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ABSTRACT

The knowledge of  hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small 
leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of  
the data acquired, i.e., the number of  sensors used to monitor the network and their location. It is not economic feasible have a 
great number of  sensors, thus, the use of  artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of  
information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of  
ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most 
relevant parameters to be adjusted when the ANN is used for pressure estimation.

Keywords: Artificial neural network; Water distribution network; Data-driven model.

RESUMO

O conhecimento dos parâmetros hidráulicos em uma rede de distribuição de água pode ser usado para indicar problemas em tempo real, 
como rompimentos de tubos, pequenos vazamentos, aumento da rugosidade do tubo e conexões ilegais. No entanto, uma indicação 
precisa depende da quantidade e qualidade dos dados adquiridos, ou seja, do número de sensores usados para monitorar a rede e sua 
localização. Entretanto, não é economicamente viável ter um grande número de sensores, portanto, o uso da inteligência artificial, como 
Redes Neurais Artificiais (RNAs) podem reduzir a falta de informações necessárias para identificar problemas, estimando parâmetros 
hidráulicos através das poucas informações coletadas. A confiabilidade das RNAs depende de sua arquitetura, então, neste trabalho, 
diferentes condições são testadas para o treinamento das RNAs de modo a identificar quais são os parâmetros mais relevantes a serem 
ajustados quando utilizadas na estimativa de pressão.

Palavras-chave: Rede neural artificial; Rede de distribuição de água; Modelos guiados por dados.
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INTRODUCTION

A Water Distribution Network (WDN) is composed by 
a variety of  hydraulic components, such as pipes, pumps, valves 
and tanks. Each of  them has a particular purpose in the WDN 
operation. However, they are all integrated in the same system, 
and any change in one of  these components reflects in all others. 
Add to this the highly time variant hydraulic conditions, established 
by the varying water consumption through the day. The result is 
a complex and nonlinear hydraulic model, but able to provide 
valuable information to achieve an efficient operation.

In general, WDNs aims to operate with minimum costs, with 
energy consumption and leakage as two of  the main parameters 
to be minimized. Thus, different approaches can be used, such 
as: set an optimal rotational speed for pumps according to the 
hydraulic parameters (Brentan et al., 2018); operate pressure reducing 
valves to control pressure and reduce leakages (Fontana et al., 
2018); use tanks to reduce pump stations operation in peak hours 
(Xu et al., 2015); and use microturbines to recovery energy excess 
(Fecarotta et al., 2018).

In recent years, a special attention has been given to the 
real-time operation. As highlighted by Salomons & Housh (2020), 
two main blocks are necessary: a demand predictor, to establish 
the future conditions that has to be satisfied, and an optimization 
model coupled with a hydraulic simulator, to determine the 
optimal operation of  pumps and valves during the predicted 
period. Reducing the time step of  the optimization procedure 
allows a better adjustment of  the system to the hydraulic changes, 
increasing more and more its efficiency. However, as already 
explained, the hydraulic models are complex, and can require 
a significant computational effort that can impair the real time 
operation (Mala-Jetmarova et al., 2017).

As the concern with the operation increased, the Supervisory 
Control and Data Acquisition (SCADA) of  the WDNs also increased. 
Pressure, flow, power, tanks levels and many other parameters can 
be acquired, composing a database with information on the WDN 
behavior. Thus, data mining techniques can be used to extract 
useful information. Machine learning models, such as Artificial 
Neural Networks (ANN) have been applied with good results 
for leakage and pipe burst detection (Chan et al., 2018) and water 
demand forecasting (Ghalehkhondabi et al., 2017). In addition, 
ANNs can also be used as a surrogate model to estimate the WDN 
state (Broad et al., 2010), significantly reducing the computational 
effort required by the hydraulic model in real time operation.

The accuracy of  the ANN is important to its effectiveness 
in WDNs operation, and its architecture is one of  the main 
features to achieve this. In a Multilayer Perceptron (MLP) ANN, 
the definition of  the number of  neurons and hidden layers used 
is almost empirical, and can significantly change according to the 
problem being studied. Thus, in this paper the architecture of  an 
MLP-ANN used as a pressure estimator will be studied, aiming 
establish guidelines for this problem and reduce the effort in future 
ANNs creation. Three different ANNs will be tested, all of  them 
with three hidden layers, varying the number of  neurons from 
10 to 50. Each ANN will be trained using 12 different functions, 
and the results obtained will be compared using two parameters: 
mean and maximum pressure error.

ARTIFICIAL NEURAL NETWORKS

The last decades have been marked by the increasing of  
computer processing capacity and the popularization of  systems’ 
monitoring. Both facts are fundamental for understanding the boom 
in machine learning techniques and data mining on several fields. 
Among the techniques, a set of  them are inspired on biological 
functioning of  brain, the artificial neural networks (ANNs).

One of  the most known and applied ANN is the multi-
layer perceptron (MLP). This algorithm maps output space based 
on several linear processing units, the perceptron, linked one each 
other in layers. Each perceptron receives input data, calculate a 
linear combination of  inputs by weights and process the result 
by a non-linear function. The arrange of  several perceptrons on 
different layers makes input data be processed several times by 
different weighs and functions, resulting on a powerful tool for 
regression problems (Taud & Mas, 2018).

MLPs are submitted to a training process, also known 
as learning process to map with accuracy the output space. For 
better understand the training, let’s take a familiar problem: least 
square method for linear functions. Considering the adjust of  a 
linear function: f(x) = ax + b, the least squared method finds the 
open parameters a and b for minimize an error function. This 
error function is calculated, in general, using the mean squared 
error (MSE), written as Equation 1:
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where iy  is the observed value of  output space, ix  is the input 
data linked to iy  and N  is the number of  observed points. In this 
simple case, the coefficients a and b are obtained directly from 
deriving the MSE in terms of  a and b.

For the MLP, the weights and biases are the parameters to 
be adjusted and, depending on the number of  neurons, layers and 
inputs or outputs, the number of  weights and biases can arrive 
easily on hundreds or thousands. It is expected that with a greater 
number of  parameters to be adjusted (hyperparameters) (i.e., 
greater number of  hidden layers and more neurons per hidden 
layer) the ANN can memorize more detailed characteristics. 
However, the high number of  parameters and training iteration 
can provide overfitting and/or overtraining problems and ANN 
accuracy becomes poorly (Tetko et al., 1997; Lin & Wu, 2021). In 
some ANNs where the overfitting and/or overtraining can be a 
problem, an additional algorithm, such as the one implemented 
by Antonacci et al. (2021) is necessary. Therefore, the problem 
of  finding an optimal architecture, its weights and biases is hard 
and a field for application of  several optimization techniques.

The hyperparameters (Hp) are the adjustable parameters 
and express the number of  weights and biases to be adjusted in 
a given architecture for ANN, as shown in Figure 1, where x and 
y are the number of  input and output parameters respectively, 
and n is the number of  the neurons in the hidden layer, can be 
estimated according to Equation 2, where weights are the matrices 
Wij, product of  two consecutive layers, being the total number 
of  layers (j) the number of  hidden layers + 2 (Input and Output) 
and the biases are a vector bj for each hidden and output layer.
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Usually, the application of  ANN and in the specific case 
of  MLPs are conducted by the using of  already implemented 
toolboxes (e.g., Deep Learning, implemented in Matlab). This 
toolbox provides a set of  training algorithms, most of  them based 
on first order optimization (Gradient method) or first-pseudo 
second order (Levemberg-Marquardt among other). Since the 
optimization success depend on MLP architecture (e.g., number 
of  neuron and layers) and the generality capacity of  a MLP also 
depends of  the architecture, this work provides a set of  evaluations 
to identify good practices on developing MLPs for the problem 
of  state estimation in water distribution systems, specifically, the 
pressure estimation.

PRESSURE ESTIMATOR MODELING

As well-known as it can be the topology of  a WDN, 
hydraulic parameters are highly variable, both in short- and long-
term periods, result for example of  a pipe burst or a deterioration 
of  pipe roughness. To develop an accurate model is hard, and 
can expend a high computational effort. Thus, a surrogate model 
to estimate these parameters can be an important tool to take 
rapid and efficient decisions. Meirelles et al. (2018) propose the 
creation of  a simulated database, where the hydraulic model 
is used to calculate pressure in all nodes of  the WDN varying 
nodal demand and pipe roughness randomly. Pressure values of  
monitored nodes are used as input to train an ANN, while the 
remaining values are the output of  the surrogate model as shown 
in Figure 2. Meirelles et al. (2017) show this approach can be used 
for the WDN model calibration with good results, which can 
be then further used to optimize the operation. However, any 
modifications in the WDN will demand the creation of  a new 
ANN. Another approach, proposed by Xu et al. (2020) is to use 
only the values of  the existing pressure sensors, and compose 
one or more ANNs to predict the pressure on these nodes. If  
the estimated and measured values are different by a predefined 
margin, a trigger is activated, indicating an anomaly on the WDN 
to be further investigated.

In both cases, the accuracy of  the ANN in the pressure 
estimation is highly important, as it will be used to support 
operational decisions. Thus, the following three conditions of  
the ANN training are relevant: i) the database composition, with 
a large series without redundancy and containing extreme values 
(minimum and maximum values); ii) the ANN architecture, with 
a minimum number of  neurons and hidden layers necessary for 
an accurate ANN; and iii) the optimization training algorithm and 
its parameters, to achieve a fast convergence.

The performance of  the trained ANN can be evaluated 
comparing its results with a test set. For each node, the maximum 
and average errors can be calculated trough Equations 3 and 4.
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( ), ,max m i s imax p pε = −  (4)Figure 1. A given architecture for ANN.

Figure 2. Example of  a trained ANN results. Source: Meirelles et al. (2018).
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where εmed is the average error for a given node, εmax is the maximum 
error for a given node, t is the test set size, pm is the monitored 
pressure, ps is the estimated pressure by the ANN.

CASE STUDY

The case study is the Oberlin network (OBCL-1), a model 
originally inspired by a part of  the water distribution network that 
supplies the Oberlin neighborhood, located in the city of  Harrisburg, 
Pennsylvania, northeastern of  United States. The model is part 
of  the database of  a series of  benchmarking networks available 
for research by the Task Committee on Research Databases for 
Water Distribution Systems of  the American Society of  Engineers 
(Hernandez et al., 2016).

The OBCL-1 network infrastructure comprises 269 nodes, 
294 pipes, one pressure reducing valve (PRV) and the supply is 
carried out through a reservoir and a pump station immediately 
downstream. The monitored data refer to the pipe flow at the 
reservoir outlet and the pressure of  10 nodes scattered throughout 
the infrastructure and located as shown in Figure 3.

The database was created through simulations in the 
Epanet software, and represents the monitoring of  3 years of  
operation, with data collected every hour, totaling 26,279 readings. 
Thus, the database consists of  pressure on all 269 nodes of  the 
network, and the values of  the 10 monitored nodes are used as 
input for the ANN training, in addition with the output flow of  
the reservoir (Figure 3). The remaining data will create the ANN 
output matrix. The database was randomly divided into a ratio of  
85% (22,337) for the training data and the remainder, 15% (3,942), 
for validation of  the results, and then used in the various ANN 
configurations. It is emphasized that this division into training 
and validation was the same for all tests performed in this work.

The methodology used was based on determining the 
best architecture of  the ANN to act as pressure estimator from 
the observed data available with the use of  the Deep Learning 
framework in the MATLAB© software. For this, it was used the 

MLP model in which the inputs corresponds to the 11 monitored 
points and the outputs is the pressure in the 259 unmonitored 
nodes. The hidden layers of  the perceptrons are varied for 
different arrangements, ranging from one to three, and associated 
with the variation in the number of  neurons, corresponding to 
10, 20 or 50, always equal per hidden layer, resulting on nine 
different arrangements with a number of  hyperparameters (Hp) 
to be adjusted (weights and biases) calculated as demonstrated in 
Equation 2 with a degree of  freedom (DoF) being to the difference 
between the training data (22,337) minus the hyperparameters (Hp) 
where the results are shown in Table 1. The training parameters 
adopted were: a maximum number of  validation failure of  15, a 
maximum number of  1e6 epochs, random division of  weights, 
evaluation of  performance through the mean square error (MSE) 
and other parameters adopted with the MATLAB® default values, 
as shown in Table 2.

In the training of  the ANN, each architecture configuration 
is evaluated for all twelve training algorithms available in MATLAB® 
as presented in Table 3. The performance goal is to comply the 
maximum errors below the limit of  2 meters for the pressure 
estimation, a value considered acceptable by the Water Research 
Centre (1989) in calibration processes. However, other training 
results are evaluated as mean absolute error.

RESULTS

Tables 4, 5 and 6 show the results of  the performance 
of  the training algorithms for each architecture studied. Figure 4 
compares two weeks between observed and estimated pressure, 
while Figure 5 details the frequency of  maximum absolute error 
below the WRC reference of  2 m according to the number of  
hidden layers and neurons used. Figure 6 presents the spatial 
distribution of  case study errors for the best architecture found and 
Figure 6 the frequency at which a given absolute error is observed.

It is observed that one third of  the available training 
algorithms could not predict the pressures for the OBCL-1 case 
study from the available database, as their architecture were not 
evaluated due to the impossibility to start the iterations to training 
ANN, namely: Levenberg-Marquardt, BFGS quasi-Newton, 
Bayesian regularization and Gradient descent with momentum. 
Two other functions, Gradient descent with adaptive learning 
rate and Gradient descent with momentum and adaptive learning 
rate, presented maximum absolute error results well above the 2 

Figure 3. Oberlin Network (OBCL-1).

Table 1. The number of  hyperparameters to be adjusted for each 
architecture.
Architecture W

ij
b

j
Hp DoF

[10] 2,700 269 2,969 19,368
[20] 5,400 279 5,679 16,658
[50] 13,500 309 13,809 8,528

[10, 10] 2,800 279 3,079 19,258
[20, 20] 5,800 299 6,099 16,238
[50, 50] 16,000 359 16,359 5,978

[10, 10, 10] 2,900 289 3,189 19,148
[20, 20, 20] 6,200 319 6,519 15,818
[50, 50, 50] 18,500 409 18,909 3,428
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meters reference. The performance of  these two functions could 
be improved increasing the maximum number of  validation 
failures used, but to maintain the comparison criterion among 
the functions the value of  15 was kept.

According to Tables 4 and 6, it is worth noticing that, for 
one and three hidden layers, only the Scaled conjugate gradient 
and Resilient functions of  the remaining six present absolute 
maximum error lower than 2 m. For two hidden layers, according 
to Table 5, the conjugate gradient with Polak-Ribiére updates and 
One-step secant functions also presented results within the desired 
limit totaling four of  the six functions with absolute maximum 
error lower than 2 m. The other two functions, Conjugate gradient 
with Fletcher-Reeves updates and Conjugate gradient with Powell-
Beale restarts presented maximum errors around 4 m for all 
configurations, so they are unfeasible for the case study.

Table 2. Training parameters adopted.
Training parameters Values Description
net.trainParam.epochs 1.0e6 Maximum number of  epochs to train

net.trainParam.goal 0 Performance goal
net.trainParam.min_grad 1.0e-6 Minimum performance gradient
net.trainParam.max_fail 15 Maximum validation failures

net.trainParam.sigma 5.0e-5 Determine change in weight for second derivative approximation
net.trainParam.lambda 5.0e-7 Parameter for regulating the indefiniteness of  the Hessian

net.trainParam.min_step 1.0e-6 Minimum step length

Table 3. Training algorithms available in MATLAB®.
No. Acronym Algorithm Description

1 SCG trainscg Scaled conjugate gradient backpropagation
2 LM trainlm Levenberg-Marquardt backpropagation
3 GDA traingda Gradient descent with adaptive learning rate backpropagation
4 GDX traingdx Gradient descent with momentum and adaptive learning rate backpropagation
5 RP trainrp Resilient backpropagation
6 CGF traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates
7 CGB traincgb Conjugate gradient backpropagation with Powell-Beale restarts
8 BFG trainbfg BFGS quasi-Newton backpropagation
9 CGP traincgp Conjugate gradient backpropagation with Polak-Ribiére updates
10 OSS trainoss One-step secant backpropagation
11 BR trainbr Bayesian regularization backpropagation
12 GDM traingdm Gradient descent with momentum backpropagation

Table 4. Results for one Hidden Layer.

Training 
Algorithm

1 Hidden Layer
[10] [20] [50]

εmax εmean εmax εmean εmax εmean

1 3.4 0.02 2.6 0.02 1.9 0.01
2 - - - - - -
3 11.8 0.49 17.1 0.66 37.1 0.84
4 35.9 0.60 9.1 0.27 21.5 0.37
5 2.0 0.03 2.1 0.02 2.0 0.02
6 4.1 0.09 4.0 0.03 3.0 0.02
7 3.6 0.02 3.3 0.02 3.1 0.03
8 - - - - - -
9 3.9 0.06 2.9 0.04 2.9 0.02
10 5.0 0.10 3.7 0.02 2.5 0.03
11 - - - - - -
12 - - - - - -

Table 5. Results for two Hidden Layer.

Training 
Algorithm

2 Hidden Layer
[10, 10] [20, 20] [50, 50]

εmax εmean εmax εmean εmax εmean

1 2.3 0.02 1.6 0.01 1.5 0.02
2 - - - - - -
3 34.2 1.58 69.4 3.12 92.6 4.17
4 44.7 0.80 68.6 3.71 69.7 2.29
5 2.0 0.02 1.8 0.02 1.5 0.02
6 4.1 0.09 4.1 0.09 3.4 0.05
7 4.1 0.09 4.0 0.09 4.0 0.07
8 - - - - - -
9 4.1 0.10 4.1 0.09 1.8 0.02
10 2.6 0.03 1.7 0.02 1.3 0.02
11 - - - - - -
12 - - - - - -

Table 6. Results for tree Hidden Layer.

Training 
Algorithm

3 Hidden Layer
[10, 10, 10] [20, 20, 20] [50, 50, 50]
εmax εmean εmax εmean εmax εmean

1 1.9 0.03 2.0 0.02 1.8 0.02
2 - - - - - -
3 45.7 2.28 84.5 4.40 110.4 9.42
4 23.1 0.37 63.4 3.35 61.6 2.27
5 3.7 0.01 2.1 0.01 1.7 0.03
6 4.1 0.13 4.6 0.13 4.1 0.09
7 4.0 0.10 4.1 0.10 4.0 0.09
8 - - - - - -
9 4.2 0.12 4.1 0.10 4.1 0.10
10 4.1 0.10 4.2 0.10 4.1 0.09
11 - - - - - -
12 - - - - - -
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Figure 4. Comparison between monitored and estimated data to node 157 for ANN with two hidden layers and 50 neurons per hidden 
layer for different Training Algorithms: (a) Scaled conjugate gradient backpropagation; (b) Resilient backpropagation; (c) One-step 
secant backpropagation.

Figure 5. Observations of  absolute maximum error less than 2 meters: (a) Observations per Hidden Layers; (b) Observations per 
architecture.

As shown in Figure 5a, the architecture with only one hidden 
layer is the one with the lowest frequency of  errors lower than 
2 m, with only three observations below this value, one with the 
Scaled conjugate gradient function with 50 neurons and the other 

two for resilient function with 10 and 50 neurons, respectively. The 
architecture with two hidden layers presents the highest frequency 
of  maximum errors lower than 2 m, with eight cases in total. In 
addition, it was also the one that presented the lowest maximum 
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absolute error, of  1.3 meters for the One-step secant function 
with 50 neurons in each layer. Finally, the architecture with three 
hidden layers presented results similar to the one-layer case, with 
only four tests with maximum absolute errors lower than 2 m, 
observed when using the Scaled conjugate gradient functions for 
10, 20 and 50 neurons and Resilient for 50 neurons.

Also, according to Figure 5b, it is observed that, for the 
different number of  hidden layers, when 50 neurons were used, the 
frequency of  absolute maximum error below 2 meters increased. 
In agreement with the results showed in Figure 5a, the two hidden 
layers architecture had the best results, with four tests below the 
error reference, indicating a predominance of  optimized architecture 
for the case study. Even with a more complex architecture for 3 
hidden layers (i.e., [50,50,50]) and the ability to memorize more 
detailed characteristics, the results performed were worse than 
for 2 hidden layers (i.e., [50,50)]), being justified by the stopping 
criterion less than the maximum number of  iterations and by 
the overfitting and/or overtraining problems as highlighted by 
Tetko et al. (1997) and Lin & Wu (2021) and caused by the lowest 
degree of  freedom (DoF). It is also important to highlight that, 
considering different training algorithms, optimal parameters can 
be achieved for different architectures and different number of  
iterations, which also justifies simple architectures (i.e., [20,20]) 
with better performance than more complex architectures (i.e., 
[20,20,20]) with different training algorithms.

Figure 6 shows the spatial distribution of  the mean absolute 
error and maximum absolute error in each of  the 259 unmonitored 
nodes and Figure 7 the frequency of  a given absolute error. It 
is observed that, in less than 10% of  the estimated pressure 
period the absolute error is higher than 0.8 m in node 175, while 
on average, the absolute error is higher than 0.2 m only in 1%. 

Figure 6. Spatial distribution of  absolute error for 2 Hidden Layers, 50 neurons per Hidden Layer and one-step secant training 
algorithm: (a) Average absolute error; (b) Maximum absolute error.

Figure 7. Frequency in observing errors.
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Thus, Figure 6 and Figure 7 justify the high values for maximum 
absolute error and lower values for the mean absolute error 
presented in Tables 3, 4 and 5, since the concentration of  the 
error occurs almost exclusively in node 175. So, it is a restricted 
problem since for the other 258 nodes the ANN can estimate 
pressure with excellent results.

CONCLUSIONS
There are several possibilities of  architectures for ANN and 

different training algorithms, and, finding the ideal arrangement, 
especially that respects the restriction(s) of  the problem studied, 
is not an easy task. Thus, this work aimed to contribute to the 
evaluation of  different architectures and training algorithms of  
ANN to estimate pressures. It is noteworthy that different training 
parameters and architectures with higher numbers of  hidden layers 
and/or neurons per hidden layers may present results that meet 
the restriction of  the problem, however, it depends on a higher 
computational effort in the training of  ANN, and problems with 
overfitting and overtraining can increase, and it may be necessary to 
implement some additional technique to avoid it, but not discussed 
in the present paper. However, higher numbers of  hidden layers 
and neurons per hidden layers or a specific algorithm to avoid 
overfitting have not been necessary for the case study, since the 
results found satisfied the system restriction.

Although there were 12 training algorithms available at 
MATLAB®, four were not even able to start training the ANN, 
and of  the remaining eight, only half  achieved results that respected 
the restrictions of  the problem. For one and three hidden layers, 
only the Scaled conjugate gradient and Resilient functions showed 
errors in pressure estimation below 2 meters. When using two 
hidden layers, the frequency of  errors below 2 meters was the 
highest. In addition, the configuration with 50 neurons presented 
the smallest errors, reaching the lowest maximum absolute error 
of  1.3 meters with the one-step secant training algorithm. Thus, 
the predominance of  optimized architecture for the case study 
with 2 layers and 50 neurons in each layer was observed.

DATA AVAILABILITY STATEMENT

Some or all data, models, or code that support the findings 
of  this study are available from the corresponding author upon 
reasonable request, like as:

•  Database;

•  Epanet model;

•  Adjusted parameters (weight and bias trained values).

The ANNs created in this study are specific to the WDN 
and the sensors placement used. For any other WDN, and also, 
for a different sensor placement in this exactly WDN, a new ANN 
have to be trained.
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