Multiple layers on the Descemet membrane

Múltiplas camadas na membrana de descemet

Abstract

To relate a case not described previously in the national multilateral ophthalmological literature of Descemet’s membrane. A 59-year-old pseudophakic woman diagnosed with bullous keratopathy underwent penetrating keratoplasty with an unusual finding of multiple layers of Descemet’s membrane, which were variable in shape and thickness. In addition, ovoid bodies with negative Gocott-Gomori (GMS) color were present. Discussion and Conclusion: As Descemet’s membrane has a fetal and a postnatal period in its development, it is frequently and well identifiable in histological sections in adults. In the case presented, in which other layers are present, there is evidence of spherical bodies that could mean that the potential to produce other layers may remain into later adulthood.

Keywords: Descemet membrane; Bullous keratopathy; Keratoplasty, penetrating

Resumo

Relato de caso não descrito na literatura oftalmológica nacional de múltiplas camadas da membrana de Descemet. Mulher de 59 anos, pseudofáctica, com diagnóstico de ceratopatia bolhosa, foi submetida à ceratoplastia penetrante em olho direito, sendo encontrado achado incomum de multiplicidade de camadas da membrana de Descemet, variáveis em forma e espessura, além de corpos ovoides com coloração de metamina de prata de Gocott-Gomori (GMS) negativa. Como a membrana de Descemet tem no seu desenvolvimento um período fetal e outro pós-natal que frequentemente é bem identificável nos cortes histológicos em adultos. No caso apresentado, em que outras camadas estão presentes, há evidência de corpos esféricos que poderiam significar que a potencialidade de produzir outras camadas pode permanecer na fase adulta mais tardia.

Descritores: Lâmina limitante posterior; Ceratopatia bolhosa; Ceratoplastia penetrante

1Fortaleza General Hospital, Fortaleza City, Ceará State, Brazil.
2Christus University Center – Unichristus, Fortaleza City, Ceará State, Brazil.

The authors declare no conflict of interest

Received for publication 2/3/2020 - Accepted for publication 23/9/2020.
Corneal is the medium presenting the highest refractive index in the eye. It is covered by epithelium of approximately 50-60 microns, which is located on the basal membrane - composed of type IV collagen. The Bowman layer is located just below this membrane; it is an acellular structure that acts as a barrier against the entry of epithelial agents into the underlying stroma. The corneal stroma lies under the Bowman layer, its blood and lymph vessel absence, and presence of precisely adjusted collagen fibers, give this tissue the characteristic transparency of its functionality. Such features result in cornea immunologic privilege due to the absence of immune cells in the corneal stroma, which account for low risk of immune rejection after corneal transplants.

The Descemet membrane is located under the stroma and works as a basal membrane. Its main function is to promote deturgescence and to allow adequate tissue dehydration and, consequently, its transparency. The thickness of the Descemet membrane structure ranges from 5 to 10 microns, with three-dimensional web of type IV collagen fibrils. The endothelium is a single layer presenting approximately 5 microns in thickness. Another layer was discovered in 2013, it was called DUA and was described as acellular and measures approximately 10-15 microns. It is composed of 10-15 transversely-grouped type I collagen lamellae.

Corneal edema is a clinical condition featured by increased anteroposterior corneal thickness or diameter. The main factors taken into account in corneal edema etiology are endothelial dysfunction and Descemet membrane abnormalities. Bullous keratopathy is featured by stromal corneal edema, with epithelial and subepithelial bubbles, secondary to endothelial dysfunction. The main etiologies of bullous keratopathy are the following: trauma after cataract surgery, trabeculectomy or secondary implantation of intraocular lenses, anterior chamber tumors, acute glaucoma, herpetic endotheliitis, and Fuchs endothelial dystrophy.

Electron microscopy shows multilamellar configuration with the accumulation of fibrillar material containing type I, III, and V collagen.

Descemet membrane detachment is not a frequent complication in the postoperative period of cataract surgery, but it causes intense visual loss when it reaches the visual axis and, when edema persists for a long time. Bullous keratopathy is an uncomfortable occurrence that impairs patients’ quality of life.

RESULTS

Women, aged 59 years, high blood pressure, diabetes (type 2), referred to the ophthalmologic outpatient clinic of Fortaleza General Hospital complaining of low visual acuity in both eyes (BE) in May 2014. Medical record presented phacoeclisisication with intraocular lens implant in June 2013 in the right eye (RE) and in October 2013 in the left eye (LE), both performed in another clinic. Best-corrected visual acuity (BCVA) was hand motion (RE) and counting dot at 30cm (LE). Biomicroscopy in both eyes showed corneal opacification, with edema 3+/4+ and epithelial microbubbles almost over the entire corneal surface; it showed dots in Fluorescein staining, without any other changes. Ocular ultrasound was performed due to the impossibility of visualizing the fundus, which was normal in BE. Treatment with polydimethylsiloxane eye drops was started in BE and the patient was referred to penetrating corneal transplantation (RE on April 2015 and LE in April 2016), which evolved with good results (BCVA RE 20/40 and LE 20/30). Patient RE cornea was fixated in 10% neutral formaldehyde. macroscopy was performed. It was taken to paraffin 2.5µm thick cuts were made and stained with Hematoxylin-Eosin (HE), Masson trichrome, PAS (periodic acid-Schiff) and methenamine silver (Grocott-Gomori method). The LE cornea was not sent for assessment in the current research’s Eye Bank.

DISCUSSION

Descemet membrane detachment is not a frequent complication in the postoperative period of cataract surgery, but it causes intense visual loss when it reaches the visual axis and, when edema persists for a long time. Bullous keratopathy is an uncomfortable occurrence that impairs patients’ quality of life.
Literature is limited to the etiopathogenesis of bullous keratopathy and corneal edema to the endothelium factor or, to a lesser extent, only to the absence of Descemet membrane integrity. The study “The role of descemet membrane in the corneal edema pathogenesis after anterior segment surgery” reported that changes in such a membrane can be related to endothelial dysfunction in the pathogenesis of bullous keratopathy after cataract surgery.\(^{(8)}\)

Descemet membrane detachment is a frequent histopathological finding in post-surgical corneal edema; it must be seen as important factor in its pathogenesis. Such a change must be investigated thoroughly at the postoperative time in order to be properly diagnosed and to receive early treatment to possibly avoid the need of keratoplasty.\(^{(8)}\)

Previous research have demonstrated the importance of Descemet membrane to the etiology of corneal edema with changes in integrity prevalence, be it in the form of rupture, isolated detachment or of detachment associated with rupture. Endothelial changes were frequently associated with Descemet membrane integrity absence.\(^{(8)}\)

It is important highlighting that the embryological evolution of Descemet membrane extends to the postnatal period. It is often possible distinguishing the pre from postnatal layers of the membrane in histological cuts. The several layers detected in the current study raise the issue about the extension of the postnatal period. The presence of ovoid bodies with morphology resembling fungal spores led to the attempt of achieving differential diagnosis. Negativity for fungi makes it legitimate to ask whether they were not the ones forming these late layers. Such a hypothesis come with reservations, because this statement can have serious implications from the biological viewpoint, since this assumption cannot be based on a single report. Further research is necessary to assess whether it would be the prolonged extension of the membrane formation process or the reappearance of this process after the proper time. Both possibilities present dystrophic form, which could help better understanding the embryological evolution of the membrane’s structure.

Conclusion

It was not possible distinguishing the fetal layer from the acquired layer in the herein reported case. Therefore, it evidences the importance of the current case report, since the literature on this subject is scarce. The DUA’s layer was not well-defined in the current study, because optical microscopy was the used examination method and, in some cases, it is easily individualized. The functional character of the DUA’s layer could be further defined, so it could be included in textbooks. This structure did not have any participation in the assessed case, since, based on the figures, changes were only observed in the Descemet membrane and they were different from the neighboring structures.

Research on collagen was not carried out, because there were not enough resources in the Eye Bank to perform histochemistry, immunohistochemistry, or electron microscopy. The current publication allows other researchers to value histopathological findings by describing them through research carried out in the laboratories presenting more resources available. After all, according to the French epidemiologist Michel Foucault (1926-1984): we only see in the clinic what we know. Many researchers will be able to warn about the existence of the herein described pathological condition.

References

Corresponding Author
Samuel Montenegro Pereira
E-mail: Samuel.oftalmontenegro@gmail.com