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ABSTRACT

This study aims to find a seasonal streamflow forecast model simultaneous to all stations of  SIN using periodic autoregressive models 
with exogenous variables (PARX) using climate indexes. Comparing the results from PAR and PARX Models, this research analyzes 
the impact on forecasts by using climate information. The proposed models for streamflow forecast has been carried out using natural 
streamflow data from Operador Nacional do Sistema (ONS) and statistical techniques (such as multiple linear regression and stepwise 
method to choose explanatory variables). On 27 climate indexes utilized, 4 of  them are suggested in this work. The performance 
analysis methodology is based on the ELECTRE method further the NASH coefficient, the mean absolute percentage error, the 
multi-criteria distance and correlation. Forecasts with one month lead, the PAR models present better results for most stations of  
SIN within seasons DJF, MAM, and JJA, while for SON season there is greater efficiency from PARX model. This kind of  model 
shows better performance during dry season in the basins at Northern Brazil – Amazonas and Araguaia-Tocantins; Central-Eastern 
Brazil – Eastern Atlantic and the most rivers located in the Paraná basin.

Keywords: Monthly streamflow forecast; Climate information; National Interconnected System.

RESUMO

Este estudo propõe um modelo de previsão simultânea de vazões sazonais para todos os locais SIN através de modelos periódicos 
autorregressivos simples (PAR) e com variáveis exógenas (PARX) utilizando índices climáticos. Os modelos propostos de previsão 
de afluência utilizam os dados de vazões naturais gerados pelo Operador Nacional do Sistema (ONS) e técnicas estatísticas como 
as de regressão linear múltipla e o método stepwise para escolha de variáveis explanatórias. São utilizados 27 índices climáticos, dos 
quais 4 foram sugeridos neste trabalho. A análise de desempenho das metodologias é baseada no método ELECTRE com o uso do 
coeficiente de NASH, do erro médio percentual absoluto, da distância multicritério e da correlação. Para previsões com um mês de 
antecedência, os modelos do tipo PAR apresentam melhores desempenhos na maioria dos postos do SIN nos trimestres DJF, MAM 
e JJA, enquanto para o período SON a uma maior eficiência do modelo PARX. O PARX apresenta melhor desempenho no período 
seco das bacias do norte do Brasil - Amazonas e Araguaia-Tocantins; centro-leste brasileiro - Atlântico Leste e na maioria dos rios 
que formam a Bacia do Paraná.

Palavras-chave: Previsão sazonal; Índices climáticos; Setor elétrico.
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INTRODUCTION

The Brazilian power grid has a great contribution in the 
energy from hydroelectric plants. The Brazilian hydroelectricity 
generation and distribution capacity is directly influenced by the 
hydrological variability of  the streamflows and the interconnection 
of  the hydroelectric power plants, whose forecasts and uncertainties 
should be considered in the system operation and planning 
(ALEXANDRE, 2012; ANEEL, 2002).

In general terms, the quality of  the hydrological forecasts 
affects the performance of  the system operation. Thus, 
methodological improvements of  hydrological scenarios or inflows 
generation contribute to the advance of  the planning process and 
the operation schedule of  the National Integrated System (NIS).

The monthly streamflow forecasting currently used by 
the National System Operator (ONS) can be performed through 
two methods. The first one uses rain-flow models with daily 
time-step added to the stochastic model of  weekly streamflow 
forecast - PREVIVAZ, which can predict up to six weeks lead 
time. The generation of  streamflow scenarios is obtained from 
the processing of  the GEVAZP model, which usually consider 
1,000  scenarios generated from a historical series of  natural 
streamflow with 12 previous months. The second method can 
be performed more directly by the use of  the PREVIVAZM 
software, which has a calculation structure similar to that of  
PREVIVAZ with a monthly time-step. The PREVIVAZM model 
was elaborated as a tool for special studies to verify the conditions 
of  the supply of  the power demand. The models utilized in both 
methods use the Periodic AutoRegressive model (PAR) or the 
Periodic AutoRegressive model with Moving Averaging (PARMA) 
(ALEXANDRE, 2012).

Studies performed since the 1990s pointed out to 
the use of  climatic variables could reduce uncertainties due 
to the high correlation of  these variables with hydrological 
variables (SOUZA FILHO; LALL, 2003; FOLEY et al., 2002; 
BARROS et al., 2004). On global scale, can be highlighted the 
works of  Dettinger and Diaz (2001), Amarasekera et al. (1997) 
carried out in the tropical zones of  South America and Africa 
and that of  Stuck et al. (2006) and Garcia and Mechoso (2005) in 
South America. The studies of  Carriello et al. (2005), Soares et al. 
(2006) and Kim and Vissotto (2003) analyzed the relation between 
Sea Surface Temperature (SST) and the hydrography in Brazil. 
In terms of  specific regional basins, the works of  Cardoso and 
Silva Dias (2006) and Berri et al. (2002), focused on basins in the 
Brazilian southeast; Foley et al. (2002) and Barros et al. (2004) 
analyzed basins of  the Brazilian northwest showed the good 
representative capacity from SST variations associated to the 
streamflow variability in Brazil.

In order to take advantage of  the climatic information, 
statistical models of  monthly streamflow forecasting have been 
proposed in several studies, proving that the use of  climatological 
indexes as explanatory variables in mathematical models provides 
ability to explain regimes of  intranual inflows. Among those studies, 
we can highlight the ones by Uvo and Graham (1998), Souza Filho 
and Lall (2003, 2004), Silva and Molion (2004), Rohn et al. (2003), 
and Rocha et al. (2007).

The current paper has the objective of  developing a 
simultaneous seasonal flow prediction model for all NIS sites by 

Periodic Autoregressive Models with Exogenous Variables (PARX) 
by using climatic indexes, preserving the spatial structure through 
the correlation of  the residuals.

METHODS

Data

The observational data base used as input for PAR and 
PARX models are streamflow from ONS since 1931 to 2008. 
Exogenous variables into PARX models are climate indexes made 
available by International Research Institute for Climate and Society 
(IRI). The period from 1931 to 1998 covers calibration time of  
the models, while the verification period is defined 1999-2008.

National Interconnected System (SIN)

The National Interconnected System (SIN) manages the 
generation and transmission of  electricity in Brazil. The SIN is a 
hydrothermal system in large scale with prominently hydropower 
plants, just 1.7% of  installed capacity in Brazil are isolated systems 
located over Amazon region (ONS, 2016).

For planning and management, the ONS adopts streamflow 
forecasting by using subsets of  hydrological output in each basin, 
denominated base station. At the rest of  the sites, the streamflows 
is predicted through monthly linear regression based on the data 
from the base stations to complement the forecast for the whole 
SIN. ONS currently works with a total of  88 Base Stations (BS), 
which are representative of  the various regional hydrological regimes 
found in Brazil (ONS, 2010). These BS are listed in Figure 1.

Periodic Autoregressive Model (PAR)

The method is based on periodic autoregressive models 
and for the maintenance of  the spatial correlation., Among the BS, 
the noise correlation (CRD) is utilized and defined at the moment 
of  the calibration of  the regression models. The first procedure 
to establish the PAR model is to choose the explanatory variables 
by using stepwise technique.

The standardization of  the monthly series is the first stage 
of  calculation of  most hydrological series analyzes, as follows

( ),
,

−
= t m m

t m
m

Q
Z

µ
σ
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,t mZ  represents standardized streamflow in month (m=1,2,3...12) 
for the time t. Since t the number of  the months in the time series, 
then it varies from 1 to 12*N, where N is the total of  years. ,  t mQ  
is streamflow at a given BS in period of  months t in m3/s, mµ  
is the seasonal streamflow average of  m (unit m3/s), and mσ  is 
the seasonal streamflow standard deviation in month m in m3/s.

The PAR model (p) is referred by the index “p” and 
denominated the order or autoregressive terms from the model. 
In general, “p” is a vector that establish the order of  each element 
given on a PAR period (p1, p2,..., p12). The standard formulation 
for a standardized variable “Z” could be formally descripted with 
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the following equation ( ) ( ), , ,− − − −= ∅ +…+∅ +
m
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where  ∅ is Autoregressive Period operator, mP  is the order of  
the Autoregressive Period operator “m”, and ta  the time series of  
noise, they are independent with mean zero and variance ( )2 m

aσ .
The noises are defined at the moment of  the calibration 

of  the models, based on the difference between the expected 
inflows and the observed ones. The maintenance of  the spatial 
correlation in the prediction of  streamflow is performed through 
the use of  the monthly covariance matrix of  the noise between 
the BS to generate the random component of  the error following 
a normal multivariate distribution.

Periodic Autoregressive Exogenous Model with 
noise correlated (PARX-CRD)

The PARX-CRD model generation strategy is similar to 
PAR-CRD, in order to consider previous months as predictors 
of  the month to be forecasted and by maintaining the spatial 
correlations. However, it adds climatic variables as possible 
predictors, similar to Equation 2

( ) ( ), , , .− −
− − − −

=
= ∅ +…+∅ + ∅ +∑m

nm m m 1 m 1
t m 1 t 1 m 1 p t Pm m Pm j j t

j 1
Z Z Z aβ 	 (2)

where −m 1
jβ  is the predictor climatic variable j for the month m.

Monthly data were obtained from (NOAA, 2014). As 
criterion for choosing the available indices, all indexes that have 
some physical relationship to the streamflow variability in South 
America were used in the correlation analysis. This analysis pointed 

to the possibility of  using 22 indices added to the SST Index of  
the SST in South Atlantic at the Confluence of  the Brazil-Malvinas 
(ASBM) defined by Cataldi (2008).

Then the possibility of  creating other climate indices was 
analyzed. First, the predominant hydrological regime of  the 88 SB 
was determined, with a predominant streamflows above the annual 
average in the first semester and streamflows below the annual 
average in the second semester. Data from the International Research 
Institute for Climate and Society (IRI) data were analyzed using 
data from Sea Surface Temperature (SST) and Zonal Wind (ZW).

Besides those variables, we analyze four time series from 
spatial mean of  zonal wind at 925 hPa in the regions: ZW1 
(10S-20S,30W-45W), ZW2 (5S-15S,100W-130W), and ZW3 
(15N-5N,150W-180W); and spatial mean of  SST on the region: 
SST1 (5S-20S; 90W-130W). The four regions are shown in the 
Figure 2.

In order to evaluate the influence of  the climatic indexes 
and their representativeness in streamflow series, 27 indexes were 
considered and originated from circulation and atmospheric 
dynamics and oceanic conditions. Table  1 summarizes all the 
indexes used in this study.

Performance evaluation of  the models

The evaluation procedure of  this work considers the 
forecast with one month lead time. Due to the small number of  
forecasts, they will be grouped in quarterly blocks: DJF, MAM, 
JJA, and SON.

Figure 1. Spatial distribution of  Base Stations utilized in this analysis.
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In order to evaluate the performance of  estimated 
(calibration) and predicted (validation) streamflows in relation to 
the observed streamflows for hydroelectric power plants, underlying 
metrics applied by ONS (2010) are used. The results are presented 
in Table 2 in relation to the median of  the generated scenarios.

The NASH coefficient expresses the efficiency of  making 
better predictions with the value 1 (one), representing 100% 
efficiency. Negative values ​​indicate that the performance of  the 
model is worse than the performance of  the forecast model 
considering the value of  the monthly historical average only.

The mean absolute error (EMPA) represents the differences 
between the observed and simulated standardized values in 
relation to the observed streamflow. Values close to zero indicate 
near-perfect prediction. By rising the difference term, the EMPA 
tends to give greater weight to the large discrepancies between 
the observed and predicted fields.

The correlation (CORREL) can assume values between 
-1 and 1 therefore perfect anticorrelation and perfect correlation. 
Moreover, there is also the total absence of  correlation verified 
with a result equal to zero. This index has the capacity to detect 
phase correspondence between the series. For the calculation of  
this index, the median of  the forecasts was grouped by seasons 
and by station, then calculation was made in relation to the 
observed series.

ONS (2010) developed an index called Multicriteria 
Distance - DM, which uses the NASH and EMPA indicators, 
according to Table 2.

Electra

One of  the tools widely used to aid in decision problems is 
Multi-criteria or Multi-objective Decision Analysis. This approach 
suggests that there is usually no alternative that is the best across 

Figure 2. Localization of  the regions where suggested climate index were extracted.

Table 1. Climate Indexes as input into PARX model.
Acronym DESCRIPTION
AMO Atlantic Multi-decadal Oscilation
ASBM Atlantic South Confluence Brasil-Malvinas – SST anomaly
BEST Bivariate ESNO time serie  
CAR Caribbean SST index
MEI Multivariate ENSO Index 
NAO North Atlantic Oscillation
Nino1+2 Nino1+2 SST index (0-10S, 90W-80W)
Nino3 Nino3 SST index (5N-5S;150W-90W)
Nino3.4 Nino3.4 SST index (5N-5S;170W-120W)
Nino4 Nino4 SST index (5N-5S;160E-150W)
NOI North Oscillation Index
NP North Pacific Pattern (30N-65N;160E-140W)

NTA North Tropical Atlantic SST Index (6N-18N;60W-20W)
(6N-10N;20W-10W) 

ONI Oceanic NINO Index
PDO Pacific Decadal Oscillation – SST Anomaly
PNA Pacific North America Index
PW Pacific warming 1º  EOF os SST (15S-15N; 60E-170E)

QBO Quase-biannual Oscillation – Equatorial Zonal Wind 
(30hPa)

SOI Southern Oscillation Index

TNA Tropical North Atlantic – SST anomaly 
(5.5N-23.5N;15W-57.5W)

TNI NINO Trans Index – NINO
TP Tropical Pacific 1º EOF of  SST (20N-20S;120E-60W)

TSA Tropical South Atlantic Index – SST anomaly (0-20S;10E-
30W)

ZW1 ZW1 Zonal Wind at 925hPa (10S-20S,30W-45W),
ZW2 ZW2 Zonal Wind at 925hPa (5S-15S,100W-130W)
ZW3 ZW3 Zonal Wind at 925hPa (15N-5N,150W-180W)
SST1 SST index (5S-20S,90W-130W)
Source: NOAA, IRI, adapted from Cataldi (2008).
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all criteria. In order to define the best model for the electric sector, 
the method used will be Electre, as mentioned by Braga and 
Gobetti (1997) .The evaluation criteria NASH, EMPA, CORREL 
and DM will be exploited for this approach.

Electre I

The central idea of  the Electre I method is to separate 
the total set of  alternatives from those that are preferred in most 
evaluation criteria and do not cause an unacceptable level of  
dissatisfaction in the other criteria. This method is mainly applied 
in the treatment of  discrete alternatives evaluated qualitatively, for 
a partial ordering of  the alternatives. Two indexes are used that 
measure the advantage and the disadvantage of  each alternative in 
relation to the others. They are: C(a,b) referring to the concordance 
index with the affirmative aSb and D(a,b) corresponding to 
the discordance index with the affirmative aSb. The agreement 
between two alternatives a and b represents the willingness to 
choose the alternative a in place of  b. The concordance index 
can be understood as a weighted percentage of  the criteria for 
which alternative a is preferred to alternative b.

The first of  those indexes is given by the equation

( , )
( , )

( )

+ =+∑
= + = −+ +∑

W 0 5W
C a b

W W W
 	 (3)

where W+ is the sum of  weights of  the criteria for condition a is 
preferred to b, Wc is the sum of  the weights of  the criteria for 
condition a = b, and W- corresponding to the sum of  weights of  
the criteria for the b is the preferred to a.

The concept of  disagreement is complementary to that of  
agreement and represents the discomfort experienced in choosing 
the alternative to over alternative b, and is determined by:

( ) ( )
( , ) max *

−
=

−∈

 
  

z zbK aK
D a b

RK I

 	 (4)

where R Z*k -Z
-
k, e Zak the evaluation of  a in relation to criterion 

k. Z*k is the o best degree of  evaluation obtained for the criterion 
k, and Z-

k the worse degree evaluation obtained for criterion k.

The relation the preference is defined to establish value 
of  threshold (p, q), between 0 and 1, such as the alternative a is 

preferred to alternative b, being verified that aSb if, only if, { ( , )
( , )

≥
≤

C a b p
D a b q. 

To this analysis, it was utilized: p=0.70 and q varying according 
to the selected indexes, as Table 3.

Electra II

The procedure of  ordering of  the method Electra II is built 
in two stages: progressive classification and regressive classification. 
The final classification is given through average of  classification 
obtained in each stage. The progressive classification could be 
descripted as following. GF(t) is a subset of  Gr, where GF (0) =GF; 
and Gf(t) a subset of  Gf, where Gf  (0) =Gf, fixes t=0. Therefore, 
chosen the nodes do not dominated in GF(t). This set is denoted 
by C. The non-dominated C nodes C are also selected. This set 
is denoted by A(t). For each x ∈ A(t) is obtained a classification 
from ( )′ = +v x t 1. In this way, the sets GF(t) and Gf(t) are reduced 
from GF (t+1)=GF (t)-A (t) and Gf(t+1)=Gf(t)-A(t).

If  GF (t+1) for empty set, the process stops. Otherwise, 
t=t+1 and the procedure is repeat from step 2. In the regressive 
classification are reverted the directions of  the arrows in GF and Gf 
obtained an classification a (x), the same way as ( )′v x . The rating is 
reset by doing ( ) ( )= + −′′ maxv x 1 a a x ,∀ ∈x X . The final classification 
of  alternatives, ( )

_
v x  is calculated by defining the function m(x) as 

' ''
( )

+
=

v v
m x

2
, ∀ ∈x X . The values are ordered following m(x).

RESULTS

In the determination of  the monthly regressions for 
the 88 SB under study, standardized streamflow data between 
1 and 11 months lead time (lag1 to 11) were tested as explanatory 
variables. It should be mentioned that the streamflow used in this 
study were standardized according to Equation 1.

By using the stepwise, we selected the explanatory variables, 
as presented in Table 4. In the PAR model there is a major influence 
of  the lag1 autoregressive variable, present in most (87.7%) of  
the SB regressions through all months. The streamflow with lag2 
appears in 17.4% of  the equations, especially in the months of  
July and August on the Grande Basin. While for the streamflow 
with lag3 the frequency is of  12.9% and for the streamflows with 
lag4 and 5 they have the frequency of  9.1%.

As shown in Table 4, January, March, April, July, and August 
have the second most commonly used explanatory variables, which 
are formed by streamflow in two months lead time, lag2. However, 
for the months of  May, September, and October, the variables 
with the second highest level of  explanation are those formed by 
streamflows with lag3; Variables with lag4 and lag5 appear more 

Table 3. Criteria for discordance.
Indexes D
EMPA 0.01
NASH 0.05

DM 0.05
CORREL 0.02

Table 2. Index for evaluation of  the models.
Indexes Equacions

Mean absolute percentage error
=

−
= ×∑

nt t t

i 1 t

QO  QP1EMPA  100
nt QO

Nash-Sutcliffe
( )
( )

=

=

−
= −

−

∑

∑

2nt
t ti 1

2nt
t ti 1

QP QO
NASH 1

QO QO

Multi-criterion distance ( ) ( )= − +2 2DM 1 NASH EMPA

tQP  – predicted streamflow in time interval t;

tQO  – observed streamflow in time interval t;
nt  – number of  time interval;
EMPA – mean absolute percentage error;
NASH  – Nash Sutcliffe coefficient (NASH; SUTCLIFFE, 1970);

tQO  – mean observed streamflow in time interval t;
DM  – multi-criterion distance.
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frequently in December and June, respectively. February has the 
second explanatory variable most used in the regressions in lag11 
flows, with 11 months lead time.

The monthly regressions of  SB are built for 6 variables. 
In 44.1% of  these regressions only one variable is required to 
explain the variability of  the dependent term on the equation. 
According to Table  5 for the equation with two and three 
variables the percentage is 32.7% and 14.6%. It is estimated that 
31 equations, 2.9% of  the total, do not have variables, so they do 
not have definite regressions. Therefore, they will always forecast 
the average at the station.

January and February are the months in which most of  the 
regressions have only one variable, 69% and 58%, respectively. It is 
verified for September only 15% of  the regressions are defined 
with one variable only and 43% of  the regressions require two 
variables, thus showing an exception to the rule.

In PARX-CRD model, 10 most used variables in the 
regression equations (according to Table  6) are: streamflow 
lag1 – 45.9%, streamflow lag2 – 15.2%, streamflow lag3 – 11.8%, 
PB63(-1) – 9.5%, PB70(-1) – 9.5%, PB19(-1) – 8.6%, streamflow 
lag6 – 8.5%, streamflow lag5 – 8.1%, streamflow lag4 – 8.0%, 
and PB49(-1) – 7.9%.

Among the numbers of  variables in the regression for 
the different months, it is verified that the month of  May is 
where the largest number of  regressions requires a group of  six 
variables, 18.3% of  the 12-month regressions, followed by July 

with 14.7%; For the group with five variables, the months with 
the highest percentages are those of  June with 12.8%, October 
and April, both with 10.1%; In the equations with four variables, 
October and April have 12.5% ​​and 11.9%, respectively; While for 
the regressions with three variables, the month of  February is the 
one with the highest percentage (16.1%) and October the second 
highest with 10.6%; In the equations with two variables, March 
and January have 16.3% and 13.7%, respectively; Regressions with 
one variable only are observed with higher frequencies in January 
(20.3%) and November (15.9%). There is an influence on the 
time series of  streamflow in the Atlantic and Pacific SST months 
represented by the PDO, AMO, NAO, NINO 3 and NINO 1.2 
indexes. In the FMA months the TNI variable stands out, as in the 
season JJA, AMO and TNI are the most representative exogenous 
variables. In January there is the inclusion of  the variable ZW3 in 
18 equations, this index is proposed in this paper.

Comparison between PARX-CRD and PAR-CRD

It is observed in Figure 3 that the mean monthly value of  the 
EMPA of  the series of  estimated values of  30% ranging between 
8 and 135%. For the values in the periods of  DJF, MAM, JJA, 
and SON as averages are 34%, 30%, 23%, and 34%, respectively.

For all the periods under analysis, there is an increase of  
the Mean Absolute Error for SB between 70 and 88, referring 
to the basins of  the Iguaçu River (Paraná basin) and Uruguay, as 

Table 4. Frequency of  time that variable was utilized during such month for PAR model.
 JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC

lag(-11) 1 11 7 7 10 4 16 11 9 4 8 4
lag(-10) 2 2 1 11 7 1 8 7 12 3 4 5
lag(-9) 1 2 1 7 5 12 2 8 6 3 0 5
lag(-8) 5 1 1 16 4 3 19 4 3 9 4 8
lag(-7) 8 4 5 3 8 6 6 1 5 6 10 1
lag(-6) 5 4 2 7 6 9 11 2 12 10 12 5
lag(-5) 4 10 1 8 15 30 10 9 1 4 3 1
lag(-4) 6 5 13 7 12 5 9 9 3 5 8 14
lag(-3) 1 2 6 10 32 9 20 6 24 17 5 4
lag(-2) 10 6 33 17 17 12 34 16 14 9 10 6
lag(-1) 63 81 72 80 81 86 82 83 75 61 81 81

Table 5. Number of  variables by equation in PAR model.
Number of  variables by equation %

 0 1 2 3 4 5 6
JAN 9 69 15 6 1 0 0
FEB 2 58 32 8 0 0 0
MAR 2 49 36 10 2 0 0
APR 1 41 28 20 8 1 0
MAY 1 32 27 27 8 3 1
JUNE 0 38 38 14 10 0 1
JULY 0 15 43 27 10 5 0
AUG 1 45 32 18 3 0 0
SEPT 2 38 35 22 3 0 0
OCT 8 49 35 2 6 0 0
NOV 3 44 40 9 3 0 0
DEC 5 52 31 11 1 0 0
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EMPA for regions of  53% for the forecasting series, DJF (44%), 
MAM (45%), JJA (63%), and SON (59%).

During MAM months, the forecast capacity increases 
subtly to a larger area belonging to the Paraná basin, except for 
its northwest region. The regions along Amazonas, Tocantins-
Araguaia, Southeast Atlantic and North Atlantic Rivers remain 
with very low predictability, with Nash below zero in some of  
these stations.

In JJA the change is quite drastic; however, a very disparity 
remains in the different regions according to the NASH coefficients 
(Figure 4). Thus, good results are observed in the Central-Eastern 
region of  the river basin Paraná, Southeast Atlantic and northern 
Uruguay Basins. While northwestern and northern of  the Paraná 
basin, the Amazon region, and Araguaia-Tocantins remain with 
NASH values ​​below zero.

In the period of  SON the predictability begins to fall again. 
The spatial distribution of  the NASH coefficients remains the 
same as in the JJA period, but the predictive capacity along these 
SB decreases considerably.

The highest NASH values ​​can be observed in PB63 - Santo 
Antônio (287), PB61 - Curuá Una (277), and PB62 - Samuel (279) 
- Amazonas Basin; E PB59 - Tucuruí (275) - Tocantins-Araguaia 
Basin. (Paraná Basin) and PB74 - Foz do Areia (74) - Paraná 
Basin (PB) - Paraná Basin (PB) - Paraná Basin (PB) - Iguaçu 
Basin (Paraná Basin).

In Figures  3  and  4 are shown low predictability from 
regression, with NASH lower than 0.5 in most base statios. 
The exception is found for stations PB27 – Promissão (240), 
PB28 – Nova Avanhandava (242), and PB29 – Três Irmão (243), 
located in Tietê river basin (Paraná Basin).

Table 6. Explanatory variables utilized in most equation of  monthly regression with PARX-CRD for 12 months in each 88 Principal 
Components.

 JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC
lag(-11) 1 4 6 8 9 5 14 10 7 4 7 5
lag(-10) 0 0 1 9 7 0 9 6 12 4 4 5
lag(-9) 2 1 1 9 6 11 4 7 2 4 0 8
lag(-8) 2 1 4 8 3 0 15 4 3 7 3 4
lag(-7) 7 3 3 1 5 7 6 1 4 12 9 2
lag(-6) 2 4 3 6 2 8 11 3 11 9 12 7
lag(-5) 4 8 2 7 14 31 13 7 0 6 3 2
lag(-4) 6 2 9 5 10 5 15 9 4 6 6 14
lag(-3) 1 2 10 12 36 12 17 7 20 17 2 4
lag(-2) 6 7 33 17 19 13 34 17 17 11 4 5
lag(-1) 65 81 74 77 73 86 81 78 75 51 79 81
SOI 3 4 0 1 1 0 3 5 2 1 9 1
CAR 2 0 15 0 25 6 5 7 4 3 2 5
NTA 3 2 17 9 0 9 1 1 2 0 1 21
PNA 3 0 12 3 1 0 4 1 2 1 7 1
NAO 4 4 1 5 4 6 0 1 14 2 2 1
MEI 4 3 0 0 3 0 0 1 0 0 3 0
NINO3 1 0 0 2 19 1 6 2 0 0 14 1
NINO1.2 0 9 7 2 5 0 3 9 3 18 2 2
NINO3.4 0 3 1 1 3 0 2 0 0 4 2 1
NINO4 1 1 0 1 1 1 1 2 1 0 1 0
NP 0 3 3 8 3 1 1 7 9 1 11 7
ONI 0 3 1 0 0 2 0 0 0 2 2 0
TNA 0 1 2 6 3 1 4 9 3 1 3 4
TSA 5 4 2 5 2 17 6 12 4 6 5 4
QBO 3 23 0 1 2 8 1 4 2 2 9 7
PDO 2 11 3 1 6 1 1 4 25 1 2 1
BEST 2 8 0 0 1 0 1 1 0 0 5 0
PW 15 6 4 8 10 2 1 5 1 9 2 0
TP 3 2 0 4 2 2 0 0 0 2 3 0
NOI 3 1 1 2 4 5 2 3 2 13 0 4
TNI 9 1 19 12 3 20 3 14 1 14 2 2
AMO 2 0 3 2 8 9 25 5 3 35 10 9
ASBM 1 2 2 0 4 3 7 1 5 1 6 0
ZW1 6 6 1 0 4 2 5 4 0 2 0 1
ZW2 3 2 3 12 3 1 6 2 7 6 6 12
ZW3 18 6 2 0 9 6 2 11 19 2 5 4
SST1 0 1 5 0 4 2 16 3 0 1 6 4
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Figure 3. EMPA values by season (a) DFJ, (b) MAM, (c) JJA, and (d) SON for PAR and PARX models. X-axis indicates number of  
base stations and Y-axis indicates the indexes values. Grande Paraná (Grand.Par.), Paranaiba-Paraná (Paran.Par.), Paraíba do Sul-Atlântico 
SE (Parai. Atlant.SE), São Francisco (S.Franc.), Tietê-Paraná (Tiet.Par.), Atlântico Sudeste (Atlant.SE), Paraguai (Parag.), Tocantins 
(Toc.), Amazonas (Amaz.), Paranapanema-Paraná (Paranap.Par.), Iguaçu-Paraná (Ig.Par.) and Uruguai (Urug).

Figure 4. NASH values by season (a) DFJ, (b) MAM, (c) JJA, and (d) SON for PAR and PARX models. X-axis indicates number of  
base stations and Y-axis indicates the indexes values. Grande Paraná (Grand.Par.), Paranaiba-Paraná (Paran.Par.), Paraíba do Sul-Atlântico 
SE (Parai.Atlant.SE), São Francisco (S.Franc.), Tietê-Paraná (Tiet.Par.), Atlântico Sudeste (Atlant.SE), Paraguai (Parag.), Tocantins 
(Toc.), Amazonas (Amaz.), Paranapanema-Paraná (Paranap.Par.), Iguaçu-Paraná (Ig.Par.) and Uruguai (Urug.).
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For the MAM season the prediction capacity improves 
for a larger area of  the Paraná Basin, except for the northwest 
region of  the basin. The regions of  the Amazonas, Tocantins-
Araguaia, Southeast Atlantic and North Atlantic Rivers remain 
very low predictability.

Figure 5 shows that the PAR model is in the last quarters 
DJF, MAM and JJA, while PARX is better in the SON quarter.

CONCLUSION

The analysis of  the prediction models for 1 lead month 
showed a better performance in general of  PAR models than the 
PARX ones at the periods of  December, January and February 
(DJF); March, April and May (MAM) and June, July, and August 
(JJA), based on the Electre II multi-criteria test. For the period 
of  September, October and November (SON) the PARX model 
presents better predictions than the PAR in most of  the stations.

Studies pointed out to the improvement of  the performance 
of  streamflow forecast models by the insertion of  explanatory 
variables from climatic indexes (CATALDI, 2008; SOUZA 
FILHO; LALL, 2003). However, it was observed that the process 
described is not confirmed for all regions and all months of  the 
year. This is probably due to the strong signal of  the persistence 
in the PAR model, forecasts with more antecedence may have 
different results than those shown in this paper. Nevertheless, 
the PARX model shows good performance (based on the Electra 
II multicriteria test) for the dry period of  the basins in the north 
of  Brazil, Amazonas and Araguaia-Tocantins; and in the central 
east of  Brazil in the Eastern Atlantic and most of  the rivers in 
the Paraná Basin.

Considering the performance of  the climatic forcing in 
the dynamics of  the precipitation processes, the information 
added shown by the PARX for a month lead time in the months 
of  SON suggests that the investigation of  climatic indexes can be 
an alternative for the reduction of  the uncertainties associated to 
the forecast for the SIN. It should be highlighted that the SON is 
the transition period between the dry and rainy season on most 

parts of  Brazil, so the ability of  models based on persistence may 
not be enough to capture this onset, requiring information from 
the large scale characteristics of  the atmosphere-ocean and their 
impacts on the hydrological cycle.

REFERENCES

ALEXANDRE, A. M. B. Previsão de vazões mensais para o sistema 
interligado nacional utlizando informações climáticas 2012. 293 f. Tese 
(Doutorado em Engenharia Civil) - Departamento de Engenharia 
Hidraulica e Ambiental, Universidade Federal do Ceará, Fortaleza, 
2012.

AMARASEKERA, K. N.; LEE, R. F.; WILLIANS, E. R.; 
ELTAHIR, E. A. B. ENSO and natural variability in the flow of  
tropical rivers. Journal of  Hydrology, v. 200, n. 1-4, p. 24-39, 1997. 
http://dx.doi.org/10.1016/S0022-1694(96)03340-9. 

ANEEL - AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. 
Atlas de Energia Elétrica do Brasil. Brasília: ANEEL, 2002. 153 p.

BARROS, R. C.; ROLIM, P. A. M.; ALMEIDA, R. M. B.; 
MELO, A. P. Influência do ENOS na variabilidade da vazão, na 
bacia do alto rio Negro. In: CONGRESSO BRASILEIRO DE 
METEOROLOGIA, 13., 2004, Fortaleza. Anais... Fortaleza: 
Sociedade Brasileira de Meteorologia, 2004. Available from:  
<http://www.cbmet.com/index.php>. Access on: 30 mar. 2012.

BERRI, G. J.; GHIETTO, M. A.; GARCÍA, N. O. The Influence of  
ENSO in the Flows of  the Upper Paraná River of  South America 
over the Past 100 Years. Journal of  Hydrometeorology, v. 3, n. 1, p. 57-65, 
2002. http://dx.doi.org/10.1175/1525-7541(2002)003<0057:TI
OEIT>2.0.CO;2. 

BRAGA, B.; GOBETTI, L. Análise multiobjetivo. In: PORTO, R. 
L. (Ed.). Técnicas quantitativas para o gerenciamento de recursos hídricos. 
Porto Alegre: Ed. UFRGS/ABRH, 1997. p. 361-420 .

Figure 5. Comparison between PAR and PARX using the Electre method, the y-axis indicates the score obtained by each technique 
when considering all the base stations. In those stations where Electre did not identify the best methodology 0.5 score were recorded 
for PAR and PARX.

http://dx.doi.org/10.1016/S0022-1694(96)03340-9
http://dx.doi.org/10.1175/1525-7541(2002)003%3c0057:TIOEIT%3e2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2002)003%3c0057:TIOEIT%3e2.0.CO;2


RBRH, Porto Alegre, v. 22, e30, 2017

Monthly streamflow forecast for National Interconnected System (NIS) using Periodic Auto-regressive Endogenous Models (PAR) 
and Exogenous (PARX) with climate information

CARDOSO, A. O.; SILVA DIAS, P. L. The relationship between 
ENSO and Paraná River flow. Advances in Geosciences, v. 6, p. 189-
193, 2006. http://dx.doi.org/10.5194/adgeo-6-189-2006. 

CARRIELLO, F.; SOARES, J. V.; FERREIRA, N. J. A resposta 
hidrológica das sub-bacias brasileiras e sua relação com o fenômeno 
ENSO-El Niño/Oscilação Sul. In: SIMPÓSIO BRASILEIRO 
DE SENSORIAMENTO REMOTO, 12., 2005, Goiânia. Anais... 
Goiânia: Instituto Nacional de Pesquisas Espaciais -INPE, 2005. 
p. 2479-2486. Available from: <http://urlib.net/ltid.inpe.br/
sbsr/2004/11.19.19.09>. Access on: 30 mar. 2012.

CATALDI, M. Estudo Numérico da Influência das Anomalias da 
TSM do Atlântico Sul Extratropical e do Pacífico Equatorial no Regime 
Hidrometeorológico das Regiões Sul e Sudeste do Brasil. 2008. 255 f. Tese 
(Doutorado em Engenharia Civil) - Universidade Federal do Rio 
de Janeiro, Rio de Janeiro, 2008.

DETTINGER, M. D.; DIAZ, H. F. Global characteristics of  
streamflow seasonality and variability. Journal of  Hydrometeorology, 
v. 1, n. 4, p. 289-310, 2000. http://dx.doi.org/10.1175/1525-
7541(2000)001<0289:GCOSFS>2.0.CO;2. 

FOLEY, J. A.; BOTTA, A.; COE, M. T.; COSTA, M. H. El 
Nino–Southern oscillation and the climate, ecosystems and rivers 
of  Amazonia. Global Biogeochemical Cycles, v. 16, n. 4, p. 1132, 2002. 
http://dx.doi.org/10.1029/2002GB001872. 

GARCIA, N. O.; MECHOSO, C. R. Variability in the discharge 
of  South American rivers and in climate. Hydrological Sciences 
Journal, v. 50, n. 3, p. 459-478, 2005. http://dx.doi.org/10.1623/
hysj.50.3.459.65030. 

KIM, I. S.; VISSOTTO, S. Relações entre variações das vazões nas 
bacias hidrográficas do Brasil e os fenômenos El Niño e La Niña. 
In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 15., 
2003, Curitiba. Anais... Curitiba: ABRH, 2003. p. 1-5.

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through 
conceptual models, part I – a discussion of  principles. Journal 
of  Hydrology, v. 10, n. 3, p. 282-290, 1970. http://dx.doi.
org/10.1016/0022-1694(70)90255-6. 

NOAA - NATIONAL OCEANIC AND ATMOSPHERIC 
ADMINISTRATION. Climate Indices: monthly atmospheric and 
ocean time series. Washington, 2014. Available from:  <http://
www.esrl.noaa.gov/psd/data/climateindices/list>. Access on: 
22 mar. 2014.

ONS - OPERADOR NACIONAL DO SISTEMA ELÉTRICO. 
Operação do Sistema Interligado Nacional: Relatório Anual de Avaliação 
das Previsões de Vazões – 2010. Brasília: ONS, 2010. 230 p.

ONS - OPERADOR NACIONAL DO SISTEMA ELÉTRICO. O 
que é o SIN - Sistema Interligado Nacional. Rio de Janeiro: ONS, 2016. 
Available from: <http://www.ons.org.br/conheca_sistema/o_
que_e_sin.aspx>. Access on: 25 apr. 2016.

ROCHA, E. J. P.; ROLIM, P. A. M.; SANTOS, D. M. Modelo 
estatístico hidroclimático para previsão de níveis em Altamira-
PA. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 
17., 2007, São Paulo. Anais... São Paulo: Associação Brasileira de 
Recursos Hídricos, 2007. p. 1-8.

ROHN, M. C.; KAVISKI, E.; CUNHA, L. M. Estimativa de variáveis 
hidrológicas a partir de indicadores do fenômeno EL NIÑO. In: 
SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 15., 
2003, Curitiba. Anais... Curitiba: ABRH, 2003. p. 1-8.

SILVA, D. F.; MOLION, L. C. B. Influência da variabilidade 
climática interanual na hidrologia da Bacia do Rio São Francisco. 
In: CONGRESSO BRASILEIRO DE METEOROLOGIA, 
13., 2004, Fortaleza. Anais... Fortaleza: Sociedade Brasileira de 
Meteorologia, 2004. p. 1-5.

SOARES, J. V.; CARRIELLO, F.; FERREIRA, N. J.; RENNÓ, C. 
D. Mapping the hydrologic response of  the Brazilian hydrologic 
regions and their variability associated with El Niño and La Niña. 
Revista Ambiente & Água, v. 1, n. 1, p. 21-36, 2006. http://dx.doi.
org/10.4136/ambi-agua.3.

SOUZA FILHO, F. A.; LALL, U. Modelo de previsão de vazões 
sazonais e interanuais. Revista Brasileira de Recursos Hídricos, v. 9, n. 
2, p. 61-74,  2004.

SOUZA FILHO, F. A.; LALL, U. Seasonal to interannual ensemble 
streamflow forecasts for Ceara, Brazil: applications of  a multivariate, 
semiparametric algorithm. Water Resources Research, v. 39, n. 11, p. 
1307, 2003. http://dx.doi.org/10.1029/2002WR001373. 

STUCK, J.; GÜNTNER, A.; MERZ, B. ENSO impact on simulated 
South American hydro-climatology. Advances in Geosciences, v. 6, p. 
227-236, 2006. http://dx.doi.org/10.5194/adgeo-6-227-2006. 

UVO, C. B.; GRAHAM, N. E. Seasonal runoff  forecast for northern 
South America: a statistical model. Water Resources Research, v. 34, n. 
12, p. 3515-3524, 1998. http://dx.doi.org/10.1029/98WR02854. 

Authors contributions

Cleiton da Silva Silveira: Analysis of  the results and technical 
review of  the manuscript.

Alan Michell Barros Alexandre: Manuscript structure, literature 
review, methods and analysis of  the results.

Francisco de Assis de Souza Filho: Study orientation, literature 
review, methods, analysis of  the results and technical review of  
the manuscript.

Francisco das Chagas Vasconcelos Junior: Manuscript structure, 
literature review, methods and analysis of  the results.

Samuellson Lopes Cabral: Technical review of  the manuscript.

http://dx.doi.org/10.5194/adgeo-6-189-2006
http://dx.doi.org/10.1175/1525-7541(2000)001%3c0289:GCOSFS%3e2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2000)001%3c0289:GCOSFS%3e2.0.CO;2
http://dx.doi.org/10.1029/2002GB001872
http://dx.doi.org/10.1623/hysj.50.3.459.65030
http://dx.doi.org/10.1623/hysj.50.3.459.65030
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://www.noaa.gov/
http://www.noaa.gov/
http://www.esrl.noaa.gov/psd/data/climateindices/list
http://www.esrl.noaa.gov/psd/data/climateindices/list
http://dx.doi.org/10.1029/2002WR001373
http://dx.doi.org/10.5194/adgeo-6-227-2006
http://dx.doi.org/10.1029/98WR02854

