical differences in 
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the concentrations between months (p<0.001). Protein 
concentrations in the red, green and brown strains were 
associated mainly with the temperature (positively) 
and with the available concentrations of ammonium 
(positively) and orthophosphate (negative) in the seawater 
(r = 0.88, p<0.05; r = 0.81; p<0.05; r = 0.81; p<0.05, 
respectively). These variables accounted for 77% of the 
variance in the protein concentration in the red strain, 
66% in the green strain and 61% in the brown strain.

Figure 1. Monthly variation of rainfall and photosynthetically 
active radiation (PAR) in Rio do Fogo, Northeastern Brazil. 
The rainfall data represent the sum of precipitation during the 
month and PAR data represent the monthly mean, calculated 
from daily measurements recorded during the period of 6 and 
18 h at intervals of 30 min.

Phycoerythrin

 The phycoerythrin concentrations of the red 
strain were statistically different from those of the green 
and brown strains in all months of the study (p<0.001) 
except April (Figure 2). However, the brown strain did 
not differ from the green strain in any of the months 
(p>0.05). The highest concentrations were observed in the 
red strain (7.69 mg.g-1 DW) and the lowest in the green 
strain (0.009 mg.g-1 DW). These pigment concentrations 
also varied between the months (p<0.001).
 The phycoerythrin concentration was affected 
differently in the three strains in each month. There was a 
highly significant correlation between the months of the 
year and the strain (p<0.001), which is an indication of 
differences in the fitness of these colour mutants.
 The concentrations of phycoerythrin in the red, 
green and brown strains correlated with the analyzed 
nitrogenated nutrients (positive effect) and orthophosphate 
(negative effect) (r = 0.93; p<0.001; r = 0.83; p<0.05). 
These nutrients account for 86% (r2 = 0.86) of the effect 
in the red strain, 68% in the green strain and 84% in the 
brown strain.

Phycocyanin

 Pairwise comparisons showed that the 
phycocyanin concentrations in the green and brown 
strains were similar in all months except June, when the 
green strain differed from both the brown and red strains. 
In addition, the red strain differed significantly from 
the other two (p<0.05) only in 6 of the 12 months. The 
red strain showed the lowest concentration (0.03 mg.g-1 
DW).
 In the red, green and brown strains, the 
phycocyanin concentration was directly proportional to 
the availability of ammonium ion in the seawater (r = 
0.73, p<0.001; r = 0.74, p = 0.002; r = 0.88, p<0.001, 
respectively), affecting phycocyanin concentration by 
ca. 53% (r2 = 0.53), 55% and 79%, respectively. Only 
in the brown strain was a significant correlation found 

Table 1. Environmental parameters monitored during the study period.
Environmental Parameter Range Mean±SD ANOVA Probability

Salinity (PSU) 32.5-39.5 35.25±1.55 17.14b <0.05a

Temperature (°C) 28-33.5 31.28±1.28 17.92b <0.05a

pH 8.02-8.57 8.34±0.17 17.63b <0.05a

Phosphate (µmol.L-1) 0.03-0.86 0.23±0.19 24.66b <0.05a

Nitrate (µmol.L-1) 0.13-3.95 1.57±1.30 28.14b <0.001a

Nitrite (µmol.L-1) 0.17-0.39 0.26±0.07 19.40b <0.05a

Ammonium ion (µmol.L-1) 0.51-7.59 2.24±2.20 280.07c <0.001a

Rainfall (mm) 16-560 158±182.58 20.15b <0.05a

PAR (µmol•photons•m-2.s-1) 616.8-2263.9 1722.7±691.4 26.21b <0.05a

aSignificant at the level of 0.05; bH-Kruskal-Wallis ANOVA; cFcal-One Way ANOVA
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with other environmental parameters (nitrate, nitrite and 
orthophosphate). The correlation with orthophosphate 
was negative.

Phycocyanin/Phycoerythrin

 The Phycoerithrin/Phycocyanin ratio was 
higher in the red strain during the entire study period. 
The highest values were registered in October for the red 
strain (320.9) and the lowest for the brown and green 
strains (0.75).

Chlorophyll-a

 The chlorophyll-a concentration did not differ 
between the red and green strains (p>0.05), except in 
May. The green strain showed the highest concentration 
(0.5 mg•g-1 DW) in May. In March, the red and green 
strains showed the lowest concentration (0.02 mg.g-1 

DW) (Figure 2).
 The chlorophyll-a concentration in the 
red strain was related mainly to water temperature 
(p<0.001), rainfall (p=0.026) and the available 
nitrate (p=0.001) and orthophosphate (p=0.005) 
concentrations in the environment. Temperature, 
rainfall and nitrate concentration influenced positively, 
whereas orthophosphate had a negative influence. 
These variables affected chlorophyll-a in the red strain 
by up to 70% (r=0.83; r2=0.70).
 In the green, red and brown strains, the 
chlorophyll-a concentration was related (r=0.86; r2= 
0.75) to temperature (p=0.0020; p=0.004; p=0.004, 
respectively) and nitrate concentration (p<0.001; 
p=0.003; p=0.003, respectively). These parameters acted 
positively and affected the chlorophyll-a concentration 
in the green strain by 75% (r2=0.75) and in the red and 
brown strains by 66% (r2=0.66).

Figure 2. Monthly variation of protein and pigment contents in the three strains (red, green and brown) of Gracilaria 
domingensis collected during low tides in Rio do Fogo, a city localized in Northeastern Brazil. Data represent mean±SD (n 
= 9).
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Discussion

 The capacity of a genotype to modify its 
phenotype as a function of environmental alterations is 
considered to be crucial for the adaptation of an organism 
to the spatial and temporal dynamics of the environment 
it inhabits (Barros et al., 2003; Monro & Poore, 2005). 
Seaweeds have been described as highly mutable 
organisms (Lobban & Harrrison, 1997; Collado-Vides, 
2002) and these mutations can affect a wide variety 
of phenotypes, including morphology, pigmentation, 
chemical composition and expression of sexual characters 
(Poore & Fagerstrõm, 2000).
 The analyses of phycoerithrin and the 
proteins of the red, green and brown strains pointed to 
significant differences only between the red and green 
strains (p<0.001), a finding that suggests different 
acclimatization strategies. The red strain had the highest 
concentration and the green strain the lowest. These 
strains also showed a slight difference in phycocyanin 
and chlorophyll-a concentrations in some months. These 
results corroborate those of earlier studies using color 
variants of other species of Rhodophyceae (Kursar et al., 
1983; Dawes, 1992; Guimarães et al., 2003; Plastino et 
al., 2004; Yokoya et al., 2007).
 The total soluble proteins and the pigments 
showed a tendency to decrease at the beginning of the 
study. The highest concentrations were recorded in 
the months with lowest sunlight (July, August, May 
and June) and the lowest in the months with elevated 
sunlight levels (December, January and February). 
These variations are similar to those described by 
other authors, who reported an increase in total soluble 
proteins and phycobiliproteins in winter and a drop 
in summer (Kosovel & Talarico, 1979; Rosenberg 
& Ramus, 1982; Campbell et al., 1999; Aguilera et 
al., 2002; Orduña-Rojas et al., 2002). In this study, 
the association between high protein and pigment 
concentrations, lower solar irradiance and high nitrogen 
concentrations was clear.
 The decrease in phycobiliprotein, chlorophyll-a 
and protein can be associated with nitrogen availability 
and light conditions. The significantly reduction in 
chlorophyll-a and protein during high light months 
indicates photo-oxidative damage and a decrease in 
photosystem number. This hypothesis was confirmed 
by the bleaching observed in the summer months in 
the strains, noticeably in the red and brown strains. 
This observation also indicates a higher capacity of 
photoprotection in the green strain than the others, 
which is probably related to the higher concentration 
of zeaxanthin.
 The winter in Northeast Brazil is characterized 
by very abundant rainfall, a reduction in radiation and an 
increase in water turbidity and nitrogen concentration. 

These environmental conditions are the inverse of 
those observed in the summer months and result in 
strategic alterations of the pigment levels (increase) 
in order to optimize and maximize the harvesting of 
light and, consequently, the photosynthetic rates. 
According to Lapointe (1981), the alterations in 
pigment concentration are determined by the interaction 
between two factors, light intensity and nutrient 
availability. This interaction determines whether the 
pigment concentration should increase or decrease in 
order to increase the photosynthetic capacity and avoid 
photodamage (Sigaud-Kutner et al., 2002; Pinto et al., 
2003).
 The green strain exhibited a different 
organization of the phycoerythrin/phycocyanin ratio in the 
phycobilisomes. This reorganization results in a different 
light absorption spectrum, given that phycoerythrin 
absorbs light in the green and blue regions of the visible 
spectrum and phycocyanin in the red (Glazer, 1985; 
López-Figueroa, 1991). Therefore, it can be surmised that 
the green strain increased its phycocyanin/phycoerythrin 
ratio in order to modify its response to incident light, 
thereby optimizing and preserving the functioning of 
the photosynthetic apparatus. This hypothesis agrees 
with that of Yokoya et al. (2007), who concluded that the 
green strain of Hypnea musciformis is better adapted to 
environments with high irradiance levels.
 The seven-fold higher phycoerythrin 
concentration registered in the red strain than in the 
green strain is apparently not a deficiency, but rather 
a new strategy of the photosynthetic apparatus since 
this strain was readily found during all months of 
study. Moreover, it was observed that, during the high 
light months, the green strain predominated in the 
environment and showed the better conditions. This 
suggests that the green strain has a greater ability to 
protect the photosynthetic apparatus under conditions 
of high light.
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