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The influence of hydroxyurea on oxidative stress in sickle cell anemia 
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Introduction
 
Sickle cell anemia (SCA) is one of the most common genetic disorders in the world. It is 

characterized by homozygous hemoglobin (Hb) S and represents the most severe form of sickle cell 
disease (SCD)(1). Hb S is caused by a mutation in the β-globin gene in which the sixth amino acid is 
changed from glutamic acid to valine due to a substitution of adenine for thymine(2). SCA presents a 
series of clinical manifestations which are influenced by genetic and environmental factors. These 
factors result in many phenotypes, mainly mediated by the polymerization of Hb S, hemolysis and 
cell adhesion to endothelium which leads to vascular occlusion(3,4). Blood transfusions, folic acid 
supplementation and hydroxyurea (HU) are the most common treatments in SCA. HU is an oral 
drug whose main effect in SCA is the increased synthesis of fetal Hb (Hb F) which reduces the 
frequency of vaso-occlusive episodes, pain crises, hospitalizations and blood transfusions(5).

Oxidative stress is one of the factors that modulates the phenotypic expression of SCA. 
This stress influences the vaso-occlusive process by increasing the adhesive properties 
of erythrocytes, leukocytes and platelets to the endothelium(6). Normal erythrocytes suffer 
oxidative stress resulting from the production of reactive oxygen species (ROS) due to 
the oxygen metabolism. This metabolic ROS production is increased in patients with 
hemoglobinopathies, causing oxidative damage such as lipid peroxidation. The release of Hb 
in plasma and ischemia-reperfusion cycles are characteristic of SCD, increasing oxidative 
stress and requiring a more effective antioxidant system(7,8).

The literature suggests that excess ROS has implications in the pathophysiology of SCA. 
Thus an evaluation of the oxidative stress in these patients may provide important information 
regarding the current use of medications, such as HU, and may lead to new therapeutic 
strategies. Therefore, considering the intense generation of ROS with the presence and 
hemolysis of Hb S in SCA, the influence of HU on oxidative stress was evaluated using cell 
damage markers and antioxidant capacity by comparing patients taking HU with those who 
were not taking the medication and a control group. 

Methods

Subjects

Peripheral blood samples of 33 SCA patients (21 females and 12 males; mean age: 28 ± 15 
years) from blood banks in São Paulo and Rio de Janeiro, southeastern Brazil were evaluated. 

Objective: The oxidative stress in 20 sickle cell anemia patients taking hydroxyurea and 13 sickle cell anemia 
patients who did not take hydroxyurea was compared with a control group of 96 individuals without any 
hemoglobinopathy.
Methods: Oxidative stress was assessed by thiobarbituric acid reactive species production, the Trolox-equivalent 
antioxidant capacity and plasma glutathione levels.
Results: Thiobarbituric acid reactive species values were higher in patients without specific medication, 
followed by patients taking hydroxyurea and the Control Group (p < 0.0001). The antioxidant capacity was 
higher in patients taking hydroxyurea and lower in the Control Group (p = 0.0002 for Trolox-equivalent 
antioxidant capacity and p < 0.0292 for plasma glutathione). Thiobarbituric acid reactive species levels were 
correlated with higher hemoglobin S levels (r = 0.55; p = 0.0040) and lower hemoglobin F concentrations 
(r = -0.52; p = 0.0067). On the other hand, plasma glutathione levels were negatively correlated with hemoglobin 
S levels (r = -0.49; p = 0.0111) and positively associated with hemoglobin F values (r = 0.56; p = 0.0031).
Conclusion: Sickle cell anemia patients have high oxidative stress and, conversely, increased antioxidant 
activity. The increase in hemoglobin F levels provided by hydroxyurea and its antioxidant action may explain 
the reduction in lipid peroxidation and increased antioxidant defenses in these individuals.
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All patients were treated with folic acid supplementation however 
only 20 of the patients were taking HU. A Control Group was 
formed of 96 individuals without hemoglobinopathies and not 
taking HU (57 females and 39 males; mean age: 23 ± 6 years) 
from southeastern Brazil.

All SCA patients were screened using a questionnaire. 
Pregnant women, smokers and individuals who drank significant 
quantities of alcohol were excluded from the study as were patients 
who had had strokes, pain or hemolytic crisis or had received 
blood transfusions within the two months prior to the start of the 
study. Patients who had taken medications known to affect 
the analyzed parameters (such as acetylsalicylic acid, antibiotics 
or vitamins) within the 24 hours prior to sample collection were 
also excluded from the study. All subjects gave their informed 
consent and the study was approved by the Data Safety Monitoring 
Board (DSMB) according to Brazilian regulations.

Genotype investigation

All samples were submitted to classical hemoglobin 
diagnosis techniques including electrophoresis at alkaline 
and acid pH, to evaluate the Hb migration profile and high 
performance liquid chromatography (HPLC) to measure Hb 
fractions(9-11). Genomic DNA was extracted employing the 
phenol-chloroform method for molecular analysis(12). The 
amplification of the segment that encodes Hb S was performed using 
specific primers (sense: 5’-GGCAGAGCCATCTATTGCTTA-3’; 
antisense: 5’-ACCTTAGGGTTGCCCATAAC-3’) and cleavage 
was achieved by the action of restriction endonuclease FastDigest 
Ddel (Fermentas, USA).(13)

Biochemical analysis

Oxidative stress analysis was evaluated based on the detection 
of lipid peroxidation and antioxidant capacity markers in plasma. 
The lipid peroxidation levels were calculated by the thiobarbituric 
acid reactive species (TBARS) technique. This method is based on 
the reaction of malondialdehyde and other aldehydes, which are by-
products of membrane damage caused by ROS, with thiobarbituric 
acid (TBA) at low pH and high temperature forming a complex with 
maximum light absorption at 535 nm(14). 

The antioxidant capacity was evaluated using Trolox 
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a 
potent antioxidant similar to vitamin E. The Trolox-equivalent 
antioxidant capacity (TEAC) method is based on the reaction 
between 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) 
(ABTS) (SIGMA, A1888), 2,2’-azino-bis (3-ethylbenzothiazoline-
6-sulfonate) and potassium persulfate (K2S2O8). This reaction 
produces the radical cation ABTS•+, a green/blue chromophore. 
The addiction of one antioxidant to this radical cation reduces 
ABTS, resulting in a solution discoloration that is evaluated at 734 
nm to determine the total antioxidant capacity(15). 

Plasma glutathione (GSH) concentrations were determined 
in EDTA-treated plasma samples by the quantification in HPLC 
coupled to a coulometric electrochemical detector (Coulochem III 
ESA, Bedford, MA) set with a potential of 650 mV(16). Under these 
conditions, GSH is clearly eluted in ~ 6 min. GSH was extracted 

Table 1 - Differences between hemoglobin profiles of the SCA patients 
taking HU or not

Sickle cell anemia patients
p-value

(-HU) (+HU)
Hb S 86.63 ± 4.42 80.44 ± 7.47 0.015
Hb A2 3.63 ± 1.28 4.11 ± 0.50 0.250
Hb F 6.47 ± 4.23 11.89 ± 6.92 0.018

-HU: patients not taking hydroxyurea; +HU: patients taking hydroxyurea.

from the plasma samples by adding perchloric acid to the plasma 
sample (10% final concentration). After vigorous stirring and 10 
min on ice, the mixture was centrifuged at 825 g for 10 min at 4°C. 
The extract was then filtered through Millex syringe filter units 
(0.22 μm) and directly injected into the HPLC. Calculations were 
based on a calibration curve previously constructed by injecting 
known GSH standards into the HPLC system.

 
Statistical analysis

Data were tested for normality and homoscedasticity using 
the Shapiro-Wilk and Levene tests, respectively. Analysis of 
variance (ANOVA) was employed complemented by Tukey’s test 
for data with normal distribution. The Kruskal-Wallis test was 
employed followed by Dunn’s test for non-parametric data. The 
correlations between Hb concentrations and lipid peroxidation 
and plasma GSH levels were achieved by the Pearson linear 
correlation test. The level of significance was assumed as 0.05 
and analysis was made using the Statistica 8.0 software.

 
Results

Hemoglobin fraction concentration in SCA patients

The Hb profiles of SCA individuals were compared 
depending on whether patients took HU or not. Results showed 
higher Hb F levels (p = 0.018) and lower Hb S concentrations 
(p = 0.015) among individuals taking HU compared to those who 
were not taking this medication (Table 1).

Lipid peroxidation – thiobarbituric acid reactive 
species dosage

The generation of ROS was indirectly measured though the 
analysis of lipid peroxidation. The values were higher for SCA 
patients (1450 ± 549 ng/mL) compared to the Control Group (239 
± 159 ng/mL)(p < 0.0001). Patients receiving HU had lower lipid 
peroxidation than those without specific medication however 
they still had higher levels than the Control Group (p < 0.0001). 

Correlation analysis was carried out comparing Hb S and Hb F 
levels and the TBARS dosage. Results showed that TBARS values 
in SCA patients were positively correlated with Hb S concentrations 
(r = 0.55; p = 0.0040) reflecting increased lipid peroxidation in the 
presence of Hb S (Figure 1A). Negative correlation was observed 
between TBARS and Hb F levels (r = -0.52; p = 0.0067), showing 
a protective effect of Hb F (Figure 1B).
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Figure 1 - Association between the Hb S and Hb F concentrations and lipid peroxidation levels. (A) Positive linear correlation 
between Hb S and TBARS levels (r = 0.55; p-value = 0.0040). (B) Negative linear correlation between Hb F and TBARS levels 
(r = -0.52; p-value = 0.0067). 

Figure 2 - Association between the Hb S and Hb F concentrations and the GSH levels. (A) Negative linear correlation between Hb S 
and GSH levels (r = -0.49; p-value = 0.0111). (B) Positive linear correlation between Hb F and GSH levels (r = 0.56; p-value = 0.0031).

Antioxidant Capacity – Trolox-equivalent antioxidant 
capacity assay and plasma glutathione levels

The overall antioxidant capacity analyzed by TEAC showed 
higher values for SCA patients (2.04 ± 0.15 mM) than for the 
Control Group (1.93 ± 0.15 mM; p = 0.0028). Patients taking HU 
had higher TEAC values when compared to the group of patients 
that did not take HU (p = 0.0002). No correlation was observed 
between Hb concentrations and TEAC levels.

The GSH concentration in the Control Group was 0.41 ± 
0.38 μM with this value being about two times higher in SCA 
patients (0.88 ± 0.69 μM; p = 0.0292). Patients taking HU had 
higher GSH levels that were significantly different to the Control 
Group (p < 0.0001). Higher Hb S concentrations were correlated 
with decreased GSH levels (r = -0.49; p = 0.0111: Figure 2A) 
while Hb F concentrations were positively correlated with GSH 
values (r = 0.56; p = 0.0031: Figure 2B).

Discussion

The oxidative stress and antioxidant markers were 
evaluated in SCA patients who were either taking HU or 
not and the results were compared to the results of a control 
group. The correlation between Hb S levels and TBARS 
values, as well as lipid peroxidation in SCA patients suggest 
that oxidative stress may result from high levels of meta Hb S 
which is less stable than meta Hb A, leading to the formation 
of hemichromes and hemolysis with the release of heme iron. 
Oxidative stress may be even higher during vaso-occlusive 
crises and painful episodes(17).

Hb F levels were higher in SCA patients. It is known that in 
SCA patients, the concentration of Hb F ranges from 1% to 30% 
and it is inherited as a quantitative trait. A trend of increased Hb 
F levels in SCA patients taking HU was observed in this study 
which reflects the ability of HU to regulate Hb F expression(18).
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Conclusion
 
The results of this study show that the influence of Hb S on 

the oxidative status is reflected by increased lipid peroxidation 
and antioxidant status in SCA patients. High Hb F concentrations 
are associated with less oxidative stress. Treatment using HU 
decreased lipid peroxidation and contributed to the body’s 
antioxidant defenses.
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