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Abstract
Regional climate models (RCM) are the main tools for climate change impacts assessment in hydrological studies.
These models, however, often show biases when compared to historical observations. Bias Correction (BC) are useful
techniques to improve climate projection outputs. This study presents a multi-criteria decision analysis (MCDA) frame-
work to compare combinations of RCM with selected BC methods. The comparison was based on the modified Kling-
Gupta efficiency (KGE’). The criteria evaluated the general capability of models in reproducing the observed data main
statistics. Other criteria evaluated were the relevant aspects for hydrological studies, such as seasonality, dry and wet
periods. We applied four BC methods in four RCM monthly rainfall outputs from 1961 to 2005 in the Piracicaba river
basin. The Linear Scaling (LS) method showed higher improvements in the general performance of the models. The
RCM Eta-HadGEM2-ES, corrected with Standardized Reconstruction (SdRc) method, achieved the best results when
compared to the observed precipitation. The bias corrected projected monthly precipitation (2006-2098) preserved the
main signal of climate change effects when compared to the original outputs regarding annual rainfall. However, SdRc
produced significant decrease in monthly average rainfall, higher than 45% for July, August and September for RCP4.5
and RCP8.5 scenarios.

Keywords: Eta-RCM, bias correction, standardized reconstruction.

Análise de Decisão Multi-Critério para Avaliar Modelos de Projeção
Climática com Correção de Viés na Bacia do Rio Piracicaba

Resumo
Modelos climáticos regionais (RCM) são as principais ferramentas para analisar impactos de mudanças climáticas em
variáveis hidrológicas. Contudo, frequentemente apresentam vieses quando comparados a observações para o mesmo
período, e técnicas de correção de viés (BC) têm sido utilizadas. Este estudo propôs uma análise de decisão multicritério
(MCDA) para comparar combinações de RCM com metodologias de BC. Os critérios permitiram analisar a capacidade
dos modelos em reproduzir as estatísticas gerais observadas, e obter informações relevantes para estudos hidrológicos,
como aspectos relacionados à sazonalidade e de períodos secos e úmidos. A MCDA foi baseada no coeficiente modi-
ficado de Kling-Gupta (KGE’). Quatro métodos de BC foram aplicados em dados de precipitação mensal de quatro
RCM para a bacia do rio Piracicaba. O método Linear Scaling (LS) apresentou os melhores resultados no aprimora-
mento da performance geral dos modelos. O método Standardized Reconstrucion (SdRc), combinado ao RCM Eta-
HadGEM2-ES, obteve o melhor resultado para o período de validação (1991-2005). A análise dos indicadores da
MCDA foi importante para a compreensão dos efeitos da BC. Os cenários projetados corrigidos (2006-2098) não apre-
sentaram alterações no sinal da mudança climática do RCM com relação à precipitação total anual. No entanto, o méto-
do SdRc diminuiu em pelo menos 45% a precipitação média mensal dos meses Julho, Agosto e Setembro para os
cenários RCP4.5 e RCP8.5.
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1. Introduction

Regional climate models (RCMs) are important
tools to assess climate change impacts on hydrological
processes. These models are usually developed through
the downscaling of global climate models (GCMs), with
resolutions of approximately 100-250 km (Teutschbein
and Seibert, 2010). They incorporate representations of
regional climate dynamics, in resolutions that range from
5 to 50 km. Therefore, RCMs generally improve the
representation of variables of interest such as precipitation
and temperature at catchment scales (Argüeso et al.,
2013).

However, RCMs historical outputs often show dif-
ferent statistical properties when compared to observa-
tions for the same period. These errors, or biases, are
defined as the differences in the main statistics between
climate model simulations and the observed data. Devia-
tions are caused by systematic and random RCMs’ errors
and by errors derived from the original GCMs such as
resolution issues and atmospheric circulation and ocean
dynamics (Shrestha et al., 2017; Guimarães et al., 2016).

Bias correction (BC) methods are used to remedy the
problems with biased RCM datasets (Teutschbein and Sei-
bert, 2012). The basic principle is that the differences
between the model historical outputs and the observed
data can be extrapolated for the future period. BC methods
firstly identify existing biases in control or historical pe-
riod and then correct the results of climate models in both
control and future scenarios (Teutschbein and Seibert,
2010). Although BC has been a matter of criticism for
some authors as described by Ehret et al. (2012) and
Hempel et al. (2013), these techniques are widely used
and recognized as helpful, since there are no other feasible
alternatives for improving current models outputs (Argüe-
so et al., 2013).

BC techniques range from simple scaling approa-
ches to sophisticated methods related to probability map-
ping (Johnson and Sharma, 2012; Teutschbein and Seibert,
2012; Shrestha et al., 2017). Therefore, the development
of evaluation metrics is important to quantify their robust-
ness and performance (Eum et al., 2017), especially the
ability to reproduce the overall statistics of observed his-
torical data. Among the main indicators founded in
research are the Kolmogorov-Smirnof nonparametric test
(KS), the Nash-Sutcliffe efficiency (NSE), the ratio of the
root mean square error to the standard deviation of mea-
sured data (RSR), among others. (Tschöke et al., 2017;
Akhter et al., 2017).

Studies tend to assess the performance of RCMs
outputs based on the mean statistics of historical data,
often ignoring rainfall temporal variability. Multi-criteria
decision analysis (MCDA) can capture model's ability in
representing seasonal elements, as well as in reproducing
dry and wet periods (Eum et al., 2017).

This study presents a general MCDA framework for
users that seek to evaluate and select the most suitable
combination of RCM and BC method in an available
inventory. We applied this framework to RCMs projected
monthly rainfall and assessed their ability to replicate his-
torical rainfall statistics related to general performance,
time-series seasonality, and extreme values (such as driest
and wettest months). The criteria indicators were eval-
uated by using the modified Kling-Gupta efficiency -
KGE’ (Kling et al., 2012).

2. Material and Methods
RCMs monthly rainfall outputs were corrected based

on calibrated observed data (1961-1990) by four methods:
(i) Linear Scaling (LS), (ii) Standardized Reconstruction
(SdRc), (iii) Empirical Quantile Mapping (EQM) and (iv)
Gamma Quantile Mapping (GQM). Performance of bias
corrected data from the validation period (1991-2005) was
then evaluated through a multi-criteria decision analysis
(MCDA) based on three criteria: general, seasonal and
extreme values related performance.

The study area is in the Piracicaba river basin. This
basin is highly urbanized and industrialized, with an esti-
mated population of 3.4 million people, 66.7% of them
located in urban area. The basin has a historical of water
conflict challenges and suffered a severe drought during
the years of 2013-2015 compromising water availability
(PCJ, 2020). This section describes the selected datasets,
bias correction methods and the proposed evaluation fra-
mework.

2.1. Climate datasets
Observed monthly rainfall data from 1961 to 2005

were obtained from a set of 85 stations provided by the
Brazilian National Water Agency (ANA). Observed data
was submitted to gap-filling by using the Regional Vector
Method (RVM) (Hiez, 1977). Climate change monthly
rainfall from historical datasets (1961 to 2005) were
obtained from the Eta RCM models provided by CPTEC/
INPE. The Eta RCM used in this study are nested in four
global climate models: (i) BESM (Nobre et al., 2013), (ii)
CanESM2 (Arora et al., 2011), (iii) HadGEM2-ES (Col-
lins et al., 2011) and (iv) MIROC5 (Watanabe et al.,
2010). The RCM domain comprises most of Caribbean,
Central and South America, with approximately 20 km of
resolution in the horizontal and 38 layers in the vertical
(Brazil, 2015; Chou et al., 2014a, 2014b; Lyra et al.,
2018).

The use of Eta vertical coordinate is recommended
for regions with steep orography, such as the Andes Cor-
dillera (Chou, et al., 2012; Pesquero et al., 2010). The
application of Eta model for climate change assessment in
South America leads to satisfactory results, and monthly
precipitation totals indicate that seasonal variability is rea-
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sonably reproduced (Chou et al., 2005). However, some
areas exhibit systematic biases and overestimates rainfall,
especially near mountain regions such as southeastern
Brazil (Chou et al., 2012). In this paper, the Eta-RCM are
designated after their original GCM source.

Figure 1 shows the Piracicaba river basin, the loca-
tion of the 85 rainfall stations and the corresponding Eta
RCM grid.

2.2. Bias correction methods
Four BC methods were evaluated in this study: Lin-

ear Scaling (LS), Standardized Reconstruction (SdRc),
Gamma Quantile Mapping (GQM) and Empirical Quan-
tile Mapping (EQM). LS and SdRc are statistical-based
methods, while GQM and EQM are distribution-based
ones. All of them were calibrated with restored observa-
tional station data for 30 years from 1961 to 1990 and
evaluated for the 15-year period from 1991 to 2005.

2.2.1. Statistical-based methods

Linear Scaling (LS) is one of the simplest and most
used bias correction methods. It consists of using the dif-
ference (additive) or the quotient (multiplicative) between
simulated and observed data means during the calibration
period to scale the model simulation (Akhter et al., 2017).
By definition, corrected model data presents the same
monthly mean values as observed data (Teutschbein and
Seibert, 2012). In this study, the multiplicative approach
was applied to correct monthly rainfall at each station

(Eq. (1)):

P
0

sim;val =Psim;val �
Pobs;cal
Psim;cal

ð1Þ

where P’sim,val and Psim,val, are the bias corrected and ori-
ginal RCM output precipitation for the validation period
respectively; Pobs;cal and Psim;cal are the monthly average
rainfall observed and simulated values during the calibra-
tion period.

Standardized Reconstruction (SdRc) is a useful tech-
nique for application in monthly data (Acharya et al.,
2013; Johnson and Sharma, 2012). In SdRc, the RCM pre-
cipitation output is standardized by its monthly mean (μ)
and monthly standard deviation (σ) considering the cali-
bration period, to calculate a future rainfall anomaly Y’sim,
val (Eq. (2)). RCM corrected data for the validation period
Z’sim,val, was obtained by Eq. (3), using the mean and stan-
dard deviation of the observed data (Akhter; et al., 2017).

Y
0

sim;val =
Ysim;val − µsim;cal

σsim;cal
ð2Þ

Z
0

sim;val =Y
0

sim;val � σobs;cal þ µobs;cal ð3Þ

2.2.2. Distribution-based methods

Quantile Mapping methods are statistical transfor-
mations that fit a distribution function f(x) to a modeled

Figure 1 - Location of the study area in the Piracicaba river basin, major rivers, rainfall stations, and Eta RCM grid.
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variable Psim such that it equals the distribution of the
observed value Pobs as shown in Eq. (4) (Akhter et al.,
2017; Gudmundsson et al., 2012). If the distribution of the
modeled variable Psim is known, then the transformation
can be obtained by Eq. (5).

Psim = f Pobsð Þ ð4Þ

Pobs =Fobs − 1 Fsim(Psimð Þ) ð5Þ

where Fsim is the Cumulative Distribution Function (CDF)
of Psim and Fobs−1 is the inverse CDF corresponding to
Pobs (Gudmundsson et al., 2012). Common approaches to
solve Eq. (5) are the use of theoretical or empirical dis-
tributions.

Gamma Quantile Mapping (GQM) is a theoretical
approach based on the assumption that Gamma distribu-
tion describes both observed and simulated distributions.
Its application to rainfall intensities is found in several
studies (Akhter et al., 2017; Gudmundsson et al., 2012;
Piani et al., 2010). Empirical Quantile Mapping (EQM) is
an alternate approach based on linear interpolation. It cal-
culates a correction factor for percentile intervals in simu-
lated output data according to observed rainfall (Boé et al.,
2007).

2.3. Method evaluation
BC methods were evaluated using the corrected

monthly rainfall for the validation period (1991-2005)
with the corresponding observed data considering each
rain gauge. The analysis was based on a multi-criteria
decision (MCD) framework comprised of three criteria.
These were selected to measure the ability of RCM cor-
rected outputs in reproducing the main statistics of the
observed rainfall, as well as in representing time-series
and seasonality related statistics. Selected criteria indicate
the reproduction of: (i) the general performance of the
observed data, (ii) indicators related to time-series, i.e.
annual rainfall and monthly averages and (iii) extreme
monthly values, i.e. the wettest and driest months by year.

The described evaluation parameters are summa-
rized in Table 1.

The indicators performances were evaluated using
the modified Kling-Gupta efficiency (KGE’). KGE was
firstly proposed by Gupta et al. (2009) as an improvement
of the Nash-Sutcliffe efficiency (NSE) and later modified
by Kling et al. (2012). The coefficient has been applied to
evaluate projected rainfall in Brazil, showing satisfactory
results (Baez-Villanueva et al., 2018; Bozzini and Mello
Junior, 2020). Eq. (6) shows KGE’ and Eqs. (7)-(8) its
parameters, respectively.

KGE
0

= 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r− 1ð Þ
2
þ β − 1ð Þ

2
þ γ − 1ð Þ

2
q

ð6Þ

β =
μsim
μobs

ð7Þ

γ =
σsim
μsim
σobs
μobs

ð8Þ

where KGE’ [-] is the modified KGE, r [-] is the correla-
tion coefficient, β [-] is the bias ratio, γ [-] is the variability
ratio, μ [mm] is the mean rainfall and σ [mm] is the stan-
dard deviation of rainfall series. KGE’ ranges from −∞
and has its optimum value in 1.

Since hydrological studies are particularly interested
in evaluating temporal and variability dynamics, the com-
bination of r β and γ in KGE’ offers interesting diagnostic
insights into the model performance. KGE’ values corres-
ponding to selected criteria were scored according to cate-
gories shown in Table 2 as proposed by Irving et al.
(2018). The MCDA framework was then applied as a sim-
ple sum of the scored values, considering equal weight for
the 5 indicators.

For each RCM output, five scenarios were analyzed:
as simulated before bias correction (SIM), and after cor-
rection with Linear Scaling (LS), Standardized Recons-
truction (SdRc), Gamma Quantile Mapping (GQM) and
Empirical Quantile Mapping (EQM). The 5 KGE’ indica-
tors were obtained for the 85 rainfall stations (Fig. 1) and
scored accordingly. Considering the minimum score is 0
and maximum is 2, the optimum performance value per
scenario, per indicator, is 170 (85 times 2) and the total
optimum value is 850 (170 times 5).

Next section presents the results in terms of KGE’
obtained for the indicators, and the MCDA matrix con-
fronting the combinations of BC techniques with each
RCM output performance. The best combination was then
used to generate future precipitation scenarios, conside-
ring the Representative Concentration Pathways (RCP),
which reflect the pathways to reach a specific radioactive
forcing by the year 2100. There are four RCP scenarios,

Table 1 - Criteria and indicators of the proposed MCDA framework.

Criteria Indicator

General Monthly rainfall

Time-series Annual rainfall

Monthly average rainfall

Extremes Wettest months rainfall series

Driest months rainfall series

Table 2 - Classification of KGE’ in categories.

Category Condition Score

Low KGE’≤ 0 0

Mid 0 < KGE’ ≤ 0,4 1

High KGE’ > 0,4 2
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RCP2.6, RCP4.5, RCP6 and RCP8.5, labelled after a pos-
sible range of radiative forcing values in the year 2100
(2.6, 4.5, 6, and 8.5 W/m2, respectively). RCP4.5 and
RCP8.5 scenarios are considered, respectively an inter-
mediate and a high emission scenario in terms of radiation
forcing (Moss et al., 2010). Figure 2 summarizes the
methodology presented in this study.

3. Results and Discussions

3.1. General performance
Four BC methods were applied to the selected RCM

monthly rainfall outputs for the validation period (1991-
2005). Figure 3 shows KGE’ general performance (a) and
its components r (b), β (c) and γ (d). All of them have their
optimum value in 1. KGE’ ranges from - ∞ to 1, correla-
tion r ranges from 0 to 1, and the components β and γ
range from - ∞ to ∞. Values of β and γ higher than 1 indi-
cate that simulated outputs overestimate observed data.

Figure 3(a) shows an overall improvement of KGE’
for all BC methods when compared to the original simu-
lated data (SIM). LS method had the best performance in
all scenarios, reaching KGE’ values close to 0,6. SdRc
showed good results with HadGEM2-ES but performed
similarly to the remaining BC methods when applied to
the other RCM. GQM and EQM showed improvements
only when applied to BESM.

The correlation component (r) is shown in Fig. 3(b).
LS also improved results when compared to other BC
methods and the original simulated data (SIM). BESM
presented the best correlation for the original scenario,
which was only improved by LS. SdRc showed good per-
formance when applied to HadGEM2-ES and MIROC5.
For all RCM, GQM and EQM failed to improve correla-
tion when compared to the original scenario (SIM).

Regarding the bias parameter (β), Fig. 3(c) shows
that in general, HadGEM2-ES had the best performance
amongst RCM outputs in the original (SIM) scenario. BC
methods had similar effects in reducing the interquartile
range of the monthly rainfall and in approximating the

parameter to the optimum value. The variability parameter
(γ), however, indicates that BC methods tended to increase
dispersion of the monthly rainfall when compared to the
original (SIM) outputs. Considering the optimum value of
one, γ obtained with LS indicates it performed better than
the other BC methods for both HadGEM2-ES and
MIROC5.

3.2. Time-series and extremes performance
The analysis of time series and extremes related

indicators based on KGE’ presented other insights on BC
performances, which may be useful depending on the
application of RCM output data. Figure 4(a) and (b), show
the annual rainfall and the monthly average rainfall indi-
cators (time-series analysis), while Fig. 4(c) and (d) show
the wettest and driest months indicators (extremes analy-
sis).

Regarding the annual rainfall, results indicate that
the original simulated (SIM) and their respective corrected
outputs failed to reproduce the observed data. In terms of
monthly average values, BC methods significantly
improved the model outputs. All BC methods showed
similar improvements for BESM and CanESM2, while LS
and SdRc performed better for HadGEM2-ES and
MIROC5, which can be explained by the fact that both are
based on monthly statistics. Although BC was applied on a
monthly basis, this result indicates that the chosen meth-
ods were more capable of representing an overall monthly
average than preserving the original seasonality in terms
of total annual rainfall.

In terms of extremes indicators, the application of
BC methods resulted in small improvements of KGE’
compared to the SIM data for both dry and wet months,
although the results for the wettest months were, overall,
higher. Despite the high dispersion in all BC methods,
BESM and HadGem2-ES had better KGE’ results for the
wettest months. Considering the driest months, both
uncorrected (SIM) and corrected data showed poor results
and, in general, EQM showed better performance for all
RCM. These results indicate that BC methods applied on a

Figure 2 - Overview of proposed methodology.
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monthly scale are better at representing wet months over
dry months, as shown by Shresta et al. (2017). The poor
performance regarding the extremes indicator analysis for

all BC applications might be explained by the uncorrected
RCM biased outputs. As pointed out by Pastén-Zapata
(2020), these may be unable to represent extremes.

Figure 3 - KGE’ and its components for the validation period (1991-2005) for monthly rainfall analysis: a) general performance, b) correlation (r), c) bias
ratio (β) and d) variability ratio (γ). Legend presents original simulated data (SIM) and the BC methods used: Linear Scaling (LS), Standardized Recon-
struction (SdRc), Gamma Quantile Mapping (GQM) and Empirical Quantile Mapping (EQM).

Figure 4 - KGE’ for the validation period (1991-2005) for Time-series related criteria: a) Annual rainfall and b) Monthly average rainfall; and extremes:
c) Wettest months, and d) Driest months. Legend presents original simulated data (SIM) and the BC methods used: Linear Scaling (LS), Standardized
Reconstruction (SdRc), Gamma Quantile Mapping (GQM) and Empirical Quantile Mapping (EQM).
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3.3. KGE’ scored classification
Figure 5 presents the categorical distribution of the

85 rainfall stations as presented in Table 2, regarding the
obtained KGE’ scores for each indicator. Results showed
that rainfall gauge stations located in the same area
respond differently when same BC method is applied, as
found by Tschöke et al. (2017). In terms of general perfor-
mance, all BC methods improved KGE’ classification in
comparison to the uncorrected (SIM) data. LS method
achieved the greatest number of stations classified as high
for all RCM outputs. SdRc improved the results sig-
nificantly for BESM, HAdGEM2-ES and MIROC5. GQM
and EQM presented better results when applied to BESM
model, which has the majority of stations classified as high
for the original (SIM) data.

The percentage of stations achieving high KGE’
scores for the other four indicators showed that all BC
methods were better at representing average monthly
values, compared to preserving annual rainfall seasonality.
It is also notable that BC methods had poor improvement
in representing dry months statistics, compared to the wet
months.

Table 3 summarizes the MCDA results, obtained by
simple sum of KGE’ scores classified according to Table 2.
The optimum score is 850, which represents the KGE’
classified as 2 (high) for all 85 rainfall stations, consider-
ing the five indicators. Low uncorrected data (SIM) scores
indicate that original RCMs are a source of uncertainty
and biases, as previous studies point out (Teutschbein and
Seibert, 2012, Guimarães et al., 2016; Shrestha et al.,

Figure 5 - Percentage distribution of the 85 gauge stations classified with KGE’ scores. Horizontal axis present, for each RCM, the original data (SIM)
and the BC methods: Linear Scaling (LS), Standardized Reconstruction (SdRc), Gamma Quantile Mapping (GQM) and Empirical Quantile Mapping
(EQM).
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2017). We found that, in general, all BC methods were
able to improve the climate projection model outputs to
some extent, although there are clear differences in their
performance on each criterion (Teutschbein and Seibert,
2012).

The best BC method for each RCM is shown in bold.
For BESM, EQM showed the best results, while for
CanESM2 outputs, both LS and EQM presented the high-
est scores. For HadGEM2-ES outputs, the best BC method
was SdRc, and for MIROC5 was LS. HadGEM2-ES
model, corrected with SdRc method, gived the best results
for the chosen indicators. Regarding the BC methods’
complexity, we found that methods with relatively simpler
application such as LS and SdRc performed well when
compared to the statistical EQM and GQM methods. This
reinforces the findings of Shresta et al. (2017), who points
that not necessarily the most complex BC methods pro-
duces the best results in a monthly timestep analysis.
CanESM2 model, either corrected or not, was the least
representative among the observed data for the study area.

We point that this study considered indicators with
equal weights, although the individual indicators assess-
ment discussed before showed that BC methods perform

better regarding wet months and monthly average rainfall.
Therefore, in applications where accurate representations
of total annual precipitation of the behavior of dry months
are required, other BC methods should be analyzed, or
weight distribution in the MCDA should be considered
differently.

At large-scale areas, the most suitable RCM model
varies according to the region, as concluded by Almagro
et al. (2020). Thus, we highlight that the best combination
of BC and RCM may vary depending on the chosen loca-
tion and scale. However, the presented MCDA framework
and criteria can be used in other spatial and temporal
scales.

3.4. Climate projection
To evaluate the effects of BC when applied to RCM

simulated outputs, we used SdRc to correct future Had-
GEM2-ES rainfall scenarios, which was considered the
best performance according to the MCDA framework.
Correction was applied under the RCP4.5 and RCP8.5
scenarios, from 2006 to 2098. The bias corrected results
were compared to the original simulated (SIM) and eval-
uated in terms of the monthly average rainfall and the
ensemble annual rainfall regarding the 85 rainfall stations.

Figure 6 shows the observed precipitation monthly
averages from 1961 to 2005, the original simulated pre-
cipitation data (SIM) from 2006 to 2098 monthly avera-
ges, and the effects of SdRc. For both RCP scenarios, the
simulated average precipitation is lower than the observed
average from November to May, and higher from June to
September. The average rainfall of bias corrected model
projection in July, August and September were sig-
nificantly lower, with a mean reduction of 56% (from

Table 3 - KGE’ scored sum. Columns present, for each RCM, the origi-
nal data (SIM) and the BC methods: Linear Scaling (LS), Standardized
Reconstruction (SdRc), Gamma Quantile Mapping (GQM) and Empiri-
cal Quantile Mapping (EQM). Values in bold highlight the best BC for
each Eta model. Minimum value is 0 and optimum value is 850.

Model SIM LS SdRc GQM EQM

BESM 354 406 386 415 416

CanESM2 257 370 326 354 370

HadGEM2-ES 371 423 428 404 394

MIROC5 335 420 400 371 382

Figure 6 - Monthly average rainfall observed from 1961 to 2005 and projected by HadGEM2-ES from 2006 to 2098 under RCP4.5 (a) and RCP8.5 (b)
scenarios. Legend presents observed data (OBS), original simulated data (SIM) and the Standardized Reconstruction (SdRc) method.
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81,5 mm to 35,9 mm), 61% (from 85,1 mm to 33,0 mm)
and 47% (from 108,1 mm to 57,6 mm) for RCP4.5,
respectively. For RCP8.5, the bias corrected model projec-
tions showed an average decrease of 54% (from 113,8 mm
to 52,7 mm), 60% (from 90,4 mm to 35,8 mm) and 45%
(from 111,2 mm to 61,0 mm) for the same months.

Figure 7 shows, for the 85 rainfall stations, the total
average annual precipitation results for simulated (SIM)
and corrected HadGEM2-ES outputs with SdRc. Stations’
minimum and maximum corrected total annual outputs
compose the lower and upper boundaries indicated by the
shaded area. Results indicated a slight decrease of bias
corrected outputs compared with the corresponding origi-
nal results for both RCP. Overall, SdRc reduced the total
average annual precipitation by approximately 6% (from
1246,1 mm to 1169,4 mm) under RCP4.5 and by 8%
(from 1217,1 mm to 1119,1 mm) under RCP8.5 scenario.

4. Conclusions
This study presented a multi-criteria decision analy-

sis (MCDA) to evaluate the performance of four bias cor-
rection (BC) methods, Linear Scaling (LS), Standardized
Reconstruction (SdRc), Gamma Quantile Mapping
(GQM) and Empirical Quantile Mapping (EQM), to cor-
rect monthly precipitation outputs from climate change
projections in the Piracicaba river basin area. RCM data
were generated by CPTEC/INPE and derived from Eta
RCM nested in four GCM (i) BESM, (ii) CanESM2, (iii)
HadGEM2-ES and (iv) MIROC5. The MCDA analysis
comprised three criteria: (i) general performance, (ii) sea-
sonal aspects related (represented by the annual rainfall
and monthly average rainfall) and (iii) extremes rainfall
related (evaluated by the wettest and driest months). Indi-

cators were measured in terms of the modified Kling-
Gupta efficiency (KGE’) for the validation period (1991-
2005).

Regarding the general performance, BC methods
improved all RCM outputs, although individual KGE’
components (σ, β and γ) were affected differently. Linear
Scaling (LS) provided a better correlation (r) and varia-
bility (γ) fit in comparison to other BC methods. Annual
rainfall results, for both corrected and uncorrected outputs,
were unable to reproduce adequately the observed data.
The monthly average results, however, showed that all BC
methods improved the RCM outputs, with LS providing
the overall best performance. The wettest and driest
months indicators showed small improvements of indica-
tors, although the wettest months resulted in higher KGE’
than the driest months. The extreme indicators perfor-
mance can be explained by poor similarity between uncor-
rected RCM (SIM) outputs with the observed rainfall.

The individual indicators assessment showed that
BC methods impacted differently amongst the series sta-
tistics. It also indicated that BC methods alone can't guar-
antee improvements of RCM performance, when the
uncorrected data presents poor KGE’ indicators. Thus, if
the RCM application requires a better fit of indicators such
as annual rainfall or extremes months analysis, other mo-
dels must be considered individually. Combining Had-
GEM2-ES with Standardized Reconstruction (SdRc) BC
method presented the best outcome for the study area.

The effects of SdRc on climate change projected
scenarios (2006-2098) were significant when evaluated in
terms of monthly average rainfall under RCP4.5 and
RCP8.5 scenarios. In months of July, August and Septem-
ber, the average precipitation was at least 45% lower than
the original RCM results. Regarding annual rainfall, the

Figure 7 - Annual average rainfall projected by HadGEM2-ES from 2006 to 2098 under RCP4.5 (a) and RCP8.5 (b) scenarios and the corrected average,
lower and upper boundaries. Legend presents original simulated data (SIM) and the Standardized Reconstruction (SdRc) method.
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bias corrected scenarios did not indicate changes in the
signal of climate change when compared to the original
outputs, but showed an average decrease of 6% for
RCP4.5 and by 8% for RCP8.5.

The MCDA proposed in this study provides a useful
framework for performance evaluation of both RCM pre-
cipitation outputs and BC methods. KGE’ parameter ana-
lysis together with its components provides a broader
understanding of the RCM data in relation with observed
data. Although this study application is based on a local
catchment region and monthly data timestep, the proposed
MCDA methodology framework and criteria is suitable
for application at other spatial and temporal scales.
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