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Abstract
The main objective of this work is to study the existence of spatial patterns maximum annual rainfall (through daily
observations) within the territory of Uruguay and to show the application of two new statistical tools recently proposed.
In the first stage, the distributions of maximum annual precipitation at each meteorological station will be studied. In the
second stage, spatial clustering methods will be applied. To get the distribution of the maximum of each station, we
have used a truncated Cramér-von Mises hypothesis test (the first statistical tool) and showed that it improves on the
performance of the classic likelihood ratio test. It was found that in 18 study locations the distribution that best fits the
data is of the Gumbel type, and for the other two, it is of the Fréchet type. Regarding the clustering methods, two meth-
odologies were used, one of them was to perform clustering with the estimated parameters and the other was the PAM
methodology using the F-madogram as distance, highlighting the homogeneity throughout the Uruguayan territory.
Another novelty of this work (the second statistical tool) consists in including, as a complement to the clustering, the
recently proposed independence test based on recurrence rates.
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Agrupamento Espacial da Precipitação Anual Extrema no Uruguai

Resumo
O objetivo principal deste trabalho é estudar a existência de padrões espaciais de precipitação máxima anual (através de
observações diárias) no território do Uruguai e mostrar a aplicação de duas novas ferramentas estatísticas recentemente
propostas. Na primeira etapa, serão estudadas as distribuições da precipitação máxima anual em cada estação meteoro-
lógica. Na segunda etapa, serão aplicados os métodos de agrupamento espacial. Para obter a distribuição do máximo de
cada estação, usamos um teste de hipótese truncado de Cramér-von Mises (a primeira ferramenta estatística) e mos-
tramos que ele melhora o desempenho do teste de razão de verossimilhança clássico. Constatou-se que em 18 locais de
estudo a distribuição que melhor se ajusta aos dados é do tipo Gumbel, e nos outros dois, é do tipo Fréchet. Com relação
aos métodos de agrupamento, foram utilizadas duas metodologias, uma delas foi o perform agrupamento com os parâ-
metros estimados e a outra foi a metodologia PAM utilizando o F-madograma como distância, evidenciando a homo-
geneidade em todo o território uruguaio. Outra novidade deste trabalho (a segunda ferramenta estatística) consiste em
incluir, como complemento ao agrupamento, o recentemente proposto teste de independência baseado em taxas de
recorrência.

Palavras-chave: teoria dos valores extremos, algoritmo PAM, F-madograma, precipitação extrema.

1. Introduction
The exploration and analysis of extreme meteor-

ological data has been increasing due to the growth in cli-
mate variability. Various academic studies have focused

on the use of extreme value theory in order to obtain con-
clusions in this regard. For example (Portugués et al.,
2008) studied the characteristics of extreme rainfall in La
Rioja, Spain, analysing both the intensity (mm annual
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maximum daily) as well as the accumulation of rainfall as
a consequence of the persistence of rain, over a certain
period of time. Cartographies were produced reflecting the
maximum intensity, magnitude and expected duration. In
(Hernández et al., 2011), extreme rainfall in Venezuela
was studied, adjusting GEV (Generalized Extreme Value
distributions, that is a family of distributions that includes
Gumbel, Weibull and Fréchet distributions and that will be
defined in Subsection 2.2) models from an estimation of
the parameters, using Bayesian methods. The results
showed that the Gumbel and Fréchet models are the most
appropriate to represent the annual maxima in the studied
locations. However, in locations with arid or very humid
mesoclimates, the Weibull model is more appropriate.
Other types of climatic variables have also been analysed
using this method, among them (Blanco et al., 2014), in
which not only is the maximum rainfall studied, but there
is also an analysis of the trend of the extreme temperatures
in the State Durango, Mexico. Another climatic variable
analysed using this type of method is the wind, e.g., in
(Fernández et al., 2016), which analyses the extreme
speed of said phenomenon in Cuba, since obtaining this
type of estimate is of the utmost importance, for example
for structural design. Other works have combined the the-
ory of extreme values with other types of methods such as
copulas, clustering, and others (Moreno, 2013; Bernard et
al., 2013; Bechler et al., 2015a;b). In (Vannitsem et al.,
2017), the maximum rainfall in Belgium was studied also
using extreme value theory and incorporating information
regarding spatial dependence. This work concluded that
the degree of dependence on extreme rainfall in that coun-
try varies greatly according to three factors: the distance
between two seasons, the season (summer or winter), and
the duration of the accumulation of precipitation (per hour,
day, month etc.). (Rusticucci et al., 2010) studied such
extreme events in South America. The performance of
eight coupled global climate models (IPCC AR4) was stu-
died in the simulation of the annual indices of extreme
temperature climatic events and precipitation in South
America. Two extreme temperature indices and three
extreme precipitation indices were compared, based on
information from meteorological stations from 1961-2000.
(Tencer et al., 2012) studied the interdecadal variability
observed in the distribution of temperature events that
exceed certain threshold, at five meteorological stations of
Argentina, 1941-2000 period, by applying extreme value
theory. The results showed a decrease in the intensity of
extreme warm events over the study period, together with
an increase in their frequency of occurrence during the last
20 years of the 20th century. The extremes of cold also
show a decrease in intensity. However, changes in their
frequency are not as consistent between the different sta-
tions studied. In Uruguay, however, there has been little
study of extreme meteorological or climatic phenomena.
(Durañona, 2015) studied strong winds and considered

that the UNIT 50-84 (Uruguayan Institute of Technical
Standards) standard should be reviewed and updated. The
results obtained highlight, for example, that the geo-
graphical behavior of strong winds differs from those
indicated on the national extreme winds map given by the
UNIT 50-84 wind standard. Additionally, results evi-
denced that that the distribution of extreme winds aver-
aged over 10 min for Montevideo can be properly
modeled by a Gumbel distribution, while the UNIT 50-84
proposes Fréchet distribution for gusts of wind.

2. Material and Methods
In Subsection 2.1 we describe the objective of the

work and the data set. In subsections 2.2 to 2.5 we include
the methodology.

2.1. Data set and objective
This research was carried out with the aim of model-

ing the annual extreme rainfall accumulated over 24 hours
(daily) in Uruguay as well as investigating the existence of
spatial patterns in this phenomenon. There was a daily
database of rainfall for the period 1981 to 2013 at 19
meteorological stations and 1 pluviometric station. In this
framework, two objectives were set: 1. Study the distribu-
tion of extreme values of rainfall at each of the weather
stations. The theory of extreme values provides a theore-
tical model to represent the behavior of the maxima recor-
ded at different locations. 2. Identify the spatial patterns of
extreme rainfall in Uruguay. In order to do this, spatial
clustering methods have been used. The data set is the
maximum annual rainfall from January 1981 to December
2013 at 20 weather stations located throughout Uruguay.
This yields 33 observations for each one of the 20 weather
stations. Figure 1 shows their locations, and the extreme
rainfall boxplot for each one is given in Fig. 2. It can be
observed that the locations Artigas, Bella Unión, Colonia,
Rocha, Salto, Treinta y Tres, and Young are the ones that
registered annual extreme rainfall above 200 mm in dif-
ferent years. In 1997 there occurred important records in
Bella Unión and in 1998 in Salto and Treinta y Tres. But
Salto also stands out as the location that had the highest
inter-annual variability in the behavior of this phenom-
enon. Melo stands out as the station with less inter-annual
variability: the annual extreme rainfall did not exceed
150 mm in either year of the period under study.

2.2. Estimation of the distribution at each weather
station

The literature evidences a profound development
regarding the theory of extreme values (Resnick, 2007; de
Haan and Ferreira, 2007; de Haan, 1978; Davison et al.,
2012), and studies related to spatial statistics can also be
found related to spatial statistics (Gaetan and Guyon,
2010), among others. According with the extreme value
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theory, the Fisher & Tippett theorem (Fisher and Tippett,
1928) formalized by (Gnedenko, 1948), said that if the
sample size is large enough, then it is possible that the dis-
tribution of the maximum can be approximated by a Fré-
chet, Gumbel or Weibull family of distributions defined
by: H1(x; μ; σ)= e− e(μ − x)=σ for σ > 0 (Gumbel),

H2(x; μ; σ; ξ)= e− x− μ
σð Þ

− 1=ξ

where x > μ, σ, ξ > 0 (Fréchet)

and H3(x; μ; σ; ξ)= e− μ − x
σð Þ

− 1=ξ

where x < μ, σ > 0, ξ < 0
(Weibull). These three types of functions can be included

in the following expression: H(x; μ; σ; ξ)= e − 1þ ξ(x− μ)
σð Þ

− 1=ξ

where σ > 0 and x > μ - σ/ξ for ξ > 0 or x < μ - σ/ξ for
ξ < 0. The distribution H is Fréchet when ξ > 0, Weibull
when ξ < 0, and if ξ → 0, then H becomes a Gumbel dis-
tribution. H is called the Generalized Extreme Value dis-
tribution (GEV). Given p ∈ (0,1) we can find zp such that

H(zp) = 1 - p. It is known that if we take a return period
t = 1/p, then zp is the return level. The parameters μ, σ and
ξ (location, scale and shape respectively), were estimated
by three methods: classical maximum likelihood, and two
methods designed (and widely used) for extreme value
statistics: profile likelihood and the method of weighted
moments. The method called weighted moments was pro-
posed by (Greenwood et al., 1979). An advantage of the
profile maximum likelihood method is that it allows a non-
symmetric confidence interval. In several cases, for
extremes it can be more reasonable to have non-symmetric
intervals.

2.3. Model diagnosis
Once we have estimated the parameters, as the sec-

ond step, we will examine a goodness of fit test for the
distribution of each station. H0 : X(i) ∼ Gumbel(μ, σ) vs.
H1: H0 does not hold, where X(i) is the yearly maximum of
rainfall at station i. If H0 is rejected, then we perform a test
for the Fréchet distribution (if the estimation of ξ is posi-
tive) or Weibull (if the estimation of ξ is negative). All R
packages concerning extreme value statistics include the
likelihood ratio test that assumes that the distribution of
the observed sample obeys a GEV distribution. In our
case, we do not have a large sample size, also we prefer to
use a test that does not assume any distribution previously.
In addition, the p-value for the likelihood ratio test is cal-
culated from the asymptotic distribution, which can lead to
error given our moderate sample size (33). To adjust the
distribution of each station, we used a truncated Cramér-
von Mises test for the Gumbel distribution. We adapt the
idea proposed in (Kalemkerian, 2019) to the Gumbel dis-
tribution. The details of this adaptation can be found in
(Santiñaque, 2020) (pages 24 and 25).

To add more validity to the results obtained by the
goodness of fit test, in each station, we have made diag-
nostic plots that compare the empirical values vs. the
adjusted values in the four ways that are listed below. 1:
PP plots compare the theoretical cummulative prob-
abilities with the empirical cummulative probabilities. 2:
QQ plots compare the empirical quantile function with the
adjusted quantile function. 3: Empirical density vs. adjus-
ted density. 4: Return period-return level plot. In the PP
plot and QQ plot, if the points are close to the diagonal,
the adjusted distribution works well. In the return period/
return level, if the points are near the straight line, the
Gumbel distribution is suitable, whereas if the points are
near the dashed curve above the straight line, the Fréchet
distribution is suitable. But if the points are near the
dashed curve below the straight line, the Weibull distribu-
tion is appropriate, see for example Coles et al. (2001).

2.4. Spatial clustering
The main objective of this section is to investi-

gate whether there are groups of stations with similar

Figure 1 - Map of Uruguay with the 20 weather stations analized in this
work.

Figure 2 - Maximum rainfall boxplot for each weather station.
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behavior in terms of maximum annual rainfall, and if
so, how many groups there are and where they are
located geographically. Of course, we can take one,
two or three groups according with the type of dis-
tribution that has been adjusted in each station. How-
ever we are interested in applying standard clustering
methods and comparing that with a method designed
and used for extreme events. On the one hand, we
have performed clustering of the estimated parameters.
We applied a hierarchical Ward method with Eucli-
dean distance. Also, we applied a non-hierarchical
PAM method (Partitioning around medoids) proposed
by (Kaufman and Rousseeuw, 1990). Unlike the K-
means method, where each cluster is represented by
its mean, in the PAM method each cluster is repre-
sented by a particular observation in it (medoid).
Thus, when the observations are maximal, the medoid
of each cluster remains a maximum, which does not
happen in K-means. For this reason, the PAM method
to obtain clusters looks more reasonable than the K-
means method. Also, the PAM method is more robust
than the K-means method (Izenman, 2008). To obtain
the optimal number of groups we have used the Sil-
houette coefficient. The graphical tool called Silhouette
was proposed by (Rousseeuw, 1986). On the other
hand, we have performed the clustering method pro-
posed in (Bernard et al., 2013) where it was applied
with good results to detect spatial dependencies
between heavy rainfall events in France. The method
consists of applying PAM clustering using the distance
defined from the F-madogram, proposed by (Cooley et
al., 2006) and (Naveau et al., 2009). A good explana-
tion of this method can be found in (Bernard et al.,
2013).

2.5. Independence test based on recurrence rates
between pairs of stations

As a complement to what was done in the clustering
subsection, we consider the independence test between
two variables proposed by (Kalemkerian and Fernández,
2020a). The test can be summarized as follows. Given a
sample (X1, Y1), (X2, Y2), …, (Xn, Yn) of (X, Y) where
X ∈ SX and Y ∈ SY, where SX and SY are metric spaces, we
want to test H0: X and Y are independent vs. H1: H0 does
not hold. The test is based on a function that measures the
difference between the joint recurrence rates between X
and Y, and the product between the marginal recurrence
rates X and Y. The implementation of the test and its theo-
retical properties can be found in (Kalemkerian and Fer-
nández, 2020a). In (Kalemkerian and Fernández, 2020b)
other climatological applications of the test can be found
as well as its good performance under a wide spectrum of
alternatives.

3. Results and Discussions

3.1. Parameter estimation
The parameter estimates obtained by the three

methods were similar. In Table 1, in columns 2 to 5, we
show the maximum likelihood estimated values of μ, σ
and ξ, and a 95% confidence interval for ξ from the
profile maximum likelihood. Except for Mercedes, all
the confidence intervals for ξ contains the value of zero,
which suggest that several of the stations considered in
this work can be modeled by a Gumbel distribution. We
refine this fact using the goodness of fit test. Column 6
of Table 1 shows the p-values for the goodness of fit
test for the Gumbel distribution for each station. We
conclude that at the 5% level, there is empirical evi-
dence that Rocha and Mercedes do not have a Gumbel
distribution. For Rocha and Mercedes, once the test
rejected the hypothesis of a Gumbel distribution, we
made the same adaptation to test the goodness of fit for
the Fréchet distribution, and the p-values were 0.10 and
0.33, respectively. In summary, the truncated test of fit
goodness is that Rocha and Mercedes have a Fréchet
distribution, and the other stations have a Gumbel dis-
tribution.

Table 1 - Maximum likelihood estimated values of μ, σ and ξ, and a 95%
confidence interval for ξ from the profile maximum likelihood. Column 6
shows the p-values for the truncated Cramér-von Mises test for the Gum-
bel distribution.

Station μ̂ σ̂ ξ̂ 95% C. I. for ξ p-value
(Gumbel)

Punta del Este 70.25 22.30 -0.04 (-0.35,0.35) 0.56

Aerop Carrasco 75.56 21.36 0.01 (-0.28,0.23) 1.00

Mercedes 78.13 24.54 0.17 (0.02,0.76) 0.03

Colonia 80.41 27.7 0.15 (-0.14,0.53) 0.46

Aerop Melilla 81.13 28.52 -0.08 (-0.29,0.15) 0.32

Rocha 81.99 18.81 0.27 (-0.09,0.33) 0.03

Prado 82.32 27.77 -0.19 (-0.46,0.05) 0.43

Paso los Toros 84.66 19.94 0.10 (-0.19,0.48) 0.54

Palmitas 84.78 29.16 -0.11 (-0.41,0.10) 0.28

Melo 86.49 21.49 -0.12 (-0.40,0.10) 0.45

Durazno 86.78 21.07 -0.05 (-0.35,0.33) 0.60

Trinidad 87.91 29.05 -0.20 (-0.47,0.07) 0.19

Paysandú 88.04 24.87 -0.08 (-0.39,0.23) 0.23

Salto 89.05 25.16 0.25 (-0.03,0.61) 0.16

Rivera 89.50 19.76 0.17 (-0.08,0.09) 0.36

Young 89.97 24.60 -0.04 (-0.23,0.16) 0.56

Treinta y tres 90.92 31.77 0.09 (-0.17,0.58) 0.26

Bella Unión 97.67 26.96 0.03 (-0.21,0.34) 0.89

Tacuarembó 99.53 30.22 -0.12 (-0.47,0.19) 0.64

Artigas 103.32 39.96 -0.04 (-0.35,0.30) 0.89
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3.2. Model diagnosis
The diagnostic plots showed that the adjusted dis-

tribution works well for each one of the 20 stations. For
example, in Fig. 3 we show the four diagnostic plots for
Rocha station, using Fréchet and Gumbel distribution. It is
important to note that we have obtained improvements
using the truncated Cramér-von Mises test instead of the
likelihood test. For example, Rocha station according to
the likelihood ratio test is adjusted by Gumbel distribution
(instead Fréchet according with the truncated Cramér-von
Mises test). Fig. 3 shows a better fit to Fréchet than to
Gumbel distribution in the qq plots and the return level
plots.

3.3. Clusters of the estimated parameters
Applying a hierarchical Ward method with Eucli-

dean distance, the adjusted R2 defined as R2=(K − 1)
(1−R2)=(n−K)

where K is the number of groups, has a maximum for
K = 2 groups. In Fig. 4 we show the dendrogram for K = 2
and K = 3 groups.

Figures 4 and 5 (left) show that the Silhouette coeffi-
cient clearly suggests that there are two groups: one is Mer-
cedes by itself, and the other one consists of the remaining
19 stations. Observe that using the PAMmethodology with
F-madogram the values of the Silhouette coefficient are
poor for all values of K considered. In summary, using the
estimated parameters, the existence of two different groups

Figure 3 - Diagnostic plot for Rocha adjusted distribution from Fréchet model (left) VS Gumbel model (right).
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is clear. Taking into account that one of these groups is
formed by only one station (Mercedes), we can deduce that
there are no substantial differences between the yearly
maximum rainfall throughout the geographical area stu-
died. On the other hand, considering the PAMmethod with
the F-madogram, the Silhouette coefficient does not detect
a clear separation into groups, which reinforces the conclu-
sion that the behavior of the yearly maximum rainfall is
homogeneous throughout Uruguay. In Fig. 6 we show the
geographical distribution of the different stations, separat-
ing them into 2 (the optimum number of groups according
with Silhouette criterion), 3 and 4 groups.

3.4. Independence test based on recurrence rates
between Mercedes and the other stations

In Table 2 we show the p-values for the indepen-
dence test based on the recurrence rates between Mercedes
station and each one of the remaining stations. From
Table 2 we can conclude that if we work at the 5% level of

significance, Mercedes did not reject the null hypothesis of
independence of each one of the other stations. It can also
be shown that Rivera did not reject the null hypothesis of
independence, neither with Artigas nor with Bella Unión.
Also for the stations in the metropolitan area (Melilla,
Prado and Carrasco Airport), the null hypothesis of inde-
pendence is not rejected. Also, for Rocha and Punta del
Este, the null hypothesis of independence is not rejected.
If the results of the independence test were taken as a
grouping criterion, it can be seen that several of the results
obtained by the previous clustering methods are reinforced
by the results obtained by this test.

4. Conclusions
We have studied the existence of spatial patterns of

daily maximum annual rainfall within Uruguay using two
clustering techniques. One technique was to adjust a GEV
distribution for each one of the 20 stations, and then make
clusters from their sets of estimated parameters. With this,

Figure 4 - Dendrogram for K = 2 and K = 3 groups from Ward method with Euclidean distance.

Figure 5 - Silhouette coeffcient for different values of K using the estimated parameters (left) and F-madogram as a distance (right).
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the Silhouette coefficient clearly suggests two groups, but
one of them consists exclusively of Mercedes station. In
other technique, we have used the PAM methodology
using the F-madogram as the distance. With this, the Sil-
houette coefficient does not suggest grouping stations. In
addition, we have introduced two statistical techniques.
First, to adjust the distribution for each station, we have
adapted a truncated Cramér-von Mises test of normality to
test a GEV distribution; this test achieved a better result
than the classical likelihood ratio test. Second, we have
applied the recently proposed independence test based on
recurrence rates, and found that this test can be used as a
complement to a clustering analysis to see if each station
belonging to one group is statistically independent of each
station corresponding to another group. As a final conclu-
sion of the entire study, we can conclude that throughout
the Uruguayan territory, the behavior of the maximum
annual rainfall is homogeneous, with the particularity of
Mercedes whose observations were independent from the
rest of stations (according to the independence test based
on recurrence rates). Also, Mercedes is the only member
of a group when clusters of two groups are made.
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