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ABSTRACT
Objective: Use the deep learning network model to identify key content in videos. Methodology: After 

reviewing the literature on computer vision, the feature extraction of the target video from the network 
using deep learning with the time-series data enhancement method was performed. The preprocessing 
method for data augmentation and Spatio-temporal feature extraction on the video based on LI3D network 
was explained. Accuracy rate, precision, and recall were used as indices. Results: The three indicators increa-
sed from 0.85, 0.88, and 0.84 to 0.89, 0.90, and 0.88, respectively. This shows that the LI3D network model 
maintains a high recall rate accompanied by high accuracy after data augmentation.  The accuracy and loss 
function curves of the training phase show that the accuracy of the network is greatly improved compared 
to I3D. Conclusion: The experiment proves that the LI3D model is more stable and has faster convergence. 
By comparing the accuracy curve and loss function curve during LI3D, LI3D-LSTM, and LI3D-BiLSTM training, 
it is found that the LI3D-BiLSTM model converges faster. Level of evidence II; Therapeutic studies - inves-
tigation of treatment results.
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RESUMO
Objetivo: Usar o modelo de rede de aprendizagem profunda para identificar o conteúdo-chave em vídeos. 

Metodologia: Após revisão da literatura sobre a visão computadorizada, efetuou-se a extração da característica 
do vídeo alvo da rede utilizando o aprendizado profundo com o método de melhoramento de dados em séries 
temporais. Foi explanado o método de pré-processamento para aumento de dados e extração da característica 
espaço-temporal no vídeo baseado na rede LI3D. Foram utilizados como índices a taxa de precisão, precisão e 
recall. Resultados: Os três indicadores aumentaram de 0,85, 0,88, e 0,84 para 0,89, 0,90, e 0,88, respectivamente. 
Isso mostra que após o aumento dos dados, o modelo de rede LI3D mantém uma alta taxa de recuperação 
acompanhada de uma alta precisão.  As curvas de precisão e função de perda da fase de treinamento de-
monstram que a precisão da rede é muito melhorada em comparação com a I3D. Conclusão: O experimento 
prova que o modelo LI3D é mais estável e que a convergência é mais rápida. Ao comparar a curva de precisão 
e a curva de função de perda durante o treinamento LI3D, LI3D-LSTM e LI3D-BiLSTM, verifica-se que o modelo 
LI3D-BiLSTM converge mais rapidamente. Nível de evidência II; Estudos terapêuticos – investigação de 
resultados de tratamento.

Descritores: Computadores; Sistemas de Visão Computacional; Saúde Pública.

RESUMEN 
Objetivo: Utilizar el modelo de red de aprendizaje profundo para identificar el contenido clave en los vídeos. 

Metodología: Después de revisar la literatura sobre visión por ordenador, se realizó la extracción de característi-
cas del vídeo objetivo de la red utilizando el aprendizaje profundo con el método de aumento de datos de series 
temporales. Se explicó el método de preprocesamiento para el aumento de datos y la extracción de características 
espacio-temporales en el vídeo basado en la red LI3D. Se utilizaron como índices la tasa de exactitud, la precisión 
y recall. Resultados: Los tres indicadores aumentaron de 0,85, 0,88 y 0,84 a 0,89, 0,90 y 0,88, respectivamente. Esto 
demuestra que el modelo de red LI3D mantiene un alto índice de recuperación acompañado de una alta precisión 
tras el aumento de datos.  Las curvas de precisión y de función de pérdida de la fase de entrenamiento muestran 
que la precisión de la red mejora mucho en comparación con la I3D. Conclusión: El experimento demuestra que 
el modelo LI3D es más estable y tiene una convergencia más rápida. Al comparar la curva de precisión y la curva 
de función de pérdida durante el entrenamiento de LI3D, LI3D-LSTM y LI3D-BiLSTM, se observa que el modelo 
LI3D-BiLSTM converge más rápidamente. Nivel de evidencia II; Estudios terapéuticos – investigación de 
resultados de tratamiento.

Descriptores: Computadoras; Sistemas de Visión Computacional; Salud Pública.
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INTRODUCTION
Motion pattern recognition based on video content, a hot trend 

in the field of computer vision, has important research significance 
and application value in intelligent transportation, network security, 
medical care, nursing treatment and human-computer interaction.1 
By detecting and identifying video content, people can quickly access 
key information in video content and use this key information to 
help people solve many of the problems they face today.2 The main 
research work is to use the deep learning network model to identify 
the key content in the video by identifying the content in the video. 
It mainly introduces from the aspects of video data preprocessing, 
data augmentation, feature extraction, feature aggregation and mul-
timodal feature fusion.

Realizing human-computer intelligent interaction can promote the 
development of virtual reality; by extracting the motion information of 
the target object in video surveillance, the elevator can be dispatched 
reasonably, the elevator utilization rate can be improved, and the wor-
king time and work quota of traffic police or security personnel can be 
optimized.3 With the rapid development of artificial intelligence, motion 
pattern recognition based on deep learning has become a research 
hotspot. The recognition rate of motion patterns in complex scenes 
has been greatly improved, which has laid the necessary foundation 
for the application of relevant research in practice Lei J et al.2017.4

When extracting video features, we must take into account the 
spatial and temporal dimensions, and if only the video frame level fea-
tures are extracted and modeled, the natural association between the 
upper and lower frames of the video will be lost.5 This isolated feature 
cannot completely represent the content of a video. By fine-tuning the 
I3D network structure, a lightweight video feature extraction network 
structure LI3D is proposed, and the video features are extracted by 
means of migration learning. The model can effectively extract spatial 
and temporal information in the video and is innovative.6

The study is divided into three parts: the first part is a literature 
review. The second part is based on the video target feature extrac-
tion of computer vision deep learning network, expounding the data 
augmentation preprocessing method and the video spatiotemporal 
feature extraction method based on LI3D network. The third part is the 
verification of the proposed method, and the experiment confirms the 
superiority of the method.

Video target feature extraction based on computer vision 
deep learning network
Data augmentation pretreatment

Data augmentation, one of the commonly used techniques in deep 
learning, is mainly used to increase the training data set and make the 
data set as diverse as possible, so that the trained model has stronger 
generalization ability, and at the same time, the data can contain as 
much feature information as possible, so that the trained model can 
have better robustness and accuracy. In the process of preprocessing 
the video data, different data augmentation strategies are processed 
for the spatiotemporal characteristics of the video data. In the time 
series, multi-time scale frame extraction processing is performed, whi-
ch can effectively extract key frames for video content with different 
motion characteristics, so that the information of the input network 
can better represent the content of the video; In the spatial aspect, the 
video clipping processing of multi-space scale is carried out, and the 
specific content in the key frame image is extracted by three different 
clipping methods, which further expands the feature diversity of the 
data set, and more feature information can be obtained at the same 
time. (Figure 1 and 2)

The data enhancement method in time series makes the training 
data show diversity in timing, enabling the network to extract richer 
timing features. Similarly, in terms of spatial scale, the multi-space scale 
clipping process can make each frame of the input network have more 
spatial information, thereby extracting more spatial information and 
achieving data enhancement in space. The multi-spatial video clipping 
strategy used is shown in Figure 3, which are mainly three ways: center 
clipping, random clipping, and key frame scaling.

The specific processing is as follows: key frame scaling is the 
size required to directly scale the original image to the network, 
and scaling the image will enhance its smoothness and sharpness; 
center clipping is the size of the image required to cut out the net-
work from the center of each key frame, and these key frames can 
get more important information about the center of the image; 
random cropping is a random cropping on key frame images to get 
an image that fits the network input size. Through the above three 
ways of data augmentation, the convergence speed of the network 
can be effectively improved, and the generalization ability of the 
network can be enhanced.

Figure 1. Shorter Sequence Frame Extraction Strategy Diagram.

Figure 2. A schematic diagram of a long sequence frame extraction strategy.
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Space-time feature extraction based on LI3D network
In the process of image content recognition and classification, the 

acquisition of features is the key to determine the quality of algorithm 
recognition. Around this problem, many traditional characterization me-
thods have been developed, such as SIFT, HOG and so on. In recent years, 
with the continuous development of deep learning, feature descriptors 
based on convolutional neural networks (CNN) are increasingly used in 
the field of image content recognition and classification. Compared to 
traditional feature descriptors, the process of CNN extracting feature 
descriptors is equivalent to training one filter (convolution kernel), and 
these filters are equivalent to the detection operators in the traditional 
feature extraction methods, which differ from the traditional feature 
extraction methods in that: the detection operators of traditional feature 
extraction methods such as SIFT and HOG are generally designed by 
humans and are summarized by a large amount of prior knowledge, while 
these filters are obtained through data-driven autonomous learning in 
the process of neural network training. In the process of video feature 
extraction, the 3D convolutional network is used to simultaneously 
learn the information of time and space, and obtain descriptors that 
can simultaneously represent temporal and spatial features, which is 
obviously impossible to achieve by traditional feature extraction me-
thods. However, due to the introduction of convolution operations in 
the time dimension, the traditional 3D convolutional neural network 
C3D is extremely computationally intensive during training. Moreover, 
due to the limited amount of video data, it is not possible to provide 
better pre-training weights. Therefore, the efficiency of C3D to extract 
video timing features is not high, and the recognition accuracy of the 
network is not good enough. I3D solves these two problems very well. 
Firstly, I3D utilizes the network architecture of InCeption-v2. Compared 
with the traditional C3D network, the I3D network has deeper features. 
Moreover, I3D can use the pre-training weight of Inception-v2 on the 
image large-scale dataset ImageNet, which greatly reduces the com-
putational load of model training and improves the robustness and 
generalization ability of the network. 

Experimental Design and Analysis
Experiment 1: Comparing the performance of the proposed network 

structure LI3D and the traditional I3D network structure, in the case of 
the same iteration 50 generations, it is compared from multiple dimen-
sions such as network parameter quantity, test time consumption, test 
accuracy rate, accuracy rate and recall rate. The accuracy rate, accuracy 
and recall rate are calculated as follows: accuracy = all samples with the 
correct prediction / total sample; accuracy = predict positive class as 

positive class / all forecast as positive class; recall rate = predict positive 
class as positive class / all positive class. The results of Experiment 1 are 
shown in Table 1. From the results in the table, it is easy to see that the 
LI3D network structure can effectively reduce the amount of network 
parameters, and the network parameter amount has dropped from 
12.28M to 8.16M, which is a total reduction of 33.6%. Fewer network 
parameters enable the network to have better data fitting capabilities 
and to minimize network overfitting. The accuracy rate on the UCF101 
test set increased from 0.82 to 0.84, the accuracy increased from 0.84 to 
0.88, and the recall rate increased from 0.81 to 0.83. Moreover, since the 
LI3D network uses the superposition of the 3*1*1 convolution kernel 
and the 1*3*3 convolution kernel instead of the 3*3*3 convolution 
kernel in the BD network, the calculation amount of the network can 
be effectively reduced, and the test time of the network was reduced 
from the original 2.08s to 1.62s, a decrease of 22.12%. Network test time 
is closer to real-time effects.

On this basis, the data augmentation operation was added to compa-
re the changes in accuracy rate, accuracy and recall rate of I3D and LI3D 
after the data was augmented in the same iteration of 50 generations. 
The comparison results are shown in Table 2.

It is not difficult to see from Table 2 that after the data is augmented, 
the recognition performance of I3D and LI3D networks has been greatly 
improved, and the accuracy rate, accuracy and recall rate of LI3D are 
more obvious than I3D. The three indicators increased from 0.85, 0.88, 
and 0.84 to 0.89, 0.90, and 0.88, respectively. This shows that after data 
augmentation, the LI3D network model maintains a high recall rate 
while maintaining a high accuracy for the positive rate. Figures 4 and 
2.19 show the accuracy and loss function curves of the training phase 
before and after the data augmentation of the I3D and LI3D networks 
before and after the data augmentation.

The blue curve and the yellow curve in figure 4 are the accuracy cur-
ves of the traditional I3D model before and after the data augmentation. 

Table 1. Performance comparison of I3D and LI3D networks (before data augmentation).

Model
index

Network 
parameters

Testing time-
consuming

accuracy rate Accuracy recall

I3D 12.28M 2.80s 0.82 0.84 0.81
LI3D 8.16M 1.62s 0.84 0.88 0.83

Table 2. I3D and LI3D Network Performance Comparisons (After Data Enlargement).

Model index accuracy rate Accuracy recall
I3D 0.85 0.88 0.84

LI3D 0.89 0.90 0.88

Figure 3. Three ways of data augmentation.
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It is not difficult to see from the figure that after the data augmentation 
operation, the accuracy of the network is greatly improved compared 
with before. However, the accuracy rate after data augmentation is only 
reached before the increase of LI3D data. The LI3D model has been able 
to achieve better accuracy after data augmentation in the same iteration 
of 50 generations. It can be seen that the data augmentation operation 
can effectively improve the recognition performance of the network. 
Under the premise of the network model with the fine-tuning, LI3D, the 
accuracy is more obvious than the traditional I3D network. Figure 5 is 
a comparison of the loss function curves of I3D and LI3D iterative 50 
generations in the case of data augmentation and no data augmentation. 
It can be seen from Fig. 5 that after the data is augmented, the conver-
gence speed of the network is faster, the network is more stable, and 
the robustness is better. Among them, the network convergence rate of 
the combination of LI3D and data augmentation strategy is the fastest.

Experiment 2: After experiment 1, it can be known that the optimal 
performance configuration method is data augmentation strategy and 
LI3D model. Based on the experiment 1, Experiment 2 compares the 
performance of the LI3D, LI3D-LSTM and LI3D-BiLSTM models under the 
data augmentation strategy and the same iteration 50 generations. The 
effect of timing feature analysis on the LI3D model is analyzed. Table 3 
shows the accuracy rate, accuracy, and recall rate of LI3D, LI3D-LSTM, 
and LI3D-BiLSTM under the same iteration of 50 generations.

Table 3. Comparison of LI3D, LI3D-LSTM and LI3D-BiLSTM Test Indicators.

Model index LI3D LI3D-LSTM LI3D-BiLSTM
accuracy rate 0.85 0.86 0.90

Accuracy 0.86 0.89 0.91
recall 0.84 0.87 0.90

It can be seen from the data in the table that LSTM and Bi-LSTM can 
improve the accuracy rate, accuracy and recall rate of the network by 
applying the timing characteristics of LI3D extraction. This shows that 
LSTM and Bi-LSTM can make good use of the timing relationship in the 
data and improve the characterizing ability of the feature to the video 
content. Moreover, Bi-LSTM can simultaneously utilize the context of the 
time series data, and the performance of Bi_LSTM is superior to that of 
LSTM. Figures 6 and 7 show the accuracy and loss function curves for LI3D, 
LI3D-LSTM, and LI3D-BiLSTM under the same iteration of 50 generations.

CONCLUSION
Based on computer vision technology, the target tracking in com-

plex scenes is studied. The difference between 3D convolution and 
traditional 2D convolution is studied, and fine-tuning based on the 
structure of the I3D network, using a lightweight LI3D model, comparing 
the parameter quantity and test time consumption of the LI3D model 
and the traditional I3D model. And the difference in the accuracy rate, 
accuracy, and recall rate of the network test phase before and after the 
application data augmentation strategy. The superiority of the data 
augmentation strategy plus the LI3D model is verified. At the same 
time, the accuracy curve and loss function curve of the I3D model and 
the LI3D model in the training phase are compared under the same 
iteration 50 generations. The experiment proves that the LI3D model 
is more stable and the convergence is faster. Finally, based on the LI3D 
model, the BiLSTM feature analysis module is added, the accuracy, 
accuracy and recall rate of the LI3D, LI3D-LSTM and LI3D-BiLSTM test 
phases are compared under the condition of iterative 50 generations, 
and the effect of BiLSTM context feature association strategy on timing 
feature characterization is verified. At the same time, by comparing 
the accuracy curve and loss function curve during LI3D, LI3D-LSTM 
and LI3D-BiLSTM training, it is verified that the LI3D-BiLSTM model 
converges faster. In a word, the improved feature aggregation layer 
is fused, and a multi-feature coding soft association splicing feature 
aggregation module with adjustable feature clustering center is pro-
posed, which has important practical significance. In the subsequent 
research, the process of feature extraction needs to be extracted in a 
targeted manner to improve the recognition ability of the network for 
key content in the video, thereby improving the recognition accuracy 
and computational efficiency of the network.

The author declare no potential conflict of interest related to this article

Figure 4. Accuracy curves of I3D and LI3D data before and after augmentation.

Figure 5. Loss function curve before and after light-I3D data augmentation.
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