
Revista Brasileira de Recursos Hídricos
Brazilian Journal of Water Resources
Versão On-line ISSN 2318-0331
RBRH, Porto Alegre, v. 26, e37, 2021
Scientific/Technical Article

https://doi.org/10.1590/2318-0331.262120210100

1/9

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Optimal architecture for artificial neural networks as pressure estimator

Arquitetura ótima para redes neurais artificiais como estimadoras de pressão

Rui Gabriel Modesto de Souza1,2 , Bruno Melo Brentan1  & Gustavo Meirelles Lima1 

1Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
2Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brasil

E-mails: rui.g182@gmail.com (RGMS), brentan@ehr.ufmg.br (BMB), gustavo.meirelles@ehr.ufmg.br (GML)

Received: July 08, 2021 - Revised: October 15, 2021 - Accepted: October 18, 2021

ABSTRACT

The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small
leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of
the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a
great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of
information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of
ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most
relevant parameters to be adjusted when the ANN is used for pressure estimation.

Keywords: Artificial neural network; Water distribution network; Data-driven model.

RESUMO

O conhecimento dos parâmetros hidráulicos em uma rede de distribuição de água pode ser usado para indicar problemas em tempo real,
como rompimentos de tubos, pequenos vazamentos, aumento da rugosidade do tubo e conexões ilegais. No entanto, uma indicação
precisa depende da quantidade e qualidade dos dados adquiridos, ou seja, do número de sensores usados para monitorar a rede e sua
localização. Entretanto, não é economicamente viável ter um grande número de sensores, portanto, o uso da inteligência artificial, como
Redes Neurais Artificiais (RNAs) podem reduzir a falta de informações necessárias para identificar problemas, estimando parâmetros
hidráulicos através das poucas informações coletadas. A confiabilidade das RNAs depende de sua arquitetura, então, neste trabalho,
diferentes condições são testadas para o treinamento das RNAs de modo a identificar quais são os parâmetros mais relevantes a serem
ajustados quando utilizadas na estimativa de pressão.

Palavras-chave: Rede neural artificial; Rede de distribuição de água; Modelos guiados por dados.

a

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9539-7623
https://orcid.org/0000-0003-0616-2281
https://orcid.org/0000-0002-1971-3970

RBRH, Porto Alegre, v. 26, e37, 20212/9

Optimal architecture for artificial neural networks as pressure estimator

INTRODUCTION

A Water Distribution Network (WDN) is composed by
a variety of hydraulic components, such as pipes, pumps, valves
and tanks. Each of them has a particular purpose in the WDN
operation. However, they are all integrated in the same system,
and any change in one of these components reflects in all others.
Add to this the highly time variant hydraulic conditions, established
by the varying water consumption through the day. The result is
a complex and nonlinear hydraulic model, but able to provide
valuable information to achieve an efficient operation.

In general, WDNs aims to operate with minimum costs, with
energy consumption and leakage as two of the main parameters
to be minimized. Thus, different approaches can be used, such
as: set an optimal rotational speed for pumps according to the
hydraulic parameters (Brentan et al., 2018); operate pressure reducing
valves to control pressure and reduce leakages (Fontana et al.,
2018); use tanks to reduce pump stations operation in peak hours
(Xu et al., 2015); and use microturbines to recovery energy excess
(Fecarotta et al., 2018).

In recent years, a special attention has been given to the
real-time operation. As highlighted by Salomons & Housh (2020),
two main blocks are necessary: a demand predictor, to establish
the future conditions that has to be satisfied, and an optimization
model coupled with a hydraulic simulator, to determine the
optimal operation of pumps and valves during the predicted
period. Reducing the time step of the optimization procedure
allows a better adjustment of the system to the hydraulic changes,
increasing more and more its efficiency. However, as already
explained, the hydraulic models are complex, and can require
a significant computational effort that can impair the real time
operation (Mala-Jetmarova et al., 2017).

As the concern with the operation increased, the Supervisory
Control and Data Acquisition (SCADA) of the WDNs also increased.
Pressure, flow, power, tanks levels and many other parameters can
be acquired, composing a database with information on the WDN
behavior. Thus, data mining techniques can be used to extract
useful information. Machine learning models, such as Artificial
Neural Networks (ANN) have been applied with good results
for leakage and pipe burst detection (Chan et al., 2018) and water
demand forecasting (Ghalehkhondabi et al., 2017). In addition,
ANNs can also be used as a surrogate model to estimate the WDN
state (Broad et al., 2010), significantly reducing the computational
effort required by the hydraulic model in real time operation.

The accuracy of the ANN is important to its effectiveness
in WDNs operation, and its architecture is one of the main
features to achieve this. In a Multilayer Perceptron (MLP) ANN,
the definition of the number of neurons and hidden layers used
is almost empirical, and can significantly change according to the
problem being studied. Thus, in this paper the architecture of an
MLP-ANN used as a pressure estimator will be studied, aiming
establish guidelines for this problem and reduce the effort in future
ANNs creation. Three different ANNs will be tested, all of them
with three hidden layers, varying the number of neurons from
10 to 50. Each ANN will be trained using 12 different functions,
and the results obtained will be compared using two parameters:
mean and maximum pressure error.

ARTIFICIAL NEURAL NETWORKS

The last decades have been marked by the increasing of
computer processing capacity and the popularization of systems’
monitoring. Both facts are fundamental for understanding the boom
in machine learning techniques and data mining on several fields.
Among the techniques, a set of them are inspired on biological
functioning of brain, the artificial neural networks (ANNs).

One of the most known and applied ANN is the multi-
layer perceptron (MLP). This algorithm maps output space based
on several linear processing units, the perceptron, linked one each
other in layers. Each perceptron receives input data, calculate a
linear combination of inputs by weights and process the result
by a non-linear function. The arrange of several perceptrons on
different layers makes input data be processed several times by
different weighs and functions, resulting on a powerful tool for
regression problems (Taud & Mas, 2018).

MLPs are submitted to a training process, also known
as learning process to map with accuracy the output space. For
better understand the training, let’s take a familiar problem: least
square method for linear functions. Considering the adjust of a
linear function: f(x) = ax + b, the least squared method finds the
open parameters a and b for minimize an error function. This
error function is calculated, in general, using the mean squared
error (MSE), written as Equation 1:

() 2

1

1
N

i i
i

MSE y f x
N

=

 = − ∑ 	 (1)

where iy is the observed value of output space, ix is the input
data linked to iy and N is the number of observed points. In this
simple case, the coefficients a and b are obtained directly from
deriving the MSE in terms of a and b.

For the MLP, the weights and biases are the parameters to
be adjusted and, depending on the number of neurons, layers and
inputs or outputs, the number of weights and biases can arrive
easily on hundreds or thousands. It is expected that with a greater
number of parameters to be adjusted (hyperparameters) (i.e.,
greater number of hidden layers and more neurons per hidden
layer) the ANN can memorize more detailed characteristics.
However, the high number of parameters and training iteration
can provide overfitting and/or overtraining problems and ANN
accuracy becomes poorly (Tetko et al., 1997; Lin & Wu, 2021). In
some ANNs where the overfitting and/or overtraining can be a
problem, an additional algorithm, such as the one implemented
by Antonacci et al. (2021) is necessary. Therefore, the problem
of finding an optimal architecture, its weights and biases is hard
and a field for application of several optimization techniques.

The hyperparameters (Hp) are the adjustable parameters
and express the number of weights and biases to be adjusted in
a given architecture for ANN, as shown in Figure 1, where x and
y are the number of input and output parameters respectively,
and n is the number of the neurons in the hidden layer, can be
estimated according to Equation 2, where weights are the matrices
Wij, product of two consecutive layers, being the total number
of layers (j) the number of hidden layers + 2 (Input and Output)
and the biases are a vector bj for each hidden and output layer.

RBRH, Porto Alegre, v. 26, e37, 2021

Souza et al.

3/9

()
1

j

ij ijHp w b= +∑ 	 (2)

Usually, the application of ANN and in the specific case
of MLPs are conducted by the using of already implemented
toolboxes (e.g., Deep Learning, implemented in Matlab). This
toolbox provides a set of training algorithms, most of them based
on first order optimization (Gradient method) or first-pseudo
second order (Levemberg-Marquardt among other). Since the
optimization success depend on MLP architecture (e.g., number
of neuron and layers) and the generality capacity of a MLP also
depends of the architecture, this work provides a set of evaluations
to identify good practices on developing MLPs for the problem
of state estimation in water distribution systems, specifically, the
pressure estimation.

PRESSURE ESTIMATOR MODELING

As well-known as it can be the topology of a WDN,
hydraulic parameters are highly variable, both in short- and long-
term periods, result for example of a pipe burst or a deterioration
of pipe roughness. To develop an accurate model is hard, and
can expend a high computational effort. Thus, a surrogate model
to estimate these parameters can be an important tool to take
rapid and efficient decisions. Meirelles et al. (2018) propose the
creation of a simulated database, where the hydraulic model
is used to calculate pressure in all nodes of the WDN varying
nodal demand and pipe roughness randomly. Pressure values of
monitored nodes are used as input to train an ANN, while the
remaining values are the output of the surrogate model as shown
in Figure 2. Meirelles et al. (2017) show this approach can be used
for the WDN model calibration with good results, which can
be then further used to optimize the operation. However, any
modifications in the WDN will demand the creation of a new
ANN. Another approach, proposed by Xu et al. (2020) is to use
only the values of the existing pressure sensors, and compose
one or more ANNs to predict the pressure on these nodes. If
the estimated and measured values are different by a predefined
margin, a trigger is activated, indicating an anomaly on the WDN
to be further investigated.

In both cases, the accuracy of the ANN in the pressure
estimation is highly important, as it will be used to support
operational decisions. Thus, the following three conditions of
the ANN training are relevant: i) the database composition, with
a large series without redundancy and containing extreme values
(minimum and maximum values); ii) the ANN architecture, with
a minimum number of neurons and hidden layers necessary for
an accurate ANN; and iii) the optimization training algorithm and
its parameters, to achieve a fast convergence.

The performance of the trained ANN can be evaluated
comparing its results with a test set. For each node, the maximum
and average errors can be calculated trough Equations 3 and 4.

0

t
m si

mean

p p

t
ε =

−
=
∑ 	 (3)

(), ,max m i s imax p pε = − 	 (4)Figure 1. A given architecture for ANN.

Figure 2. Example of a trained ANN results. Source: Meirelles et al. (2018).

RBRH, Porto Alegre, v. 26, e37, 20214/9

Optimal architecture for artificial neural networks as pressure estimator

where εmed is the average error for a given node, εmax is the maximum
error for a given node, t is the test set size, pm is the monitored
pressure, ps is the estimated pressure by the ANN.

CASE STUDY

The case study is the Oberlin network (OBCL-1), a model
originally inspired by a part of the water distribution network that
supplies the Oberlin neighborhood, located in the city of Harrisburg,
Pennsylvania, northeastern of United States. The model is part
of the database of a series of benchmarking networks available
for research by the Task Committee on Research Databases for
Water Distribution Systems of the American Society of Engineers
(Hernandez et al., 2016).

The OBCL-1 network infrastructure comprises 269 nodes,
294 pipes, one pressure reducing valve (PRV) and the supply is
carried out through a reservoir and a pump station immediately
downstream. The monitored data refer to the pipe flow at the
reservoir outlet and the pressure of 10 nodes scattered throughout
the infrastructure and located as shown in Figure 3.

The database was created through simulations in the
Epanet software, and represents the monitoring of 3 years of
operation, with data collected every hour, totaling 26,279 readings.
Thus, the database consists of pressure on all 269 nodes of the
network, and the values of the 10 monitored nodes are used as
input for the ANN training, in addition with the output flow of
the reservoir (Figure 3). The remaining data will create the ANN
output matrix. The database was randomly divided into a ratio of
85% (22,337) for the training data and the remainder, 15% (3,942),
for validation of the results, and then used in the various ANN
configurations. It is emphasized that this division into training
and validation was the same for all tests performed in this work.

The methodology used was based on determining the
best architecture of the ANN to act as pressure estimator from
the observed data available with the use of the Deep Learning
framework in the MATLAB© software. For this, it was used the

MLP model in which the inputs corresponds to the 11 monitored
points and the outputs is the pressure in the 259 unmonitored
nodes. The hidden layers of the perceptrons are varied for
different arrangements, ranging from one to three, and associated
with the variation in the number of neurons, corresponding to
10, 20 or 50, always equal per hidden layer, resulting on nine
different arrangements with a number of hyperparameters (Hp)
to be adjusted (weights and biases) calculated as demonstrated in
Equation 2 with a degree of freedom (DoF) being to the difference
between the training data (22,337) minus the hyperparameters (Hp)
where the results are shown in Table 1. The training parameters
adopted were: a maximum number of validation failure of 15, a
maximum number of 1e6 epochs, random division of weights,
evaluation of performance through the mean square error (MSE)
and other parameters adopted with the MATLAB® default values,
as shown in Table 2.

In the training of the ANN, each architecture configuration
is evaluated for all twelve training algorithms available in MATLAB®
as presented in Table 3. The performance goal is to comply the
maximum errors below the limit of 2 meters for the pressure
estimation, a value considered acceptable by the Water Research
Centre (1989) in calibration processes. However, other training
results are evaluated as mean absolute error.

RESULTS

Tables 4, 5 and 6 show the results of the performance
of the training algorithms for each architecture studied. Figure 4
compares two weeks between observed and estimated pressure,
while Figure 5 details the frequency of maximum absolute error
below the WRC reference of 2 m according to the number of
hidden layers and neurons used. Figure 6 presents the spatial
distribution of case study errors for the best architecture found and
Figure 6 the frequency at which a given absolute error is observed.

It is observed that one third of the available training
algorithms could not predict the pressures for the OBCL-1 case
study from the available database, as their architecture were not
evaluated due to the impossibility to start the iterations to training
ANN, namely: Levenberg-Marquardt, BFGS quasi-Newton,
Bayesian regularization and Gradient descent with momentum.
Two other functions, Gradient descent with adaptive learning
rate and Gradient descent with momentum and adaptive learning
rate, presented maximum absolute error results well above the 2

Figure 3. Oberlin Network (OBCL-1).

Table 1. The number of hyperparameters to be adjusted for each
architecture.
Architecture W

ij
b

j
Hp DoF

[10] 2,700 269 2,969 19,368
[20] 5,400 279 5,679 16,658
[50] 13,500 309 13,809 8,528

[10, 10] 2,800 279 3,079 19,258
[20, 20] 5,800 299 6,099 16,238
[50, 50] 16,000 359 16,359 5,978

[10, 10, 10] 2,900 289 3,189 19,148
[20, 20, 20] 6,200 319 6,519 15,818
[50, 50, 50] 18,500 409 18,909 3,428

RBRH, Porto Alegre, v. 26, e37, 2021

Souza et al.

5/9

meters reference. The performance of these two functions could
be improved increasing the maximum number of validation
failures used, but to maintain the comparison criterion among
the functions the value of 15 was kept.

According to Tables 4 and 6, it is worth noticing that, for
one and three hidden layers, only the Scaled conjugate gradient
and Resilient functions of the remaining six present absolute
maximum error lower than 2 m. For two hidden layers, according
to Table 5, the conjugate gradient with Polak-Ribiére updates and
One-step secant functions also presented results within the desired
limit totaling four of the six functions with absolute maximum
error lower than 2 m. The other two functions, Conjugate gradient
with Fletcher-Reeves updates and Conjugate gradient with Powell-
Beale restarts presented maximum errors around 4 m for all
configurations, so they are unfeasible for the case study.

Table 2. Training parameters adopted.
Training parameters Values Description
net.trainParam.epochs 1.0e6 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal
net.trainParam.min_grad 1.0e-6 Minimum performance gradient
net.trainParam.max_fail 15 Maximum validation failures

net.trainParam.sigma 5.0e-5 Determine change in weight for second derivative approximation
net.trainParam.lambda 5.0e-7 Parameter for regulating the indefiniteness of the Hessian

net.trainParam.min_step 1.0e-6 Minimum step length

Table 3. Training algorithms available in MATLAB®.
No. Acronym Algorithm Description

1 SCG trainscg Scaled conjugate gradient backpropagation
2 LM trainlm Levenberg-Marquardt backpropagation
3 GDA traingda Gradient descent with adaptive learning rate backpropagation
4 GDX traingdx Gradient descent with momentum and adaptive learning rate backpropagation
5 RP trainrp Resilient backpropagation
6 CGF traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates
7 CGB traincgb Conjugate gradient backpropagation with Powell-Beale restarts
8 BFG trainbfg BFGS quasi-Newton backpropagation
9 CGP traincgp Conjugate gradient backpropagation with Polak-Ribiére updates
10 OSS trainoss One-step secant backpropagation
11 BR trainbr Bayesian regularization backpropagation
12 GDM traingdm Gradient descent with momentum backpropagation

Table 4. Results for one Hidden Layer.

Training
Algorithm

1 Hidden Layer
[10] [20] [50]

εmax εmean εmax εmean εmax εmean

1 3.4 0.02 2.6 0.02 1.9 0.01
2 - - - - - -
3 11.8 0.49 17.1 0.66 37.1 0.84
4 35.9 0.60 9.1 0.27 21.5 0.37
5 2.0 0.03 2.1 0.02 2.0 0.02
6 4.1 0.09 4.0 0.03 3.0 0.02
7 3.6 0.02 3.3 0.02 3.1 0.03
8 - - - - - -
9 3.9 0.06 2.9 0.04 2.9 0.02
10 5.0 0.10 3.7 0.02 2.5 0.03
11 - - - - - -
12 - - - - - -

Table 5. Results for two Hidden Layer.

Training
Algorithm

2 Hidden Layer
[10, 10] [20, 20] [50, 50]

εmax εmean εmax εmean εmax εmean

1 2.3 0.02 1.6 0.01 1.5 0.02
2 - - - - - -
3 34.2 1.58 69.4 3.12 92.6 4.17
4 44.7 0.80 68.6 3.71 69.7 2.29
5 2.0 0.02 1.8 0.02 1.5 0.02
6 4.1 0.09 4.1 0.09 3.4 0.05
7 4.1 0.09 4.0 0.09 4.0 0.07
8 - - - - - -
9 4.1 0.10 4.1 0.09 1.8 0.02
10 2.6 0.03 1.7 0.02 1.3 0.02
11 - - - - - -
12 - - - - - -

Table 6. Results for tree Hidden Layer.

Training
Algorithm

3 Hidden Layer
[10, 10, 10] [20, 20, 20] [50, 50, 50]
εmax εmean εmax εmean εmax εmean

1 1.9 0.03 2.0 0.02 1.8 0.02
2 - - - - - -
3 45.7 2.28 84.5 4.40 110.4 9.42
4 23.1 0.37 63.4 3.35 61.6 2.27
5 3.7 0.01 2.1 0.01 1.7 0.03
6 4.1 0.13 4.6 0.13 4.1 0.09
7 4.0 0.10 4.1 0.10 4.0 0.09
8 - - - - - -
9 4.2 0.12 4.1 0.10 4.1 0.10
10 4.1 0.10 4.2 0.10 4.1 0.09
11 - - - - - -
12 - - - - - -

RBRH, Porto Alegre, v. 26, e37, 20216/9

Optimal architecture for artificial neural networks as pressure estimator

Figure 4. Comparison between monitored and estimated data to node 157 for ANN with two hidden layers and 50 neurons per hidden
layer for different Training Algorithms: (a) Scaled conjugate gradient backpropagation; (b) Resilient backpropagation; (c) One-step
secant backpropagation.

Figure 5. Observations of absolute maximum error less than 2 meters: (a) Observations per Hidden Layers; (b) Observations per
architecture.

As shown in Figure 5a, the architecture with only one hidden
layer is the one with the lowest frequency of errors lower than
2 m, with only three observations below this value, one with the
Scaled conjugate gradient function with 50 neurons and the other

two for resilient function with 10 and 50 neurons, respectively. The
architecture with two hidden layers presents the highest frequency
of maximum errors lower than 2 m, with eight cases in total. In
addition, it was also the one that presented the lowest maximum

RBRH, Porto Alegre, v. 26, e37, 2021

Souza et al.

7/9

absolute error, of 1.3 meters for the One-step secant function
with 50 neurons in each layer. Finally, the architecture with three
hidden layers presented results similar to the one-layer case, with
only four tests with maximum absolute errors lower than 2 m,
observed when using the Scaled conjugate gradient functions for
10, 20 and 50 neurons and Resilient for 50 neurons.

Also, according to Figure 5b, it is observed that, for the
different number of hidden layers, when 50 neurons were used, the
frequency of absolute maximum error below 2 meters increased.
In agreement with the results showed in Figure 5a, the two hidden
layers architecture had the best results, with four tests below the
error reference, indicating a predominance of optimized architecture
for the case study. Even with a more complex architecture for 3
hidden layers (i.e., [50,50,50]) and the ability to memorize more
detailed characteristics, the results performed were worse than
for 2 hidden layers (i.e., [50,50)]), being justified by the stopping
criterion less than the maximum number of iterations and by
the overfitting and/or overtraining problems as highlighted by
Tetko et al. (1997) and Lin & Wu (2021) and caused by the lowest
degree of freedom (DoF). It is also important to highlight that,
considering different training algorithms, optimal parameters can
be achieved for different architectures and different number of
iterations, which also justifies simple architectures (i.e., [20,20])
with better performance than more complex architectures (i.e.,
[20,20,20]) with different training algorithms.

Figure 6 shows the spatial distribution of the mean absolute
error and maximum absolute error in each of the 259 unmonitored
nodes and Figure 7 the frequency of a given absolute error. It
is observed that, in less than 10% of the estimated pressure
period the absolute error is higher than 0.8 m in node 175, while
on average, the absolute error is higher than 0.2 m only in 1%.

Figure 6. Spatial distribution of absolute error for 2 Hidden Layers, 50 neurons per Hidden Layer and one-step secant training
algorithm: (a) Average absolute error; (b) Maximum absolute error.

Figure 7. Frequency in observing errors.

RBRH, Porto Alegre, v. 26, e37, 20218/9

Optimal architecture for artificial neural networks as pressure estimator

Thus, Figure 6 and Figure 7 justify the high values for maximum
absolute error and lower values for the mean absolute error
presented in Tables 3, 4 and 5, since the concentration of the
error occurs almost exclusively in node 175. So, it is a restricted
problem since for the other 258 nodes the ANN can estimate
pressure with excellent results.

CONCLUSIONS
There are several possibilities of architectures for ANN and

different training algorithms, and, finding the ideal arrangement,
especially that respects the restriction(s) of the problem studied,
is not an easy task. Thus, this work aimed to contribute to the
evaluation of different architectures and training algorithms of
ANN to estimate pressures. It is noteworthy that different training
parameters and architectures with higher numbers of hidden layers
and/or neurons per hidden layers may present results that meet
the restriction of the problem, however, it depends on a higher
computational effort in the training of ANN, and problems with
overfitting and overtraining can increase, and it may be necessary to
implement some additional technique to avoid it, but not discussed
in the present paper. However, higher numbers of hidden layers
and neurons per hidden layers or a specific algorithm to avoid
overfitting have not been necessary for the case study, since the
results found satisfied the system restriction.

Although there were 12 training algorithms available at
MATLAB®, four were not even able to start training the ANN,
and of the remaining eight, only half achieved results that respected
the restrictions of the problem. For one and three hidden layers,
only the Scaled conjugate gradient and Resilient functions showed
errors in pressure estimation below 2 meters. When using two
hidden layers, the frequency of errors below 2 meters was the
highest. In addition, the configuration with 50 neurons presented
the smallest errors, reaching the lowest maximum absolute error
of 1.3 meters with the one-step secant training algorithm. Thus,
the predominance of optimized architecture for the case study
with 2 layers and 50 neurons in each layer was observed.

DATA AVAILABILITY STATEMENT

Some or all data, models, or code that support the findings
of this study are available from the corresponding author upon
reasonable request, like as:

•	 	Database;

•	 	Epanet model;

•	 	Adjusted parameters (weight and bias trained values).

The ANNs created in this study are specific to the WDN
and the sensors placement used. For any other WDN, and also,
for a different sensor placement in this exactly WDN, a new ANN
have to be trained.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001.

REFERENCES

Antonacci, Y., Minati, L., Faes, L., Pernice, R., Nollo, G., Toppi, J.,
Pietrabissa, A., & Astolfi, L. (2021). Estimation of Granger causality
through Artificial Neural Networks: applications to physiological
systems and chaotic electronic oscillators. PeerJ. Computer Science, 7,
e429. PMid:34084917. http://dx.doi.org/10.7717/peerj-cs.429.

Brentan, B., Meirelles, G., Luvizotto Junior, E., & Izquierdo, J.
(2018). Joint operation of pressure-reducing valves and pumps for
improving the efficiency of water distribution systems. Journal of
Water Resources Planning and Management, 144(9), 04018055. http://
dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000974.

Broad, D. R., Maier, H. R., & Dandy, G. C. (2010). Optimal operation
of complex water distribution systems using metamodels. Journal
of Water Resources Planning and Management, 136(4), 433-443. http://
dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000052.

Chan, T. K., Chin, C. S., & Zhong, X. (2018). Review of current
technologies and proposed intelligent methodologies for water
distributed network leakage detection. IEEE Access: Practical
Innovations, Open Solutions, 6, 78846-78867. http://dx.doi.org/10.1109/
ACCESS.2018.2885444.

Fecarotta, O., Ramos, H. M., Derakhshan, S., Del Giudice, G., &
Carravetta, A. (2018). Fine tuning a PAT hydropower plant in a
water supply network to improve system effectiveness. Journal of
Water Resources Planning and Management, 144(8), 04018038. http://
dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000961.

Fontana, N., Giugni, M., Glielmo, L., Marini, G., & Zollo, R.
(2018). Real-time control of pressure for leakage reduction in
water distribution network: field experiments. Journal of Water
Resources Planning and Management, 144(3), 04017096. http://dx.doi.
org/10.1061/(ASCE)WR.1943-5452.0000887.

Ghalehkhondabi, I., Ardjmand, E., Young 2nd, W. A., & Weckman,
G. R. (2017). Water demand forecasting: review of soft computing
methods. Environmental Monitoring and Assessment, 189(7), 313.
PMid:28585040. http://dx.doi.org/10.1007/s10661-017-6030-3.

Hernandez, E., Hoagland, S., & Ormsbee, L. E. (2016). WDSRD:
A Database for Research Applications. Retrieved in 2020, December
28, from http://www.uky.edu/WDST/database.html.

Lin, C. J., & Wu, N. J. (2021). An ANN model for predicting the
compressive strength of concrete. Applied Sciences, 11(9), 3798.
http://dx.doi.org/10.3390/app11093798.

Mala-Jetmarova, H., Sultanova, N., & Savic, D. (2017). Lost in
optimisation of water distribution systems? A literature review of
system operation. Environmental Modelling & Software, 93, 209-254.
http://dx.doi.org/10.1016/j.envsoft.2017.02.009.

Meirelles, G., Brentan, B. M., Manzi, D., & Luvizotto Junior, E.
(2018). Metamodel for nodal pressure estimation at near real-time
in water distribution systems using artificial neural networks. Journal

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34084917&dopt=Abstract
https://doi.org/10.7717/peerj-cs.429
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000974
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000974
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000052
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000052
https://doi.org/10.1109/ACCESS.2018.2885444
https://doi.org/10.1109/ACCESS.2018.2885444
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000961
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000961
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000887
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000887
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28585040&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28585040&dopt=Abstract
https://doi.org/10.1007/s10661-017-6030-3
https://doi.org/10.3390/app11093798
https://doi.org/10.1016/j.envsoft.2017.02.009

RBRH, Porto Alegre, v. 26, e37, 2021

Souza et al.

9/9

of Hydroinformatics, 20(2), 486-496. http://dx.doi.org/10.2166/
hydro.2017.036.

Meirelles, G., Manzi, D., Brentan, B., Goulart, T., & Luvizotto
Junior, E. (2017). Calibration model for water distribution
network using pressures estimated by artificial neural networks.
Water Resources Management, 31(13), 4339-4351. http://dx.doi.
org/10.1007/s11269-017-1750-2.

Salomons, E., & Housh, M. (2020). A practical optimization scheme
for real-time operation of water distribution systems. Journal of
Water Resources Planning and Management, 146(4), 04020016. http://
dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001188.

Taud, H., & Mas, J. F. (2018). Multilayer perceptron (MLP). In
M. T. C. Olmedo, M. Paegelow, J.-F. Mas & F. Escobar (Eds.),
Geomatic approaches for modeling land change scenarios (pp. 451-455).
Cham: Springer. http://dx.doi.org/10.1007/978-3-319-60801-3_27.

Tetko, I. V., Villa, A. E., & Tetko, I. V. (1997). An enhancement of
generalization ability in cascade correlation algorithm by avoidance
of overfitting/overtraining problem. Neural Processing Letters, 6(1),
43-50. http://dx.doi.org/10.1023/A:1009610808553.

Water Research Centre – WRC. (1989). Network analysis: a code for
practice. Swindon: WRC.

Xu, Q., Chen, Q., Qi, S., & Cai, D. (2015). Improving water
and energy metabolism efficiency in urban water supply system

through pressure stabilization by optimal operation on water tanks.
Ecological Informatics, 26, 111-116. http://dx.doi.org/10.1016/j.
ecoinf.2014.09.007.

Xu, Z., Ying, Z., Li, Y., He, B., & Chen, Y. (2020). Pressure
prediction and abnormal working conditions detection of water
supply network based on LSTM. Water Supply, 20(3), 963-974.
http://dx.doi.org/10.2166/ws.2020.013.

Authors contributions

Rui Gabriel Modesto de Souza: Performed the methodology,
obtained the results and wrote the text.

Bruno Melo Brentan: Performed the methodology and revised
the results and text.

Gustavo Meirelles Lima: Contributed with technical notes and
revised the text.

Editor-in-Chief: Adilson Pinheiro

Associated Editor: Carlos Henrique Ribeiro Lima

https://doi.org/10.2166/hydro.2017.036
https://doi.org/10.2166/hydro.2017.036
https://doi.org/10.1007/s11269-017-1750-2
https://doi.org/10.1007/s11269-017-1750-2
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001188
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001188
https://doi.org/10.1007/978-3-319-60801-3_27
https://doi.org/10.1023/A:1009610808553
https://doi.org/10.1016/j.ecoinf.2014.09.007
https://doi.org/10.1016/j.ecoinf.2014.09.007
https://doi.org/10.2166/ws.2020.013

