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ABSTRACT

Issuing early and accurate warnings for flash floods is a challenge when the rains that deflagrate these natural hazards occur on very 
short space-time scales. This article reports a case study in which a neural network-based hydrological model is designed to forecast 
one hour in advance if  the water level in a small mountain watershed with short time to peak, situated in the city of  Campos do Jordão 
in Brazil, will exceed its attention quota. This model can be a powerful auxiliary tool in a flash flood early warning system, since with 
it decision-making becomes semi-automated, making it possible to improve the warnings advance-accuracy tradeoff. A deep-learning 
neural network using Exponential Linear Unit activation functions was designed based on 3-years rainfall and water level data from 
11 hydrometeorological stations of  the National Centre for Monitoring and Early Warning of  Natural Disasters. In the training of  
the neural network, two combinations of  input variables were tested. The tuples in the test set were classified through voting with 60 
classifiers. The first results obtained in Matlab environment with high percentages of  true positives indicate that it is feasible to use 
the neural model operationally.

Keywords: Flash flood forecast; Machine learning-based hydrological modeling; Natural hazards.

RESUMO

Emitir alertas antecipados e precisos para enxurradas é desafiador quando as chuvas que deflagram esses desastres naturais ocorrem 
em escala espaço-temporal muito curta. Este artigo relata um estudo de caso no qual um modelo hidrológico baseado em rede neural 
é projetado para predizer com uma hora de antecedência se o nível de água em uma pequena bacia de montanha com curto tempo 
de ascensão, situada na cidade de Campos do Jordão no Brasil, excederá sua cota de atenção. O modelo pode aperfeiçoar um sistema 
de alertas antecipados de enxurradas, pois semiautomatiza a tomada de decisão e melhora o compromisso entre antecedência e 
precisão dos alertas. Uma rede neural de aprendizado profundo usando funções de ativação do tipo Unidade Linear Exponencial foi 
projetada com base em dados observados de precipitação e nível de água de 11 estações hidrometeorológicas do Centro Nacional de 
Monitoramento e Alerta de Desastres Naturais abrangendo um período de 3 anos No treinamento da rede neural, duas combinações 
das variáveis de entrada foram testadas. As tuplas do conjunto de teste foram classificadas através de votação com 60 classificadores. 
Resultados preliminares, obtidos em ambiente Matlab, com alto percentual de verdadeiros positivos, indicam que o uso operacional 
do modelo é viável.

Palavras-chave: Previsão de enxurradas; Modelagem hidrológica baseada em aprendizado de máquina; Desastres naturais.
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INTRODUCTION

Every year are recorded in Brazil occurrences of  floods 
in urban areas that cause socioeconomic losses (Banco Mundial, 
2012; Haddad & Teixeira, 2015). One of  the non-structural 
measures adopted by the Brazilian government to mitigate the 
potential impacts of  such events was the creation in 2011 of  the 
National Centre for Monitoring and Early Warning of  Natural 
Disasters (Cemaden), which is an applied research Centre on 
the topic of  natural hazards and whose mission includes issuing 
warnings for previously mapped risk areas, including some urban 
areas crossed by small watersheds susceptible to hydrological 
extremes. The warning system maintained by Cemaden needs 
to be continually improved by the insertion of  new operational 
tools, as data driven hydrological models designed based on 
machine learning techniques, to assist operators of  the situation 
room in decision making. To support the development of  these 
models, Cemaden has an extensive observational network of  
hydrometeorological measuring stations that provide rainfall and 
water level data series. The end users of  the warnings issued by 
Cemaden are the municipality civil defense agents and the warnings 
help them to decide the actions of  the contingency plans in the 
risk areas monitored by the Centre.

The quality of  a warning is checked against some requirements. 
Among others, two of  these requirements are very important 
in order to help the municipality’s civil defense to protect the 
population and reduce economic and material impacts: advance 
and accuracy (International Strategy for Disaster Reduction, 2006; 
International Network for Multi-Hazard Early Warning Systems, 
2017). However, a flood can evolve very quickly when is caused 
by intense convective rains occurring on very short spatial and 
temporal scales, in which case it’s called a flash flood (Kobiyama 
& Goerl, 2007). Considering the rainfall forecast approaches most 
commonly used today, the forecast of  this type of  rain is more 
accurate the closer to the moment of  its occurrence. This makes 
the two requirements, (advance and accuracy) to conflict and the 
task of  issue a warning for flash floods meeting both becomes 
very challenging and it is usually only possible to optimize the 
tradeoff  between them.

The use of  neural network (NN) targeting different interests 
in hydrological modeling dates back to the 1990s and since then 
good solutions based on NN have been obtained, including 
flood forecast models (Hsu et al., 1995; Dawson & Wilby, 1998, 
1999, 2001; Varoonchotikul, 2003; Londhe & Charhate, 2010; 
Abrahart et al., 2012; Mosavi et al., 2018; Oyebode & Stretch, 
2019). Some advantages of  using NN are: (i) its proven ability 
to model complex and nonlinear relationships between input 
and output variables of  a hydrological process using only sets 
of  observed data and still produce satisfactory solutions; (ii) the 
low computational execution time that enables its real-time use 
as an operational tool to support decision makers; (iii) possibility 
of  rapid recalibration when new data are available, regardless of  
whether they come from different sources. The last item (iii) is very 
relevant for the optimization of  the tradeoff  between advance and 
accuracy of  the warnings because integrating data from multiple 
sources into the design of  the NN, such as data from weather 
radar, weather satellite image, numerical weather forecast model, 
in general, makes the NN forecasts more accurate even for longer 

forecast horizons as, for example, in Filho & Santos (2006) and 
Chaipimonplin et al. (2011).

The use of  NN in early warning systems is also widespread. 
In Kanbua & Khetchaturat (2007) NN was designed to forecast 
whether precipitation in a mountainous region of  Thailand will 
reach a threshold above which landslides and floods may occur. 
The NN was able to forecast this threshold 24 hours in advance 
with reasonable accuracy and it is used in a decision support system 
that can be fed with data by users. Windarto (2010) applied NN 
to forecast the level of  the Kali Garang River in the western of  
Semarang City in Indonesia, which is a densely populated region, 
as part of  a flood warning system integrated with information 
technology (SMS and Web) that allow access flood early warning 
anywhere. A Mean Square Error (MSE) of  0.0046 was achieved by 
NN. In Roy et al. (2012), wireless sensor clusters, installed at various 
points along the bed of  the Damodar River in India, supply inputs 
to an NN designed to forecast the water level. The NN output 
tracks the observed values quite well, with a R2 coefficient above 
0.95, and provides flood early warning as well as flood situation 
for disaster management and preparedness to combat aftermath. 
Elsafi (2014), used NN models to forecast flooding along the Nile 
River in a study area located in Dongola town down-stream of  the 
junction of  the main tributaries to the Nile including the White 
Nile, Blue Nile, and Atbara River. This study would provide baseline 
information toward the establishment of  a flood warning system 
for certain sections of  the Nile River and R2 coefficient above 
0.9 and low Root Mean Square Error were obtained by the NN 
in forecasting flows. In all of  the above cases, the NN used was 
a Multilayer Perceptron (MLP). Banihabib (2016) compares the 
performance of  a NN with a conceptual model for the determination 
of  flood warning lead-time (FWLT) in Tajrish watershed that is a 
steep urbanized watershed located in the north of  metropolitan 
city, Tehran, Iran, and the main flash flooder watershed in north 
of  Tehran. Dynamics artificial NN (DANN) with time delay units 
by recurrent connections was used. FWLT was estimated longer 
by DANN than by conceptual model. Silva et al. (2016) presents 
an approach based on NN to forecast the flow of  the Claro River 
in Caraguatatuba City in Brazil. The study area was chosen due 
to the high occurrence of  mass movements and floods, mainly 
during the rainy season from December to April. The chosen NN 
was an MLP that achieved good agreement to the observed flow 
data (Nash index of  0.77) and good ability for providing early 
warnings (efficiency index of  0.91). In Sankaranarayanan et al. 
(2020), deep NN (DNN) has been employed for forecasting the 
occurrence of  flood in some districts selected from the states of  
Bihar and Orissa in India. In addition, the deep neural model was 
compared with other machine learning models (Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN) and Naïve Bayes) 
in terms of  accuracy and error. The results indicated that DNN 
performed better than the other methods. However, the use of  
NN in Brazil as operational tool in warning systems maintained by 
public or private institutions to preventing and reducing the negative 
impacts of  natural hazards is still little explored. An example of  
use in Brazil is the Caí River watershed, in northeast of  the Rio 
Grande do Sul State, which is monitored by Extreme Hydrological 
Events Warning System of  Brazilian Geological Service (CPRM) 
(Pickbrenner et al., 2017).



RBRH, Porto Alegre, v. 26, e7, 2021

Lima & Scofield

3/11

In this article, a case study is presented in which the rainfall-
runoff  process of  the small Capivari river watershed, located in the 
city of  Campos do Jordão in Brazil, is modeled using NN. In fact, 
concentrated or distributed hydrological models could be used to 
model the process of  transforming rainfall into flow. But in cases 
where the available hydrometeorological database is still reduced, 
simplified modeling techniques are often used. Due the irregular relief  
and the form of  the land use and occupation in the studied area, the 
time to peak of  the watershed is very short. The time to peak was 
estimated by the Cemaden operators themselves, as approximately 
30 minutes, based on the observation of  all cases in which the river 
overflow level was reached. In addition, during the summer (November 
to March), heavy, rapid and localized convective rains are common. 
These combined factors favor the occurrence of  flash floods in the 
urban perimeter of  the Campos do Jordão and the central area of  
the city is one of  the risk areas monitored by Cemaden.

The work in the situation rooms is carried out largely only 
based on knowledge and experience of  the operators who are 
sometimes overwhelmed with the enormous amount of  information 
from various risk areas to be analyzed. To bridges this gap, a line of  
research focused on the use of  machine learning techniques to develop 
data-driven models applicable in the natural hazards prevention phase, 
with an emphasis on semi-automation and improvement of  flash 
flood early warnings, is under consolidation at Cemaden. The study 
reported in this article is part of  this research effort and, in this sense, 
the contributions of  the article are in two respects: (i) for the chosen 
study area (and for other watersheds in Brazil with similar physical 
characteristics), there are few similar studies (using NN to forecast 
water level); (ii) NN’s potential to improve the quality of  flash flood 
warnings (by optimizing the tradeoff  between advance and accuracy) 
will be assessed for the first time at Cemaden.

In addition to this introduction, the article contains the 
following sections: the description of  the study area and the 
description of  the database are given in sections 2 and 3, respectively; 

Section 4 is devoted to NN architecture and training algorithm; 
results and discussions are presented in the section 5, and finally, 
Section 6 addresses the concluding remarks.

STUDY AREA

Campos do Jordão city is situated in the Mantiqueira 
Mountains and its topography is very uneven with 85% of  the 
municipality composed by undulating regions, 10% by mountain 
slopes and 5% by escarpments areas. The city is located within a 
valley, the extension of  its flat part not exceeds 500 meters wide 
and some points reach more than 2000 meters of  altitude (Instituto 
Geológico do Estado de São Paulo, 2014).

According to Zucherato et al. (2016), the pattern of  
urbanization from the drainage areas have conditioned and 
concentrated the occurrence of  flash floods in the most densely 
populated and longest-occupied parts of  the municipality, especially 
around its central area, as can be observed by the high number 
of  flash floods in the Capivari neighborhood. Local urbanization 
began with the settlement of  the surroundings of  the Capivari 
River (Instituto Geológico do Estado de São Paulo, 2014) that 
gave rise to the homonymous neighborhood. So the neighborhood 
with the highest number of  flash flood records is also the oldest 
neighborhood in the city with more complex urbanization processes 
and more heterogeneous form of  occupation.

During periods of  heavy rain, the river overflows causing 
flash floods on the city’s avenues and streets as well as material 
loss in commerce and homes.

The Capivari River, inserted in the Serra da Mantiqueira 
watershed, is formed by the Serraria Stream (located in the 
Santa Cruz neighborhood) and Piracuama Stream (located in 
the Vila Albertina neighborhood). The river runs through the 
Abernéssia and Jaguaribe neighborhoods and flows into the 
Sapucaí-Guaçu River in Vila Capivari, as shown in Figure 1. 

Figure 1. Map showing the area of  the Capivari River watershed in Campos do Jordão city and the Cemaden’s hydrometeorological 
stations installed there.
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With an area of  approximately 20 Km2, Capivari River 
watershed is classified as a small watershed and its time to 
peak is approximately 30 minutes.

Campos do Jordão’s climate is classified as Cwb - high 
altitude tropical climate - by the Koeppen Climate Classification 
(Köppen, 1918). The rainy season occurs usually during the summer 
(November to March) when the water surplus (the excess of  water 
in the soil) is of  the order of  1.130mm, making this period the 
most critical for the occurrence of  landslides and flash floods 
(Departamento de Águas e Energia Elétrica do Estado de São 
Paulo, 2014; Instituto Geológico do Estado de São Paulo, 2014; 
Bosco, 2018).

DATABASE

The database used in this study to train and test the 
NN-based hydrological model was obtained from 11 Cemaden’s 
hydrometeorological stations installed in Campos do Jordão. 
On the map in Figure 1, the representation (yellow dots) of  
one of  the hydrometeorological stations is not distinguishable 
due to the proximity to another station. Among the 11 stations, 
10 are pluviometric and 1 is pluviometric and hydrological. Most 
pluviometric stations are distributed upstream of  the hydrological 
station but two of  them are downstream. In the next stages of  
this study, a sensitivity analysis will be performed to identify 
which pluviometric stations are most important to forecast the 
water level at the point where the hydrological station is installed. 
Names, types, codes and coordinates of  the hydrometeorological 
stations are shown in Table 1.

Rainfall and water level data from these stations are 
transmitted with 10 minutes temporal resolution when it is raining 
and with 1 hour temporal resolution during periods when there 
is no rain. To monitor measurements taken at the hydrological 
station, 3 quotas of  water level, nominated as attention quota, 
alert quota, and overflow quota, are considered and their values 
were set in 1.61 m, 2.15 m and 2.69 m, respectively. The objective 
of  this study is to design a forecasting model using this database 
and apply it to separate the data into two classes considering the 
attention quota of  1.61 m as the separation threshold. The database 
covers the period from September 2015 to January 2019 and has 
15382 entries of  which 15298 represent occurrences where the 

attention quota of  the Capivari River was not exceeded and 84 are 
cases where the attention quota was exceeded.

THE NN

There is a vast literature available on NN (Bishop, 1995; 
Haykin, 1998; Goodfellow et al., 2016). NN is widely used to 
model the dynamics of  real-world environmental systems (such 
as watersheds) in which the relationships between input and 
output variables are complex, nonlinear and non-deterministic, 
because NN is able to perform this task well enough, using only 
input-output pairs of  observed values of  the variables of  interest.

NN ARCHITECTURE
The NN architecture used in this article to forecast an 

hour in advance if  the Capivari River’s water level will exceed its 
attention quota is derived from the standard MLP architecture 
and is shown in Figure 2.

NN architecture has an input layer with 23 nodes, 3 hidden 
layers with 23 neurons and an output layer with 2 neurons. Each 
layer is fully connected to the next. The input layer was configured 
to receive tuples with 23 input features: a water level (measured 
one hour before the time for which the forecast is made) and 
the average and maximum rainfall values observed at each of  
the 11 hydrometeorological stations in the previous one hour 
period. Each tuple also has an output feature that corresponds 
to the water level measured at the moment for which the forecast 
is made. For the sake of  clarity, Figure 3 exemplifies a tuple used 
to train the NN to make a forecast of  the water level for 2 pm.

The option to compose tuples with average and maximum 
values instead of  using all six precipitation values measured in 
each station in the previous 1 hour period, is justified for two 
reasons: (i) using averages and maximums values works as a pre-
processing that increases data separability making classification 
easier and, as shown in Figure 4, this hypothesis is plausible; (ii) 
in future stages of  this study, when rainfall data from historical 
series will be replaced by radar data or numerical weather forecast 
models, the use of  average and maximum values will be more 
advantageous due to their lower uncertainty.

Another type of  tuple with a different combination of  
variables was also used to train and test the NN. In this new 
input tuple, in addition to the attributes illustrated in Figure 3, 

Table 1. Cemaden hydrometeorological stations in the study area.
Name Type Code Latitude (°) Longitude (°)

1 Alto da Boa Vista Pluviometric 350970006A -22.73 -45.62
2 Bela Vista Pluviometric 350970004A -22.74 -45.60
3 Brancas Nuvens Pluviometric 350970012A -22.75 -45.62
4 Capivari Pluviometric 350970013A -22.74 -45.55
5 Jaguaribe Pluviometric 350970005A -22.73 -45.58
6 Monte Carlo Pluviometric 350970009A -22.75 -45.58
7 Nova Suíça Pluviometric 350970008A -22.75 -45.61
8 Ribeirão Capivari Hydrological/Pluviometric 350970004H -22.74 -45.59
9 Vila Abernéssia Pluviometric 350970001A -22.74 -45.60
10 Vila Cristina Pluviometric 350970003A -22.76 -45.61
11 Vila Matilde Pluviometric 350970011A -22.75 -45.60
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Figure 2. NN architecture used to forecast an hour in advance the water level of  Capivari River.

Figure 3. Example of  a tuple of  type 1 inputs used in the NN design to make a forecast of  the water level for 2 pm.

Figure 4. Mean values of  the average and maximum rainfall input features of  the type 1 inputs for the two classes in the database.
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the following were added: the accumulated rainfall in each 
hydrometeorological station during the second hour prior to the 
time for which the forecast is made and also the water level two 
hours before the time for which the forecast is made. In order to 
process these inputs, the NN architecture was also changed and 
the size, both the input layer and the 3 hidden layers, was increased 
to 35 neurons. Hereafter, the two types of  tuples are referred to 
as ‘type 1 inputs’ (23 features) and ‘type 2 inputs’ (35 features).

NN TRAINING

The database with 15382 tuples was split into a training set 
and a test set. The training set covers the period from September 
2015 to December 2017 and has 10795 tuples of  which 10754 have 
an output feature (1 hour ahead observed water level) that does not 
exceed the attention quota (1.61 m) and 41 have an output feature 
that exceed the attention quota. The test set covers the period from 
January 2018 to January 2019 and has 4587 tuples of  which 4544 has 
output feature bellow the attention quota and 43 has output feature 
above this quota. Hereafter, these two classes will be referred to 
as Cne_at (tuples whose output feature is below the attention quota) 
and Ce_at (tuples whose output feature is above the attention quota).

The 10754 Cne_at training tuples were divided into 60 subsets. 
This sampling was done in such a way that the entire value range 
of  the output feature was well represented in each subset. Each of  
these subsets has 84 Cne_at training tuples. Thus, 60 different neural 
classifiers were trained using 60 different sets of  84 Cne_at tuples 
and always the same set of  41 Ce_at tuples. The trainings were done 
using the standard Backpropagation algorithm (Rumelhart et al., 
1986) and the Stochastic Gradient Descent (SGD) (Robbins & 
Monro, 1951; Bottou et al., 2018) applied on mini-batches of  
tuples with 1 Cne_at tuple and 1 Ce_at tuple. These procedures were 
applied separately to type 1 and type 2 inputs.

A training iteration (or training epoch) is completed when 
the 84 Cne_at tuples are presented to NN. Therefore, during iteration 

each Ce_at tuple is presented to the NN 2 (~84/41) times while 
each Cne_at tuple is presented to the NN only once. The sampling 
described above helps to minimize the harmful effect that class 
unbalance (Cne_at has 10754 tuples and Ce_at has just 41 tuples) 
would have on NN performance. Training ends when a previously 
chosen maximum number of  training epochs is reached.

Exponential Linear Unit (ELU) activation functions were used 
in the 3 hidden layers. ELU overcome vanishing gradient problem 
so that deep learning-NN architecture (Figure 2) could be designed. 
The hidden activation functions are expressed by Equation 1.

x                           if  x 0
y(x)

*(exp (x) 1)     if  x 0




≥
=
β − <

 (1)

Where y(x) is the activation of  the hidden neuron, x is the net 
signal at the neuron input and β is the threshold at which the 
exponential function converges when x tends to minus infinity.

In the output neurons, this same type of  activation function 
was used, however with some modifications. The activation functions 
of  the outputs neurons out1 and out2 are given, respectively, by 
Equations 2 and 3.

1.61 - x                            if  x 1.61
(x)Out1 *(exp (1.61 - x) 1)     if  x 1.61





<
=
β − ≥  (2)

*(exp (x -1.61) 1)      if  x 1.61
(x)Out2 x -1.61                            if  x 1.61





β − <
=

≥
 (3)

Note that the displacement applied to the NN output 
activation functions is equal to 1.61m which is the same value of  the 
attention quota for the Capivari River’s water level. Figure 5 show 
the activation functions of  the NN output neurons.

Figure 5. Activation functions used in the NN outputs.
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Based on Equations 2 and 3, the errors for the two NN 
outputs are computed as follows:

Out1

For tuples of  the class Cne_at:

ob 1error (1.61 - v ) - out=  (4)

where vob is the observed value that is, the tuple’s output feature.
For tuples of  the class Ce_at:

( )( ) 1oberror exp 1.61 v 1   -out=β∗ − −  (5)

Out2

For tuples of  the class Cne_at:

( )( ) 2oberror exp v - 1.61 1   -out=β∗ −  (6)

For tuples of  the class Ce_at:

ob 2error (v -1.61) - out=  (7)

Thus, the class assigned by the NN to a tuple presented to its 
input layer is identified by comparing the two outputs of  the NN:

• if  out1 is greater than out2, the tuple is classified by the 
NN as belonging to the Cne_at class;

• if  out2 is greater than out1, the tuple is classified by the 
NN as belonging to the Ce_at class.

The results of  the NN classification are presented in the 
form of  confusion matrices and were evaluated by the following 
performance indices: accuracy, kappa and precision.

Accuracy is given by the following formula:

C
i

i 1
D

Accuracy T
=
∑

=  (8)

where T is the total number of  elements in the confusion matrix, 
C is the number of  class considered in the classification task and 
Di is the value in the i-th diagonal position.

Kappa index (Cohen, 1960), is defined, according to 
Congalton & Green (2009),

C C C
i i i

i 1 i 1 i 1
C C

2 i
i 1 i 1

T D TC TR
kappa

T   TCi TR
= = =

= =

   
   
   

  
  

  

× − ×∑ ∑ ∑
=

× ×∑ ∑
 (9)

where TCi is the sum of  the i-th column and TRi is the sum of  
the i-th row.

Precision is given by:

2

2

DPrecision TC=  (10)

In the training algorithm executions that generated the 
results presented in the next section, (i) the NN weights were 
initialized with small random values, (ii) the maximum number 
of  epochs was chosen as training stopping criterion and was set 
at 4000, (iii) the learning rate decayed exponentially during the 
4000 epochs from 0.1 to 0.01 and (iv) the parameter (β) of  the 
hidden activation functions was set at 0.1 and for the output 
activation functions was set at 0.4

RESULTS AND DISCUSSIONS

Results

The NN was trained to separate the tuples of  the database 
into two classes:

• Cne_at - tuples whose data indicates that the water level 
(1 hour ahead) will not exceed 1.61m;

• Ce_at - tuples whose data indicate that the water level (1 hour 
ahead) will exceed 1.61m.

Figure 6 shows, for the two NN outputs, Mean Squared 
Error (MSE) typical curves obtained during the training of  the 
60 classifiers using type 1 inputs.

Figure 6. Typical MSE curves obtained in the training of  one of  the classifiers with type 1 inputs.
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Figure 7 illustrates the outputs of  one of  the 60 classifiers 
trained with type 1 inputs. These outputs are relative to the subset 
formed by 84 Cne_at inputs plus 41 Ce_at inputs that was sampled to train 
the classifier. Note, in the Figure 7, that for Cne_at tuples, out1 values are 
greater than the out2 values and for Ce_at tuples the opposite is true.

Table 2 presents the average confusion matrices of  the 
classification results produced by the 60 classifiers trained with 
type 1 inputs and type 2 inputs.

In the confusion matrix, rows indicate tuples of  a given 
class, while the columns indicate the predicted class for these tuples.

Table 3 presents the confusing matrices of  the classification 
results of  the test set and the entire training set obtained by voting 
with the 60 classifiers trained with type 1 inputs.

Table 4 presents the confusing matrices of  the classification 
results of  the test set and the entire training set obtained by voting 
with the 60 classifiers trained with type 2 inputs.

DISCUSSIONS

The NN architecture (Figure 2) with three hidden layers was 
the one that provided the best relationship between performance 
and the number of  epochs needed to train the NN.

Comparing the confusion matrices and respective 
performance indices, it can be seen that NNs trained with type 
2 inputs have better classification performance than those trained 
with type 1 inputs.

Figure 7. Classification for one of  60 training sets made by NN; Cne_at tuples generate out1 greater than out2 while Ce_at tuples generate 
out2 greater than out1.

Table 2. Average confusion matrices of  the NN classification results obtained with 60 different samples of  training set and performance 
indices.

Using type 1 training inputs Using type 2 training inputs
Cne_at Ce_at Cne_at Ce_at

Cne_at 79 5 Cne_at 84 0
Ce_at 3 38 Ce_at 0 41

Accuracy: 0.9360 Accuracy: 1.000
Kappa: 0.8566 Kappa: 1.000

Precision: 0.8837 Precision: 1.000

Table 3. Confusion matrices and performance indices of  the NN classification results for training and test set obtained by voting with 
the 60 classifiers trained with type 1 training inputs.

Training set Test set
Cne_at Ce_at Cne_at Ce_at

Cne_at 10709 45 Cne_at 4427 117
Ce_at 1 40 Ce_at 2 41

Accuracy: 0.9957 Accuracy: 0.9741
Kappa: 0.6330 Kappa: 0.3991

Precision: 0.4706 Precision: 0.2595
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As shown in Table 4, NN trained with type 2 inputs is 
able to classify correctly almost all tuples of  the Cne_at class and 
all the tuples of  the Ce_at class resulting in accuracy greater than 
0.99. However, the confusion matrices (in Table 4) also show a 
considerable number of  false positives (tuples of  class Cne_at classified 
as class Ce_at). There are 16 cases in the training set and 71 cases in 
the test set. Thus, the indices that best evaluate the performance 
of  the classifiers (since they also take into account the existence 
of  false positives) are the kappa and, mainly, the precision that 
for the training set was greater than 0.7 (reasonable value) and 
for the set of  test was less than 0.4 (low value). Table 5 shows 
the sum of  accumulated, averages and maximum rainfall of  the 
16 training tuples in Table 4 that were classified as false positives.

From the analysis of  Table 5, it can be hypothesized that 
the tuples of  the training set incorrectly classified are points in the 
input space that when mapped to the output space fall very close 
to the decision boundary of  the two classes. This can be caused 
not only by output values very close to the decision boundary of  
the classes (1.61m), but also by sums of  accumulated, averages 
and maximum rainfall of  considerable magnitude. Thus, tuples 
containing such values represent cases whose classification is usually 
more difficult. A similar analysis applies to the false positives of  
the test set in Table 4.

The occurrence of  false positives in the classification results 
demonstrates that the NN design requires improvements. This 
includes improving the training algorithm and NN architecture, 
testing new combinations of  inputs, and, perhaps, applying more 
robust data qualification pre-processing techniques to eliminate noise 

Table 4. Confusion matrices and performance indices of  the NN classification results for training and test set obtained by voting with 
the 60 classifiers trained with type 2 training inputs.

Training set Test set
Cne_at Ce_at Cne_at Ce_at

Cne_at 10738 16 Cne_at 4473 71
Ce_at 0 41 Ce_at 0 43

Accuracy: 0.9985 Accuracy: 0.9983
Kappa: 0.8360 Kappa: 0.8192

Precision: 0.7193 Precision: 0.3772

Table 5. Features of  the tuples that generates false positives in the confusion matrices of  type 2 training set
Sum of  accumulated rain in 

the second previous hour (mm)
Sum of  rainfall average in the 

first previous hour (mm)
Sum of  rainfall maximum in 
the first previous hour (mm) Output feature (m)

1.700 13.5766 23.5400 1.5530
55.0700 12.7433 36.0600 1.2900
109.8800 19.4650 84.8900 1.0430
43.5400 11.9666 27.9900 0.7170
0.2000 18.2766 42.7700 0.7963
13.1400 17.3133 41.9700 0.7963
0.6000 14.8983 29.7900 1.0568
25.5600 18.6733 49.3200 1.1580
50.7600 15.4717 48.6400 1.0140
82.8000 12.1650 43.9700 0.9635
45.4100 7.9042 26.3700 0.7480
0.8000 14.7100 27.0000 1.2540
18.3100 14.6417 25.8000 1.1540
47.7400 12.5233 25.0000 0.9970
69.6000 7.9517 19.0500 0.8430
33.0000 14.4883 66.0500 0.7300

and inconsistencies that can also generate false positives or even 
false negatives which may be an even more serious misclassification. 
Considering the above analysis on the false positives in Table 4, 
improvements can be directly targeted to correct this problem.

On the other hand, since the NN trained with type 2 inputs 
proved to be efficient in detecting the true positives even for data 
in the test set (this is very important because the test set contains 
tuples not presented to the NN during its training and serves to 
assess the NN generalization ability), the present study is a proof  
of  concept of  the potential that has NN as an auxiliary decision-
making tool in an early warning system for flash floods and that 
should, therefore, be tested operationally. In practical terms, 
the role of  an auxiliary tool in an early warnings system is make 
forecasts that will serve as a pre-warning for flash flood events that 
the system operators (decision-makers) may or not confirm based 
on information from other analysis tools and also based on their 
expertise. In this way, NN semi-automates the decision-making 
process. However, as previously mentioned, for the purpose of  
making the NN operational, historical series of  observed rainfall 
data used in this study should be replaced by rainfall estimates 
given by radar, numerical weather forecast model and other sources. 
This will be done in the next stages of  this study.

CONCLUDING REMARKS

This article reports the development of  a NN-based 
hydrological forecast model to be integrated to the Cemaden 
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flash flood early warning system as a decision-make auxiliary tool. 
The small Capivari River watershed located in a mountainous 
region in the Campos do Jordão city, with short time to peak 
and susceptible to intense convective rains and flash floods, was 
chosen as study case. This watershed is one of  the natural hazards 
risk areas monitored by Cemaden. Historical series of  rainfall and 
water level data, covering a period from 2015 to 2019, were used 
to train and test the NN. Two different combinations of  input 
variables were used to train and test the NN. One containing 
the average and maximum precipitation values and the other 
containing these two attributes and also the accumulated rainfall. 
Exponential Linear Unit activation functions, which do not suffer 
from vanishing gradient problem, were used and so a deep-neural 
network with 3 hidden layers was designed. This number of  hidden 
layers provided the best relationship between training iterations 
and performance. The task performed by the NN consisted of  
separating the tuple in database into two classes: (i) tuples whose 
data indicate that the water level, 1 hour ahead, will not exceed 
the attention quota (of  1.61m) and tuples whose data indicate 
that the water level, 1 hour ahead, will exceed the attention quota. 
This task was accomplished by voting with 60 different classifiers 
trained with subsets of  inputs that were sampled from the total 
training set.

The training with inputs containing the accumulated 
precipitation produced better results. The results, presented in the 
form of  confusion matrices and performance indicators (accuracy, 
kappa and precision) derived from these matrices, show an amount 
of  false positive, which indicates that the NN design still needs 
to be improved. However, what stands out the most in the results 
is the 100% correctness in the classification of  the true positives 
both in the training set and the test set. This indicates that the NN 
has the potential to be integrated into Cemaden’s flash flood early 
warning system as auxiliary tool for decision-makers. However, 
the operationalization of  this tool requires that the rainfall data 
obtained from historical series be replaced by rainfall forecasts 
made for the period of  one hour ahead.
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