Original Article

Iridoid and phenylethanoid glycosides from the aerial part of Barleria lupulina

Seoung Rak Lee ${ }^{\text {a }}$, Jon Clardy ${ }^{\text {b }}$, Donald Robert Senger ${ }^{\text {c }}$, Shugeng Cao ${ }^{\text {d,* }}$, Ki Hyun Kim ${ }^{\text {a,* }}$
${ }^{\text {a }}$ School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
${ }^{\mathrm{b}}$ Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
${ }^{\text {c }}$ Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
${ }^{\text {d }}$ Department of Pharmaceutical Sciences, Daniel K Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, USA

A R T I C L E I N F O

Article history:

Received 9 December 2015
Accepted 11 January 2016
Available online 1 February 2016

Keywords:

Barleria lupulina
Acanthaceae
Iridoid glycoside
Phenolic glycoside

A B S TRACT

A new iridoid glycoside, barlupulin C methyl ester (1), together with two known phenylethanoid glycosides ($\mathbf{2}$ and $\mathbf{3}$) and three known simple phenolic glycosides (4-6) were isolated from the aerial parts of Barleria lupulina Lindl., Acanthaceae. The structure of the new compound (1) was elucidated through 1D and 2D NMR spectroscopic data, and HR-ESIMS. Interestingly, compound (1) has a formate group attached to the C-6 hydroxy group of the glucose unit. Compounds $\mathbf{2 - 6}$ were identified as poliumoside (2), decaffeoylacteoside (3), protocatechuic acid 4-O- β-glucoside (4), vanillic acid 4-O- β-glucoside (5), and leonuriside $\mathrm{A}(\mathbf{6})$ on the basis of NMR spectroscopic data analyses and comparison with those reported in the literature. Compounds 3-6 were isolated from B. lupulina for the first time.
© 2016 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. All rights reserved.

Introduction

The genus Barleria L., a member of the Acanthaceae family, is a large and widespread genus of herbs and shrubs comprising approximately 300 species, growing mainly in Africa and Asia. The plants of the genus Barleria have been long used for boils, bee bites, and tooth-ache (Abd El-Mawla et al., 2005). Barleria lupulina Lindl. is a tiny bush widely distributed and domesticated in the Southeast Asia region. In Thai traditional medicine, this plant has long been used as a primary anti-inflammatory agent for insect bites and as a remedy for herpes simplex and varicella zoster lesions (Kanchanapoom et al., 2001; Kim et al., 2015a). Previous phytochemical investigations on the aerial parts and leaves of B. lupulina have led to the isolation of a variety of compounds including iridoid glycosides, phenylpropanoid glycosides, lignan glucosides, aliphatic glycosides, and benzyl alcohol glycosides (Byrne et al., 1987; Tuntiwachwuttikul et al., 1998; Kanchanapoom et al., 2001; Suksamrarn et al., 2003).

During our ongoing search for new bioactive metabolites from medicinal plants, recently we reported the isolation of four new iridoid glycosides with fourteen known analogs and 4,8,8-trimethylcyclooct-2-enone derivatives with six known lignans

[^0]from the water extracts of B. lupulina (Kim et al., 2015a,b). Our continued interest in discovering new compounds from this plant led us to isolate a new iridoid glycoside, barlupulin C methyl ester (1), together with two known phenylethanoid glycosides ($\mathbf{2}$ and $\mathbf{3}$) and three known simple phenolic glycosides (4-6). The structure of the new compound ($\mathbf{1}$) was elucidated through 1D and 2D NMR spectroscopic data, and HR-ESIMS. To the best of our knowledge, this is the first report on the isolation of compounds 3-6 from B. lupulina.

Materials and methods

General experimental procedures
Optical rotations were obtained using a Jasco P-1010 polarimeter. UV spectra were recorded on an Amersham Biosciences Ultrospec 5300 Pro spectrophotometer, and IR spectra were measured on a Bruker Alpha-P spectrometer. All NMR experiments were carried out on a Varian INOVA 600 NMR spectrometer. ESIMS spectra were obtained by LC/MS analysis which was performed on an Agilent 1200 Series HPLC/6130 Series mass spectrometer. High resolution mass spectra were obtained on a Waters Micromass Q-Tof Ultima ESI-TOF mass spectrometer. All the compounds were purified on an Agilent 1100 series HPLC (Agilent Technologies) using a Phenomenex Luna phenyl-hexyl column ($250 \mathrm{~mm} \times 10 \mathrm{~mm}$, $5 \mu \mathrm{~m}$ particle size), a Phenomenex Luna phenyl-hexyl column ($250 \mathrm{~mm} \times 21.2 \mathrm{~mm}, 10 \mu \mathrm{~m}$ particle size) and a Phenomenex Luna
C_{18} column ($250 \mathrm{~mm} \times 21.2 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size). Merck precoated silica gel F_{254} plates and $\mathrm{RP}-18 \mathrm{~F}_{254 \mathrm{~s}}$ plates were used for thin layer chromatography (TLC). Spots were detected on TLC under UV light or by heating after spraying with anisaldehyde-sulfuric acid.

Plant material

The aerial part of Barleria lupulina Lindl., Acanthaceae, was purchased at Vung Tau Vietnam, in March, 2012. A voucher specimen (No. 101) was deposited at BIDMC, Harvard Medical School.

Extraction and isolation

The air-dried aerial parts (200 g) of B. lupulina were sliced and boiled in water (1.2 l) for $4-5 \mathrm{~h}$ to 100 ml . This solution was then centrifuged at $10,000 \times g$ for 30 min and filtered/sterilized. The combined extracts (200 ml) were suspended in $\mathrm{H}_{2} \mathrm{O}$ and then successively partitioned with EtOAc and n-BuOH, yielding 0.52 g and 9 g of residues, respectively. The EtOAc-soluble fraction (0.52 g) was fractionated by preparative HPLC (C_{18} column, Phenomenex Luna, $250 \mathrm{~mm} \times 21.2 \mathrm{~mm}, 5 \mu \mathrm{~m}$) using 23% aqueous MeCN (0.1% formic acid) for 20 min , then to $100 \% \mathrm{MeCN}$ (0.1% formic acid) in the next 10 min , and $100 \% \mathrm{MeCN}(0.1 \%$ formic acid) for the following 10 min (flow rate: $10 \mathrm{ml} / \mathrm{min}$) to give eight fractions (A-H) according to HPLC chromatography analysis. Fraction B was separated by preparative HPLC (C_{18} column, Phenomenex Luna) using 10% aqueous MeCN for 32 min , then to $100 \% \mathrm{MeCN}$ in the next 10 min , and $100 \% \mathrm{MeCN}$ for the following 10 min (flow rate: $10 \mathrm{ml} / \mathrm{min}$) to yield twelve fractions (B1-B12) according to HPLC chromatography analysis. Fraction B4 was purified using a semipreparative Phenomenex Luna phenyl-hexyl column ($6 \% \mathrm{MeCN}$ with 0.1% formic acid, flow rate: $2 \mathrm{ml} / \mathrm{min}$) to yield compounds $4\left(0.8 \mathrm{mg}, t_{\mathrm{R}} 29.6 \mathrm{~min}\right)$ and $5\left(0.6 \mathrm{mg}, t_{\mathrm{R}} 25.6 \mathrm{~min}\right)$. Fraction B6 was separated using a semi-preparative Phenomenex Luna phenylhexyl column ($7 \% \mathrm{MeCN}$ with 0.1% formic acid, flow rate: $2 \mathrm{ml} / \mathrm{min}$) to afford compound $\mathbf{6}\left(0.8 \mathrm{mg}, t_{\mathrm{R}} 19.7 \mathrm{~min}\right)$. Fraction B7 was separated by semi-preparative Phenomenex Luna phenyl-hexyl column ($10 \% \mathrm{MeCN}$ with 0.1% formic acid, flow rate: $2 \mathrm{ml} / \mathrm{min}$) to afford compound 3 ($0.9 \mathrm{mg}, t_{\mathrm{R}} 15.0 \mathrm{~min}$). Fraction B12 was separated by semi-preparative Phenomenex Luna phenyl-hexyl column (13\% MeCN with 0.1% formic acid, flow rate: $2 \mathrm{ml} / \mathrm{min}$) to afford compound $\mathbf{1}\left(0.9 \mathrm{mg}, t_{\mathrm{R}} 20.3 \mathrm{~min}\right)$. Fraction H was further separated by preparative HPLC (C_{18} column, Phenomenex Luna) using 40% aqueous MeCN (0.1% formic acid) for 20 min , then to $60 \% \mathrm{MeCN}(0.1 \%$ formic acid) in the next 10 min , and $100 \% \mathrm{MeCN}$ (0.1% formic acid) for the following 10 min (flow rate: $10 \mathrm{ml} / \mathrm{min}$) to yield 39 fractions (H1-H39) according to HPLC chromatography analysis. The combined mixture of fractions from H 5 to H 9 (assigned as K) was further separated using a preparative Phenomenex Luna phenylhexyl column ($250 \mathrm{~mm} \times 21.2 \mathrm{~mm}, 10 \mu \mathrm{~m}$ particle size) using 10% aqueous MeCN (0.1% formic acid) for 30 min , then to $100 \% \mathrm{MeCN}$ (0.1% formic acid) in the next 5 min , and $100 \% \mathrm{MeCN}$ (0.1% formic acid) for the following 10 min (flow rate: $10 \mathrm{ml} / \mathrm{min}$) to yield 39 subfractions (K1-K39). The consolidated mixture of fractions from K36 to K38 was separated using a preparative Phenomenex Luna phenyl-hexyl column ($21 \% \mathrm{MeCN}$ with 0.1% formic acid, flow rate: $10 \mathrm{ml} / \mathrm{min})$ to give compound $\mathbf{2}\left(1.8 \mathrm{mg}, t_{\mathrm{R}} 13.5 \mathrm{~min}\right)$.

Barlupulin C methyl ester (1)

Amorphous powder. $[\alpha]_{\mathrm{D}}{ }^{25}-35.8$ (c 0.05, MeOH); IR (KBr) $v_{\max }$ 3375, 2924, 1657, 1597, 1452, 1352, 1276, 1170, $1025 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 236(3.56) \mathrm{nm} ;{ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}$) data, see Table 1; positive HR-ESIMS m / z $457.1317[\mathrm{M}+\mathrm{Na}]^{+}$(calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{12} \mathrm{Na}, 457.1322$).

Acid hydrolysis of 1

Compound $\mathbf{1}(0.5 \mathrm{mg})$ was refluxed in $6 \% \mathrm{HCl}(1 \mathrm{ml})$ at $80^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 6 \mathrm{ml})$, and the $\mathrm{H}_{2} \mathrm{O}$ phase was dried using a speedvac concentrator. The dried water-soluble residue was separately subjected to column chromatography over silica gel with EtOAc-EtOH- $\mathrm{H}_{2} \mathrm{O}$ (7:4:1) as an eluent, to yield glucose (0.1 mg), which showed the optical rotation, $[\alpha]_{\mathrm{D}}{ }^{25}+42.5\left(c 0.01, \mathrm{H}_{2} \mathrm{O}\right)$. TLC identification of glucose was analyzed by silica gel co-TLC with an authentic sample [solvent system $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 8: 5: 1\right), R_{f}$ of glucose, 0.30] (Kim et al., 2011).

Results and discussion

The present study reports the isolation and identification of an iridoid glycoside (1), two phenylethanoid glycosides ($\mathbf{2}$ and $\mathbf{3}$), and three simple phenolic glycosides (4-6) from the aerial parts of B. lupulina. The iridoid glycoside (1) was characterized as a new compound. Compounds $4-6$ were isolated from the genus Barleria for the first time, and compound $\mathbf{3}$ was isolated from B. lupulina for the first time.

Compound 1 was isolated as an amorphous powder, $[\alpha]_{\mathrm{D}}{ }^{25}$ -35.8 (c 0.05, MeOH). The molecular formula was determined to be $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{12}$, by the molecular ion peak at $\mathrm{m} / \mathrm{z} 457.1317$ [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$ (calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{12} \mathrm{Na}, 457.1322$) in the positive-ion HR-ESIMS and ${ }^{13} \mathrm{C}$ NMR data. The IR spectrum displayed the presence of hydroxy ($3375 \mathrm{~cm}^{-1}$) and carbonyl ($1657 \mathrm{~cm}^{-1}$) groups and an enol ether system ($1597 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ (Table 1) showed signals for one methyl group at $\delta_{\mathrm{H}} 1.24(3 \mathrm{H}, \mathrm{s})$, one methoxy group at $\delta_{\mathrm{H}} 3.72(3 \mathrm{H}, \mathrm{s})$, one anomeric proton at $\delta_{\mathrm{H}} 4.65(1 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}$), one olefinic proton at $\delta_{\mathrm{H}} 7.39(1 \mathrm{H}, \mathrm{s})$, and one aldehyde proton at $\delta_{\mathrm{H}} 8.14(1 \mathrm{H}, \mathrm{s})$. The ${ }^{13} \mathrm{C}$ NMR and HSQC spectra for 1 showed 18 carbon signals classified as two methyls (including one methoxy group), one methylene, five methines (including three oxygenated), three quaternary carbons (including one oxygenated), one aldehyde group, and six carbon signals (including one oxygenated methylene and five oxygenated methines), indicating a hexose residue.

The comparison of the NMR data of $\mathbf{1}$ with those reported for iridoid glycosides revealed that compound $\mathbf{1}$ has a similar structure

Table 1
${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (150 MHz) data of compound $\mathbf{1}$ in CD_{3} OD. ${ }^{\text {a }}$

Position	$\mathbf{1}$	
	δ_{C}	$\delta_{\mathrm{H}}(J \mathrm{in} \mathrm{Hz})$
1	95.4 d	$5.40, \mathrm{~d}(3.5)$
3	153.0 d	$7.39, \mathrm{~s}$
4	111.5 s	
5	42.3 d	$3.01, \mathrm{dd}(10.0,4.0)$
6	78.1 d	$4.03, \mathrm{~m}$
7α	49.5 t	$2.00, \mathrm{dd}(13.0,6.0)$
7β		$1.82, \mathrm{dd}(14.0,6.0)$
8	79.4 s	
9	52.1 d	$2.57, \mathrm{dd}(10.0,3.5)$
10	24.8 q	$1.24, \mathrm{~s}$
11	169.4 s	
OCH$_{3}$	52.2 q	$3.72, \mathrm{~s}$
1^{\prime}	100.6 d	$4.65, \mathrm{~d}(8.5)$
2^{\prime}	74.9 d	$3.17, \mathrm{~m}$
3^{\prime}	78.0 d	$3.34, \mathrm{~m}$
4^{\prime}	71.8 d	$3.30, \mathrm{~m}$
5^{\prime}	75.8 d	$3.50, \mathrm{~m}$
$6^{\prime} \mathrm{a}$	64.2 t	$4.51, \mathrm{dd}(12.0,2.0)$
$6^{\prime} \mathrm{b}$		$4.28, \mathrm{dd}(12.0,6.0)$
$6^{\prime}-\mathrm{COH}$	163.4 s	$8.14, \mathrm{~s}$

[^1]

1

3

6

Fig. 1. Key HMBC correlations of compound 1.
to barlupulin C isolated from this plant, with the exception of the appearance of a methoxy group (Jensen et al., 2007; Kim et al., 2015a). The position of the methoxy group was assigned to C-11 by the HMBC correlations between $\delta_{\mathrm{H}} 3.72$ and $\delta_{\mathrm{C}} 169.4$ (C-11) (Fig. 1). Meanwhile, the position of the ester group (C-11) was confirmed by HMBC correlations from $\delta_{\mathrm{H}} 7.39(\mathrm{H}-3)$ and $\delta_{\mathrm{H}} 3.01(\mathrm{H}-5)$ to δ_{C} 169.4 (C-11). Acid hydrolysis of $\mathbf{1}$ afforded D-glucose, which was identified by TLC comparison with an authentic sample (Kim et al., 2015a), and the configuration was determined by comparison of optical rotation data. The β-anomeric configuration for the glucose was determined by the coupling constant of anomeric proton (d , $J=8.5 \mathrm{~Hz}$). The location of the D -glucose was determined on the basis of HMBC correlation between $\delta_{\mathrm{H}} 4.65$ ($\mathrm{H}-1^{\prime}$) and $\delta_{\mathrm{C}} 95.4$ ($\mathrm{C}-1$). The relative configuration of 1 was confirmed by analysis of the NOESY spectrum where NOESY correlations between H-9 and $\mathrm{H}-5 / \mathrm{H}-7 \beta$ indicated that $\mathrm{H}-5$ and $\mathrm{H}-9$ are both β-oriented, and NOESY correlations between $\mathrm{H}-10$ and $\mathrm{H}-1 / \mathrm{H}-6 / \mathrm{H}-7 \alpha$ implied that $\mathrm{H}-1, \mathrm{H}-6$, and $\mathrm{H}-10$ are all α-oriented. The ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY, TOCSY, HMBC, and NOESY spectra analysis (Fig. 1) allowed us to establish the complete structure of 1, as shown in Fig. 1. Interestingly, compound 1 has a formate group attached to the C-6 hydroxy group of the glucose unit. Iridoid glycosides with a formate group have yet to be reported in other higher plants, however they were recently isolated from B. lupulina (Kim et al., 2015a). This finding suggests that the occurrence of iridoid glycosides with the formate group can serve as a chemotaxonomic marker for B. lupulina.

Compounds 2-6 were identified as poliumoside (2) (Akdemir et al., 2004), decaffeoylacteoside (3) (Kim et al., 2009), protocatechuic acid 4-O- β-glucoside (4) (Singab et al., 2011), vanillic acid $4-O-\beta$-glucoside (5) (Cui et al., 1993), and leonuriside A(6) (Otsuka
et al., 1989), respectively, on the basis of NMR spectroscopic data analyses and comparison with those reported in the literature.

Conclusions

The phytochemical investigation of the aerial parts of B. lupulina afforded a new iridoid glycoside, barlupulin C methyl ester (1), together with two known phenylethanoid glycosides (2 and 3); poliumoside (2) and decaffeoylacteoside (3), and three known simple phenolic glycosides (4-6); protocatechuic acid 4-O- β-glucoside (4), vanillic acid $4-0-\beta$-glucoside (5), and leonuriside A (6). Compound $\mathbf{1}$ has a formate group attached to the C-6 hydroxy group of the glucose unit, which suggested that the structural feature of the formate group in iridoid glycosides may serve as an important chemotaxonomic marker of B. lupulina. Compound $\mathbf{3}$ was isolated from B. lupulina for the first time, and compounds 4-6 were isolated from the genus Barleria for the first time.

Authors' contribution

SRL contributed to the experiment and wrote the manuscript. JC reviewed the manuscript. DRS conducted the experiment. SC and KHK contributed to the design of the study and critical reading of the manuscript. All the authors have read the final manuscript and approved the submission.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This publication was made possible by grant number R01AT007022 (to D.S. and S.C.) from National Center for Complementary and Integrative Health (NCCIH), then the National Center for Complementary and Alternative Medicine (NCCAM), at the National Institutes of Health, USA. This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT \& Future Planning (2015R1C1A1A02037383).

References

Abd El-Mawla, A.M.A., Ahmed, A.S., Ibraheim, Z.Z., Ernst, L., 2005. Phenylethanoid glycosides from Barleria cristata L. callus cultures. Bull. Pharm. Sci. Assiut University 28, 199-204.
Akdemir, Z.S., Tatli, I.I., Bedir, E., Khan, I.A., 2004. Iridoid and phenylethanoid glycosides from Verbascum lasianthum. Turk. J. Chem. 28, 227-234.
Byrne, L.T., Sasse, J.M., Skelton, B.W., Suksamrarn, A., White, A.H., 1987. The minor iridoid glucosides of Barleria lupulina: isolation, crystal structure and plant growth-inhibiting properties of 6-O-acetylshanzhiside methyl ester. Aust. J. Chem. 40, 785-794.
Cui, C.B., Tezuka, Y., Yamashita, H., Kikuchi, T., Nakano, H., Tamaoki, T., Park, J.H., 1993. Constituents of a fern, Davallia mariesii Moore. V. Isolation and
structures of davallin, a new tetrameric proanthocyanidin, and two new phenolic glycosides. Chem. Pharm. Bull. 41, 1491-1497.
Jensen, S.R., Calis, I., Gotfredsen, C.H., Sotofte, I., 2007. Structural revision of some recently published iridoid glucosides. J. Nat. Prod. 70, 29-32
Kanchanapoom, T., Kasai, R., Yamasaki, K., 2001. Iridoid glucosides from Barleria lupulina. Phytochemistry 58, 337-341.
Kim, K.H., Kim, S., Jung, M.Y., Ham, I.H., Whang, W.K., 2009. Anti-inflammatory phenylpropanoid glycosides from Clerodendron trichotomum leaves. Arch. Pharm. Res. 32, 7-13.
Kim, K.H., Kim, H.K., Choi, S.U., Moon, E., Kim, S.Y., Lee, K.R., 2011. Bioactive lignans from the rhizomes of Acorus gramineus. J. Nat. Prod. 74, 2187-2192.
Kim, K.H., Park, Y.J., Chung, K.H., Richard Yip, M.L., Clardy, J., Senger, D., Cao, S., 2015a. Iridoid glycosides from Barleria lupulina. J. Nat. Prod. 78, 320-324.
Kim, K.H., Clardy, J., Senger, D., Cao, S., 2015b. Chakyunglupulins A and B two novel 4,8,8-trimethylcyclooct-2-enone derivatives from Barleria lupulina. Tetrahedron Lett. 56, 2732-2734.
Otsuka, H., Takeuchi, M., Inoshiri, S., Sato, T., Yamasaki, K., 1989. Phenolic compounds from Coix lachryma-jobi var. Ma-yuen. Phytochemistry 28, 883-886.
Singab, A.N.B., El-Ahmady, S.H., Labib, R.M., Fekry, S.S., 2011. Phenolics from Kalanchoe marmorata Baker. Family Crassulaceae. Bull. Fac. Pharm. Cairo Univ. 49, 1-5.
Suksamrarn, S., Wongkrajang, K., Kirtikara, K., Suksamrarn, A., 2003. Iridoid glucosides from the flowers of Barleria lupulina. Planta Med. 69, 877-879.
Tuntiwachwuttikul, P., Pancharoen, O., Taylor, W.C., 1998. Iridoid glucosides of Barleria lupulina. Phytochemistry 49, 163-166.

[^0]: * Corresponding authors.

 E-mails: scao@hawaii.edu (S. Cao), khkim83@skku.edu (K.H. Kim).

[^1]: ${ }^{\text {a }}$ The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, TOCSY, and HMBC experiments.

