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ABSTRACT

Spatial data became increasingly utilized in many scientific fields due to the accessibility of  monitoring data from different sources. 
In the case of  hydrological mapping, measurements of  external environmental conditions, such as soil, climate, vegetation, are often 
available in addition to the measurements of  water characteristics. An integrated modelling approach capable to incorporate multiple 
input data sets that may have heterogeneous geometries and other error characteristics can be achieved using geostatistical techniques. 
In this study, different physical hydric properties of  soils extensively sampled and topography were used as auxiliary information for 
making optimal, point-level inferences of  water table depths in forest areas. We used data from 48 wells in the Bauru Aquifer System 
in the Santa Bárbara Ecological Station (EEcSB), in the municipality of  Aguas de Santa Bárbara in São Paulo State, Brazil. Using the 
resistance of  soil to penetration and topography as auxiliary variables helped reduce prediction errors. With the generated maps, it was 
possible to estimate the volumes of  water recovered from the water table in two periods during the monitoring period. These values 
showed that 30% of  the recovered volume would be sufficient for a three-month supply of  water for a population of  30,000 inhabitants. 
Therefore, this raises the possibility of  using areas such as the EEcSB as strategic supplies in artificial recharging management.

Keywords: Data fusion; Groundwater management; Geostatistics; Bauru Aquifer System; Groundwater recharge.

RESUMO

Os dados espaciais tornaram-se cada vez mais utilizados em muitos campos científicos devido ao acesso à resultados do monitoramento 
de diferentes fontes. No caso do mapeamento hidrológico, medidas de condições ambientais externas, como solo, clima, vegetação, 
estão frequentemente disponíveis, além das medidas das características da água. Uma abordagem de modelagem integrada capaz de 
incorporar vários conjuntos de dados de entrada que podem ter geometrias heterogêneas e outras características de erro que pode 
ser alcançada usando técnicas geoestatísticas. Neste estudo, foram utilizadas diferentes propriedades físicas dos solos amplamente 
amostrados e a topografia como informação auxiliar para fazer inferências ótimas das profundidades do nível freático em área florestal. 
Utilizou-se dados de 48 poços no Sistema Aquífero Bauru na Estação Ecológica de Santa Bárbara (EEcSB), no município de Águas 
de Santa Bárbara, no Estado de São Paulo, Brasil. O uso da resistência do solo à penetração e a topografia como variáveis ​​auxiliares 
ajudou a reduzir erros de predição. Com os mapas gerados, foi possível estimar os volumes de água recuperados no lençol freático 
em dois períodos durante o monitoramento. Estes valores mostraram que 30% do volume recuperado seria suficiente para suprir a 
demanda por água por três meses para uma população de 30 mil habitantes. Portanto, isso levanta a possibilidade de usar áreas como 
o EEcSB como suprimentos estratégicos na gestão de recarga artificial.

Palavras-chave: Fusão de dados; Gestão de águas subterrâneas; Geoestatística; Sistema de Aquífero Bauru; Recarga das águas subterrâneas.



RBRH, Porto Alegre, v. 23, e24, 2018

Soil variables as auxiliary information in spatial prediction of  shallow water table levels for estimating recovered water volume

2/13

INTRODUCTION

The future of  natural resources has been the subject of  
much reflection in relation to the modern way of  life, with the 
imminent scarcity of  water resources among the greatest causes 
for concern. Shallow groundwater systems are vitally important to 
humankind as a source of  water, for maintaining river discharge, 
and for sustaining wetland and riparian ecosystems. When shallow 
groundwater systems are unconfined, they are vulnerable to 
anthropogenic contamination. It is therefore important for 
hydrogeologists and natural resource managers to understand 
the processes of  the unsaturated zone that link human activity at 
the soil surface with the underlying groundwater, and vice versa 
(DILLON; SIMMERS, 1998). Thus, the strategic importance of  
groundwater resources has increased, stimulating the development 
of  efficient methods for their measurement and monitoring. 
Such techniques must be capable of  assessing the quantity of  
groundwater resources and the seasonality effects and possible 
alterations in climatic conditions. This understanding would 
promote a balance of  the interests around the multiple functions 
attributed to groundwater, making the knowledge regarding the 
very important spatiotemporal dynamics of  the groundwater 
(VON ASMUTH; KNOTTERS, 2004).

Robust data collection is a fundamental requirement for a 
monitoring system intended to reflect a representative assessment 
of  the state of  natural resources (BAALOUSHA, 2010). Geospatial 
data often demonstrate incompatible heterogeneities with each 
other. For Cao et al. (2014) it can happens in terms of  data nature 
(continuous or categorical), spatial support (areal or point-reference 
data), spatial scales, and sample locations (missing values). Considering 
also a complex spatial dependence and inter-dependence structures 
among spatial variables, these incompatibilities or heterogeneities 
render fusing these diverse sources of  spatial information a rather 
challenging problem. Nguyen et al. (2012) regard data fusion as an 
inference problem: given two heterogeneous input datasets with 
different statistical characteristics, how do we optimally estimate 
the quantity of  interest, and obtain uncertainty measures associated 
with these inferences? It would be ideal to fuse these diverse 
information efficiently to achieve a comprehensive perspective 
(CAO et al., 2014).

One technique for efficient and precise monitoring of  
groundwater is to use stochastic methods. These are able to assemble 
information on aquifers and the spatiotemporal variation of  water 
table depths, allowing decisions to be made within the context 
of  the strategic management of  water resources (KNOTTERS; 
BIERKENS, 2001). Groundwater dynamics, which are governed by 
the systemic combination of  natural and anthropic factors, require 
the use of  data models to explain their complexity (KRESIC; 
MIKSZEWSKI, 2013).

Geostatistics is a branch of  statistics that allows the 
simulation of  the spatiotemporal distributions of  variables that 
define the quantity and quality of  natural resources (SOARES, 
2006). Even though geostatistical models are technically complex 
and strict, they have been used widely because of  their capacity to 
predict a variable with precision and to calculate the uncertainties 
involved (KITANIDIS, 1997; YAMAMOTO; LANDIM, 2015). 
The use of  geostatistics for monitoring aquifers might facilitate 
data collection by minimizing hindrances caused by costs, natural 

limitations, and time (KITANIDIS, 1997), providing spatiotemporal 
analyses that benefit the management of  groundwater resources.

Geostatistical models that consider correlations between 
variables in the estimation of  a variable of  interest might produce 
better estimations if  the correlation is sufficiently strong and there 
is an inherent physical meaning behind it. Remote monitoring tools 
or even the detailed collection of  low-cost sampling variables have 
been used successfully for this purpose by applying interpolators such 
as cokriging (AHMADI; SEDGHAMIZ, 2008), universal kriging 
(KAMBHAMMETTU; ALLENA; KING, 2011; MANZIONE; 
MARCUZZO; WENDLAND, 2012), and kriging with external 
drift (DESBARATS  et  al., 2002; PETERSON  et  al., 2011). 
The present work considered several characteristics and physical 
properties of  the environment as secondary variables that could 
help predict shallow water table depths in areas belonging to the 
Cerrado biome and in forest crops in the Santa Bárbara Ecological 
Station (EEcSB) in São Paulo State, Brazil. The objective was to 
test the efficacy of  soil granulometry, topography, soil humidity, 
and resistance to penetration as auxiliary variables when measuring 
the spatial variability of  water table depths in an area of  the Bauru 
Aquifer System (BAS) in comparison with the managed state in 
the EEcSB. Subsequently, the volume of  water recovered during 
the rainy season was estimated and the exploitation capacity of  
the aquifer was evaluated using cokriging as the geostatistical 
interpolator.

METHODOLOGY

Study area and available data

The EEcSB is located at 24°48´S, 49°13´E, near highway 
SP 261 (Km 58) in the municipality of  Águas de Santa Bárbara in 
São Paulo State, Brazil. The EEcSB includes an area of  2,712 ha 
of  native vegetation (Cerrado, swamps, and riverine forests), 
interspaced with exotic species resulting from reforestation (e.g., 
pine and eucalyptus). The existing crop configuration was initiated 
within the context of  the state policy for reforestation during the 
1960s. The total area of  the EEcSB comprises 4,371 ha designated 
as belonging to State Forest and the Ecological Station. The study 
area is located above the Bauru Aquifer System (BAS), which is an 
aquifer in Upper Cretaceous sandstones, with a regional extension 
that occupies the geomorphological region of  the occidental 
plateau of  São Paulo State, in the sedimentary basin of  Paraná. 
The outcropping surface of  the BAS extends over more than 
96,000 km2, representing an important source of  water for the 
municipalities in São Paulo State. In the EEcSB, the aquifer units 
are represented by the Marília and Adamantina aquifers.

In our study, we used water table depths observed between 
September 5, 2014 and May 31, 2016, from 48 monitoring wells 
distributed within the EEcSB (Figure 1), with a minimum depth 
of  4 and maximum of  8 meters. The wells were constructed only 
for monitoring the groundwater level.

These measurements were divided in two groups: 1) 32 wells 
with data collected between September 2014 and August 2015, 
and 2) 48 wells with data collected between August 2015 and 
May 2016.
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Two periods of  analysis were selected: (P1) November 21, 
2014 to May 5, 2015 and (P2) October 16 to December 3, 2015, 
that included the period of  water table depth increase during the 
wettest part of  the hydrological year. These measurement periods 
encompassed the lowest level of  water table depth in the period, 
were close to the start of  the hydrological year, and included the 
peak elevation of  water table depth in the rainy season (Figure 2).

As data from the monitoring wells are scarce, values of  the 
physical hydric properties of  the soil and topography were used to 
assist in the interpolation of  the water table depth. The physical 
hydric properties used in the present study were soil granulometry 
(percentage of  sand (SAN) and clay (CLA)), hydraulic conductivity 
(K), soil moisture (SM), and soil resistance to penetration (RP). 
Soil samplings and SM and RP measurements were obtained in 
November and December 2015, during the wet period.

Granulometry was determined by the collection of  soil 
samples, followed by laboratory analyses to determine the sand, 
silt, and clay fractions. Overall, 113 soil samples were collected at 
depths of  50 cm. A granulometry analysis was performed using 
sand fractionation to determine the value of  K based on the 
Hazen method (FETTER, 2001). The value of  SM was measured 
using a time-domain reflectometer on 70 sampling areas. On these 
same areas, RP was measured using an automatic electronic meter. 
These variables were collected in the suroundings of  the basins; 
the irregularity of  the sampling mesh was due to restricted access 
to the available routes in the EEcSB.

Figure 1. Location of  the Santa Bárbara Ecological Station (EEcSB) and the positions of  the monitoring wells.

Figure 2. Average water table depth and Precipitation in the Santa 
Bárbara Ecological Station (EEcSB) between September 5, 2014 
and May 31, 2016.
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Topography data were extracted from digital elevation 
models built based on 20-m equidistant contours extracted from 
topographic maps from the Brazilian Institute of  Geography 
and Statistics (ALT) and on 30-m-resolution maps from the 
orbital survey of  the Shuttle Radar Topography Mission (SRTM). 
The two altimetry variables were considered because they presented 
different spatial resolution and obtained by differentiated methods, 
providing different results in the application as secondary variables 
or extensive layers for data fusion.

Those values were interpolated and tendency surfaces 
representing the variables of  interest were created. Figures 3 and 4 
show maps of  the auxiliary variables selected for the interpolation 

of  water table depth for the EEcSB area, based on the survey 
data. These maps were generated by kriging the collected data. 
Santarosa (2016) presents in detail the procedures performed; 
however, a brief  outline is presented in this article.

Geographical data spatial analysis

For the spatial analysis of  the geographical data, the 
formalism of  the geostatistical application was considered according 
to Kitanidis (1997), which follows three steps: (1) exploratory 
data analysis, (2) parameter estimation, and (3) model validation. 

Figure 3. Auxiliary variables considered for water table depth estimations in the Santa Bárbara Ecological Station.
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The exploratory data analysis involves performing statistical 
calculations to describe the characteristics of  the sampling group. 
This analysis includes measurements of  dispersion and central 
tendency, data normality tests, identification of  outliers, and data 
transformation.

Parameter estimation refers to the adjustment of  theoretical 
semivariogram models to the experimental spatial correlation 
of  the regionalized variable (YAMAMOTO; LANDIM, 2015). 
The estimation of  the weight of  each measurement should be sought 
objectively to reflect the true structure of  the spatial correlation. 

Figure 4. Auxiliary variables considered for water table depth estimations in the Santa Bárbara Ecological Station. SRTM: Shuttle 
Radar Topography Mission.
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An experimental variogram consists of  the finite variance of  a 
group of  data at a predefined distance (lag) (HENGL, 2009). 
A semivariogram is calculated based on the arithmetical average 
of  the squared differences between pairs of  spots (Z(xi)-Z(xi + h)) 
separated by a vector h, as described in Equation 1:

( )
( )

( )( )  [ ( )]²
N h

i i
i 1

1h Z x Z x h
2N h

γ
=
∑= − + 	 (1)

Once the hypothesis of  second-order stationarity is 
satisfied, the model that best explains the evaluated phenomenon 
is selected, summarizing the main patterns of  spatial continuity. 
At this moment, the continuity degrees, anisotropy relations, and 
other properties of  the spatial process are identified by variography. 
If  the random functions are the basis of  the selected model, this 
will condition the process of  value estimation for the variable 
identified as the attribute under evaluation in non-sampled areas 
(SOARES, 2006).

In the case of  two correlated variables, cokriging is used 
and a cross variogram is calculated, considering Z1 and Z2 as 
stationary random variables (Equation 2):

( ) ( ) ( ) ( ) ( )1 1 2 2
1h E Z x Z x h Z x Z x h
2

γ = − + − +       	 (2)

Once the semivariogram is defined, geostatistical estimation 
is performed using interpolators. To incorporate the uncertainties 
associated with estimation, and to consider the structural continuity 
of  a certain phenomenon under evaluation, geostatistical 
methodologies make a spatial inference about a variable that has 
not been sampled (Z(xo)) at a certain location xo, based on a linear 
combination of  values measured for the same variable (Z(xα)) 
located at position xα (Equation 3):

( ) ( )*
 N

0 1 aZ x Z xα
α

=∑  =   	 (3)

Soares (2006) mentions that weighting (λα) has the role of  
reflecting lower or higher proximities of  the sample structures 
(Z(xα)) relative to the point to be estimated (Z(xo)), and that it 
should have the effect of  dissociating biased groups.

In the case of  cross variograms, different variables grouped 
together based on their spatial correlation can be estimated using 
cokriging. This is a multivariate extension of  the kriging method, 
which for each a sampled location seeks to obtain a vector of  
values instead of  a single value (YAMAMOTO; LANDIM, 2015). 
Cokriging is suitable for situations in which a second variable 
with higher sample density can be incorporated to help estimate 
the main variable. The secondary variable is incorporated in the 
estimation model, by considering the existence of  correlation 
between the two variables (GOOVAERTS, 1997; SOARES, 2006). 
The main variable Z1(xi) is known at N1 sampled locations, and 
the secondary variable Z2 is sampled at N2 locations. Therefore, 
variable Z1(xo) in a non-sampled location xo can be described by 
the linear interaction between the main and secondary variables 
(Equation 4):

( ) ( ) ( )*
  

1 2N N

0 i 1 i j 2 jck i 1 j 1
Z x a Z x b Z x

= =
∑ ∑  = +  	 (4)

Weights ai and bj are distributed based on the spatial 
dependency of  each of  the variables on each other and on their 
cross correlations. An optimal estimator cannot be tendentious 
and it should present minimal variance (neither overestimating nor 
underestimating values) with maximum reliability in the estimations 
(ISAAKS; SRIVASTAVA, 1989).

Cokriging, as the estimation of  a regionalized variable 
through two or more variables with the purpose of  improving 
local predictions, considers additional information contributed 
by a variable different from that being predicted. The use of  this 
method should be preferred when the main objective is to reduce 
prediction variance. The incorporation of  an auxiliary variable 
might also add physical meaning and help circumvent operational 
and financial limitations in surveys involving groundwater and the 
spatial prediction of  water table levels. Generally, in such a process, 
data on topography, soil use and occupation, soil characteristics, 
and other variables that might be associated with groundwater 
dynamics are used (BETTÚ; FERREIRA, 2005; DESBARATS et al., 
2002; HOOSHMAND et al., 2011; MANZIONE; MARCUZZO; 
WENDLAND, 2012; PETERSON et al., 2011; ROCHA et al., 2009).

Based on a comparison of  the application of  kriging and 
cokriging on a group of  data for mapping groundwater levels, 
Ahmadi and Sedghamiz (2008) concluded that cokriging, using the 
different responses of  the water table depths to distinct climatic 
conditions as auxiliary variables, provided results that were more 
precise than achieved using kriging alone.

Finally, yet importantly, the validation of  the model may 
be performed by cross validation. In this procedure, the value 
estimated for one of  the measured points is ignored. Instead, its 
value is estimated based on the remaining values, and the process 
is repeated for all measurements. With the group of  actual values 
(measured) and those estimated for the group of  data under 
analysis, statistical analyses are performed to assess the quality 
of  the utilized model (SOARES, 2006).

As the formalism of  geostatistical analysis consists 
of  steps, its modeling is regarded as excellent and impartial 
(i.e., non-tendentious), making spatial analysis richer by allowing 
the prediction of  values for non-sampled areas and measuring the 
quality of  the estimation (YAMAMOTO; LANDIM, 2015). In the 
cross validation, a good estimation should present a value of  the 
Mean Standardized (MS) close to zero, the lowest possible Root 
Mean Square (RMS), an Average Standard Error (ASE) close to 
the RMS, and a value of  the RMS Standardized (RMSS) close to 
1 (JOHNSTON et al., 2001). The parameters ASE, RMSS, and 
the coefficient of  determination (R2) were considered crucial in 
the verification of  the quality of  the interpolation of  the water 
table levels.

Correctly assessing the variability in prediction can be 
verified when the ASEs are close to the RMS prediction errors. 
If  the ASEs are greater than the RMS prediction errors, the 
variability of  the prediction is overestimated; if  the ASEs are less 
than the RMS prediction errors, the variability of  the prediction is 
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underestimated. Alternatively, the RMSS errors should be close to 
1 if  the prediction standard errors are valid. If  the RMSS errors are 
greater than 1, the variability of  the prediction is underestimated; 
if  the RMSS errors are less than 1, the variability of  the prediction 
is overestimated.

The exploratory data analysis required by the geostatistical 
method, variography, data interpolation, and cross validation were 
all performed using the Geostatistical Analyst package of  the 
Geographical Information System ArcGIS (JOHNSTON et al., 2001).

Estimation of  the recovered volume by the aquifer 
during the rainy seasons

In the present study, one of  the applications for the mapping 
of  water table levels was the calculation of  the recovered volume, 
performed by map algebra based on the surfaces given by the 
interpolation of  the water table depth and structured from both 
time points of  water table depth recovery (P1 and P2). For this 
purpose, Equation 5, which was adapted from Manzione et al. 
(2007), was used:

( )f i eVR WTD WTD A= − η 	 (5)

where the volume of  recharge (VR) of  each recovery was calculated 
by the variation of  the water table depth (unit: m), which was given 
by the difference between the initial and final levels (WTDf  – WTDi) 
in the evaluated period, multiplied by the values of  the area (A) 
of  each pixel (unit: m2) and the effective porosity (ηe). Here, a 
value of  effective porosity of  10% was used. This represents an 
average value of  the effective porosity in the BAS (i.e., 5–15%), 
and it is close to the inferior limit of  effective porosity for quartz 
sand soils (varying between 12% and 18%). This chosen value 
took into account data generalization considering both the soil and 
rock layers; i.e., the effective porosity value should be neither too 
low (simulating only the rock condition) nor too high (referring 
only to the condition of  the soil).

RESULTS AND DISCUSSION

Interpolation of  water table depths

Exploratory analysis

The summary of  statistical measurements displayed in 
Table 1 reveals the differences between measurements made at the 
beginning of  the hydrological year (with lower levels) and those 
that represent the peak elevation of  water table depth.

The measured values did not show normal behavior, i.e., 
the asymmetry and kurtosis values diverged from the expected 
limits of  0 and 3, respectively.

When using an auxiliary variable, it should be correlated 
with the main variable. Therefore, the values for the coefficient 
of  determination between the average water table depth and the 
auxiliary variables utilized were calculated (Table 2).

The R2 values reveal the degree of  dependence between 
the main variable and the secondary variables. In general the 
secondary variables showed moderate to strong correlation with 
the main variable ranging from 0.45 to 0.86.

Some variations in the measuring methods and the 
complexity of  water table dynamics can cause distortions in 
the spatial analysis, making erratic results and not reproducing 
the expected effect in the model even with a high correlation 
between target and ancillary variables. The behavior of  RP can 
also have influence from land use and sampling scale. In this way, 
RP just present good results in the central part of  the study area 
as showed at Figure 5.

Variographic analysis

With regard to the variographic parameters, it is important 
to verify the variance of  the calculated values by the difference 
between the sill (C) and the nugget effect (C0), with the expectation 
that the acquired values with cokriging would be lower than those 
obtained using ordinary kriging alone (Table 3).

The best results for the auxiliary variables in the interpolation were 
obtained using the SRTM for the measurement made on 11/21/2014. 
For the measurements on 05/05/2015, RP, K, and SM provided the 
best results. For the measurements made on 10/16/2015, RP and 
SAN were the most efficient, whereas ALT, RP, SAN, and SRTM 
provided the best results for the measurements made on 12/03/2015.

Table 1. Descriptive statistics of  measured water table depths.
Statistical  

measurements 11/21/2014 05/05/2015 10/16/2015 12/03/2015

No. of  samples 32 32 48 48
Minimum -5.13 -4.53 -5.80 -4.14
Maximum -0.35 -0.09 -0.15 -0.10
Average -1.99 -1.34 -1.79 -0.96
Median -1.77 -1.09 -1.52 -0.70

Standard 
deviation

1.15 1.04 1.20 0.90

Kurtosis 3.50 4.30 4.40 5.50
Asymmetry -1.00 -1.30 -1.20 -1.50

Unit: meters (m).

Table 2. Coefficient of  determination (R2) between water table 
depth and auxiliary variables.

Auxiliary variable R2
ALT 0.66

SRTM 0.64
SAN 0.86
CLA 0.85

K 0.75
RP 0.45
SM 0.60

ALT: altimetry of  the topographic map; SRTM: altimetry of  the SRTM product; 
SAN: percentage of  sand; CLA: percentage of  clay; K: hydraulic conductivity; 
RP: resistance to penetration; SM: soil moisture.
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Figure 5. Standard error map for all interpolations.
RP: resistance to penetration; SAN: percentage of  sand; CLA: percentage of  clay; K: hydraulic conductivity; SM: soil moisture; 
ALT: altimetry of  the topographic map; SRTM: altimetry of  the SRTM product; KG: kriging.



RBRH, Porto Alegre, v. 23, e24, 2018

Santarosa and Manzione

9/13

Cross validation

To analyze the interpolation quality, the values of  ASE, 
RMSS, and R2 were considered determinant in the cross validation 
evaluation (Table 4).

Analysis of  the resulting ASEs verified that most of  the 
auxiliary variables were efficient by decreasing the error to a value 
lower than that found using kriging. For the measurements made 
on 11/21/2014, 05/05/15, and 10/16/2015, all variables were 

efficient with alternation in the granulometry values (SAN and CLA). 
For the interpolation of  the measurements made on 12/03/2015, 
only ALT, RP, CLA, and SRTM were able to reduce the ASE. 
The RMSS was considered adequate, although it varied above or 
below the ideal limit (should be close to 1), possibly contributing 
to the increased error in some predictions or influencing the 
lower error reduction. The R2 verification showed punctuated 
improvement in the predictions. However, the prediction model 
showed moderate to low accuracy, reflecting the level of  dependence 
between the measured and predicted values.

Table 3. Variographic parameters.
Interpolator

Measurements
KG COKG

Auxiliary 
Variable - ALT RP SAN CLA K SM SRTM

Model 11/21/2014 GAU. EXP EXP SPH GAU CIR EXP EXP
a 661.50 2,771.40 2,983.90 2,836.60 794.00 816.50 1,792.00 2,788.30

C0 0.10 0.00 0.00 0.20 0.12 0.00 0.00 0.20
C 1.68 1.92 2.01 2.14 1.95 1.76 1.66 1.81

Model 05/05/2015 GAU EXP SPH SPH SPH SPH EXP EXP
a 660.00 2,779.40 1,962.70 961.00 1,014.70 735.00 1,700.00 2,372.00

C0 0.08 0.00 0.14 0.00 0.00 0.00 0.00 0.05
C 1.57 1.64 1.34 1.62 1.67 1.40 1.36 1.60

Model 10/16/2015 GAU EXP CIR EXP GAU GAU GAU EXP
a 784.40 3,354.00 1,724.5 2,917.60 964.00 792.00 950.00 3,044.00

C0 0.10 0.00 0.05 0.40 0.13 0.10 0.13 0.08
C 2.21 2.3 1.98 1.84 2.53 2.21 2.4 2.14

Model 12/03/2015 GAU EXP CIR EXP GAU GAU GAU EXP
a 799.70 3,037.00 1,600.00 2,990.00 1,084.00 850.00 869.00 3,553.10

C0 0.13 0.20 0.15 0.35 0.16 0.13 0.15 0.20
C 1.31 1.11 1.15 1.03 1.50 1.44 1.34 1.15

ALT: altimetry of  the topographic map; RP: resistance to penetration; SAN: percentage of  sand; CLA: percentage of  clay; K: hydraulic conductivity; SM: soil moisture; 
SRTM: altimetry of  the SRTM product; a: range (m); C0: nugget effect; C: sill; EXP: exponential; CIR: circular; SPH: spherical; GAU: Gaussian; KG: kriging; COKG: cokriging.

Table 4. Cross validation for the interpolations regarding water table depths (m).
Interpolator

Measurements
KG COKG

Auxiliary 
 variable - ALT RP SAN CLA K SM SRTM

RMS 11/21/2014 0.8889 0.6482 0.7968 0.8982 1.0551 0.7921 0.8762 0.8793
MS -0.0188 -0.0218 -0.0215 -0.0172 -0.0730 0.0165 -0.0315 -0.0386

RMSS 0.8564 0.9404 1.0051 1.0755 0.9704 1.1670 1.0723 1.0050
ASE 0.9345 0.7015 0.7297 0.7846 0.8983 0.8171 0.7484 0.8171
R2 0.4181 0.6667 0.3870 0.3844 0.3000 0.5228 0.4192 0.4072

RMS 05/05/2015 0.8720 0.7882 0.8705 0.8664 0.8436 0.9194 0.8451 0.8092
MS -0.0079 -0.0207 -0.0254 -0.0150 -0.0210 0.0308 -0.0378 -0.0230

RMSS 0.8847 1.0899 1.1762 0.8443 0.8810 1.1558 1.0661 0.9989
ASE 0.8994 0.6768 0.6977 0.9007 0.8651 0.8537 0.7210 0.7553
R2 0.3306 0.4182 0.3021 0.3299 0.3546 0.2779 0.3435 0.3862

RMS 10/16/2015 0.8344 0.8033 0.8192 0.8732 0.8024 0.8351 0.7677 0.8320
MS 0.0109 0.0040 -0.0196 -0.0037 0.0074 0.0449 -0.0252 -0.0158

RMSS 1.0645 1.1102 1.1813 0.9000 1.0593 1.1183 1.0660 1.0406
ASE 0.8838 0.7181 0.6963 0.9486 0.8498 0.8393 0.8252 0.7791
R2 0.5195 0.5496 0.5115 0.4738 0.5526 0.5162 0.5781 0.5177

RMS 12/03/2015 0.7437 0.7353 0.7383 0.7513 0.6913 0.7474 0.6987 0.7398
MS 0.0152 -0.0031 -0.0120 -0.0033 0.0237 0.0037 -0.0177 -0.0158

RMSS 1.1009 1.0372 1.1199 0.9553 1.0876 1.1236 1.0258 1.0711
ASE 0.7442 0.6994 0.6643 0.7794 0.7070 0.7421 0.7367 0.6824
R2 0.3268 0.3216 0.3207 0.2933 0.4109 0.3305 0.3970 0.3133

MS: Mean Standardized; RMSS: Root Mean Square Standardized; ASE: Average Standard Error; RMS: Root Mean Square; R2: coefficient of  determination; ALT: altimetry 
of  the topographic map; RP: resistance to penetration; SAN: percentage of  sand; CLA: percentage of  clay; K: hydraulic conductivity; SM: soil moisture; SRTM: 
altimetry of  the SRTM product.
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Another way to verify the quality of  the interpolations was 
to use maps incorporating the standard error of  the interpolation 
(Figure 5), which made it possible to identify the best interpolations 
by cross-referencing with previously analyzed information. 
Therefore, it was possible to observe that the auxiliary variables 
ALT, RP, and SRTM gave the most consistent results in the 
interpolated measurements.

This differential behavior of  the auxiliary variables in the 
results is because each soil property used presents different spatial 
variability behavior, necessitating different strategies of  obtaining 
data for each auxiliary variable. Another fact considered is the 
variability in each of  the methods of  obtaining the values of  the 
physical hydric properties of  the soil.

The difference found between the measurements of  the 
water table depth reveals the difference in the behavior of  the 
fluctuation of  the water level in each well under the influence of  
climatic dynamics and the characteristics of  the aquifer. Another 
phenomenon that caused behavioral change in the parameters of  
the spatial prediction was the difference in the way the sample set 
related to each auxiliary variable.

In undisturbed groundwater systems, climatological 
conditions can be considered the only factor. This approach can 
be considered in the interpretation of  the spatial variation of  
groundwater dynamics, because spatial differences in groundwater 
dynamics are determined by the spatial variation of  the system 
properties, while the temporal variation is driven by the dynamics of  
the input into the system (VON ASMUTH; KNOTTERS, 2004).

The maps generated using cokriging and ALT were 
used to calculate the volumes recovered in the analyzed period. 
Using topographic data as auxiliary variables for the interpolation 
of  water table depths, Rocha et al. (2009) also achieved better 
geostatistical modeling. By incorporating topographic data in 
the spatial analysis of  groundwater, they observed an important 
decrease in the sample variation marked by the reduction of  the 
variogram sill.

The results show that the application of  the auxiliary 
variables and data fusion from different scales in groundwater 
mapping can favor and improve of  the quality of  the information 
provide for water management. It also could replicated similar 
environmental conditions to those found in the field trips at 
EEcSB, providing information to explore the seasonal variation 
of  the water volume in areas with an imminent or permanent 
situation of  water resources scarcity.

Extractable water volume

The best maps were selected (Figures 6 and 7) to calculate the 
volume of  water that was recovered in studied periods P1 and P2.

Using this methodology, calculated the volumes of  recovered 
water (VR) for each of  the two periods (VRP1 and VRP2). The recharge 
volume was calculated according to the use of  Equation 5 and 
compared to the volume precipitated in the period. The total 
height of  precipitation responsible for level recovery was 890 mm 
for VRP1 and 470 mm for VRP2 (total: 1360 mm). This value, 
converted to a volume relative to the surface of  the evaluated basins 
(2549 hectares), represents a precipitated volume of  34,666,400.00 m3. 

Figure 6. Oscillation of  water table depth in studied periods P1.

Figure 7. Oscillation of  water table depth in studied periods P2.
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Thus, the total recovered value is equivalent to 10% of  the rainfall 
and it represents a recharge of  140 mm (Table 5).

Comparison of  both recovery periods shows that rainfall was 
more widely distributed but with lower recharge in VRP1, whereas in 
VRP2, rainfall was more concentrated, resulting in greater recharge 
in a shorter period. It is possible to infer that the volume to be 
collected depends directly on precipitation behavior, because water 
table depth oscillation is very susceptible to precipitation events.

The average water consumption in the municipalities of  
Águas de Santa Barbara, Manduri, and Cerqueira Cesar, according 
to data from the National System of  Information on Sanitation, is 
shown in Table 6. An evaluation of  the calculated values based on 
the collection of  30% of  the VR in the EEcSB basins is presented 
in Table 7. This volume would be sufficient to supply water to 
the municipalities for three months, even when considering a 
20% loss in the water catchment and distribution system. It is only 
a simulation for the use of  the seasonal oscillation of  groundwater.

Average uncertainties were incorporated to the spatial 
prediction model in the extractable water volume calculations 
to measure the effects of  the ASE in the method application. 
The considered variation refers to minimal deviation close to 
the monitoring wells, in the region where water table depth data 
collection are concentrated, since the uncertainty in areas where 
the prediction was extrapolated generates a higher variation than 
the natural oscillation verified in VRP1 and VRP2. This behavior 
exposes a limitation in the methodology application. Thus, it 
is necessary to undertake new experiments to test sampling 
configurations, because sampling optimization can reduce the 

uncertainties reducing the variance and minimizing errors, providing 
more accurate estimates for water resources management.

CONCLUSIONS

This study examined the efficacy of  using different physical 
hydric variables of  soils and topography as auxiliary depths in 
forest areas, based on geostatistical interpolation, and producing 
important information for the advancement of  spatial data studies. 
The use of  such information produced satisfactory results in the 
interpolation of  water table depths, especially in cases when RP, 
ALT, and SRTM were used as secondary variables.

The use of  cokriging as an interpolator gave superior 
results in comparison with those achieved by kriging alone, as 
seen from the variographic parameters in the cross validation 
and in the standard error maps. However, the uncertainty present 
in the spatial prediction exposes the limitation of  the method. 
Thus, adaptations are required to promote changes in data collection 
to reduce uncertainties and to provide estimates that are more 
accurate for the management of  water resources.

The generated maps constitute an important tool for the 
management of  water resources in priority areas, where aquifers 
are particularly vulnerable both to anthropic factors and to the 
effects of  climate change. Understanding the dynamics of  water 
table depth oscillation might facilitate faster response in times 
of  water scarcity, alleviating the impacts on society by including 
strategic reserves of  short-term groundwater volumes during 
times of  pronounced drought, as seen in 2014.

Table 5. Stored volumes of  precipitation in the aquifer during the rainy season between November 2014 and December 2015.
VRP1 VRP2 Total

Recovery period (days) 166 49 -
Total precipitation (mm) 890 470 1360
Precipitated volume (m3) 22,686,100.00 11,980,300.00 34,666,400.00

Surface (m2) 25,484,900.00
Recovered volume (m3) 1,491,271.00 ± 507,744.00 2,069,901.00 ± 761,616.00 3,561,172.00 ± 1,269,360.00

Recharge (mm) 58 ± 20 81 ± 30 140 ± 50

Table 6. Water volume for the monthly supply of  cities near the Santa Barbara Ecological Station.

Municipalities

Average
consumption

per capita
(l/day)

Population
(inh.)

Monthly
consumption

(m3)

Águas de Santa Barbara 201 5,600 33,768.00
Manduri 277 8,900 73,959.00

Cerqueira Cesar 222 17,530 116,750.00
Total - 32,030 224,477.00

Table 7. Extractable volume (m3) and months of  water supply.

Extractable volume (m3) Months of
water supply

VRP1 357,905.00 ± 121,858.56 1.30 ± 0.40
VRP2 496,776.00 ± 182,787.84 1.80 ± 0.60
Total 854,681.00 ± 304,646.40 3.10 ± 1.10
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