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ABSTRACT

Knowledge about precipitation is indispensable for hydrological and climatic studies because precipitation subsidizes projects related 
to water supply, sanitation, drainage, flood and erosion control, reservoirs, agricultural production, hydroelectric facilities, and waterway 
transportation and other projects. In this context, methodologies are used to estimate precipitation in unmonitored locations. Thus, 
the objectives of  this work are to i) identify homogeneous regions of  precipitation in the Tocantins-Araguaia Hydrographic Region 
(TAHR) via the fuzzy c-means method, ii) regionalize and estimate the probability of  occurrence of  monthly and annual average 
precipitation using probability distribution models, and iii) regionalize and estimate the precipitation height using multiple regression 
models. Three homogeneous regions of  precipitation were identified, and the results of  the performance indices from the regional 
models of  probability distribution were satisfactory for estimating average monthly and annual precipitation. The results of  the 
regional multiple regression models showed that the annual mean precipitation was satisfactorily estimated. For the average monthly 
precipitation, the estimates of  multiple regression models were only satisfactory when the months used were distributed in the dry 
and rainy seasons. Therefore, our results show that the methodology developed can be used to estimate precipitation in unmonitored 
locations in the TAHR.

Keywords: PBM index; Probability distribution models; Multiple regression models; Tocantins-Araguaia Hydrographic Region.

RESUMO

O conhecimento da precipitação é indispensável para estudos hidrológicos e climáticos, que subsidiam projetos de sistemas de 
abastecimento de água, saneamento e drenagem; controle de inundações, erosão e reservatórios; produção agrícola e hidrelétrica, 
transporte hidroviário, entre outros. Nesse contexto, buscam-se metodologias para estimar a precipitação em locais sem monitoramento. 
Assim, os objetivos do trabalho são: i) identificar regiões homogêneas de precipitação na Região Hidrográfica Tocantins Araguaia 
(RHTA) via método fuzzy c-means; ii) regionalizar e estimar a probabilidade de ocorrências de precipitações médias mensais e anuais 
através de modelos de distribuição de probabilidades; e iii) regionalizar e estimar lâminas de precipitação através de modelos de regressão 
múltipla. Nesse caso, foram identificadas 3 regiões homogêneas de precipitação e os resultados dos parâmetros de desempenho dos 
modelos regionais de distribuição de probabilidades foram satisfatórios para estimativas de precipitações médias mensais e anuais. 
Os resultados dos modelos regionais de regressão múltipla revelaram que as precipitações médias anuais são estimadas satisfatoriamente. 
Já no caso de precipitações médias mensais, as estimativas dos modelos de regressão múltipla só foram satisfatórias quando os meses 
foram distribuídos em secos e chuvosos. Assim, constata-se que a metodologia desenvolvida pode ser aplicada para estimativas de 
precipitação em locais sem monitoramento da RHTA.

Palavras-chave: Índice PBM; Modelos de distribuição de probabilidades; Modelos de regressão múltipla; Região Hidrográfica 
Tocantins-Araguaia.
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INTRODUCTION
Precipitation is one of  the most important hydrological 

variables. Its scarcity or excess directly affects society, influencing 
water supply, drainage, flood control and erosion systems, agricultural 
production, generation of  energy, etc. However, precipitation 
monitoring is generally confined to scattered points, leaving gaps 
in more isolated and difficult to access areas, which highlights the 
importance of  methods that allow hydrological information to 
be obtained. Thus, the development of  techniques for estimating 
precipitation has become relevant. Regionalization is a possible 
technique that can provide hydrological data at low cost. Several 
works, such as Arellano-Lara and Escalante-Sandoval (2014), 
Asong, Khaliq and Wheater (2015), Shahana Shirin and Thomas 
(2016) and Fazel et al. (2018), are examples of  the application 
of  precipitation estimates in several regions. Regionalization 
is a well-known methodology and its importance is related to 
the obtainment of  hydrological information in places without 
monitoring. In addition, using this technique, the zoning of  
the earth based on physical and hydrological characteristics can 
generate a greater understanding of  the distribution and intensity 
of  rainfall and streamflow in a specific region.

According to Samuel, Coulibaly and Metcalfe (2011), 
regionalization consists of  the use of  a set of  methods that attempt 
to transfer information from one place to another in river basins, 
for the purpose of  filling in missing information in a given region 
considered homogeneous. To apply precipitation regionalization, 
mathematical and statistical procedures are applied to the historical 
data series and to the physical and climatic characteristics of  
the river basins using hydrological models, which, after being 
calibrated and validated, are able to estimate the precipitation in 
the homogeneous regions.

The best known models of  precipitation estimates are those 
created through spatial interpolation, statistical and satellite estimation 
methods. Models of  spatial interpolation include the polygon of  
Thiessen, the kriging and the isohyetal methods. Among the statistical 
models, we highlight the probability distribution functions (PDF) 
and the multiple regression analysis (MRA). Satellite estimates 
are obtained from observations of  the atmosphere, captured by 
micro waves and transformed into precipitation data by specific 
algorithms that require advanced technology. Spatial interpolation 
methods mainly consider precipitation. Mathematical and statistical 
models, such as those derived from multiple regression models, 
correlate several of  the variables that exert some influence on the 
element studied to improve the results.

Numerous studies related to the estimation of  precipitation 
and its probability of  occurrence, through MRA and PDF, have 
been published. Chifurira and Chikobvu (2014) developed a simple, 
predictive model of  precipitation using multiple regression, using 
climatic determinants (southern oscillation and sea level pressures) 
from Zimbabwe, Africa. This model had a reasonable adjustment 
at a significance level of  5% and is easily applied. Chatzithomas, 
Alexandris and Karavitis (2015) used multiple regression models 
to estimate the annual and monthly means of  precipitation in the 
Viotikos Kefissos basin in Ecuador. In this study, the authors used 
17 rainfall gauge stations, three independent variables (elevation, 
location and direction of  storms), verifying that the regression 
models had excellent results when compared with the kriging 
method. Das and Umamahesh (2016) used a multiple regression 

model constructed with main components and fuzzy clusters that 
estimated the behavior of  precipitation between 2008 and 2100, 
and found good results for the Godavari basin in India.

Li, Brissette and Chen (2014) evaluated the performance of  
six distributions of  precipitation probability (exponential, gamma, 
Weibull, normal, mixed exponential and hybrid exponents) from 
the Loess Plateau in China, identifying the normal function as 
the best with which to simulate the distributions of  monthly and 
annual frequency. Yuan et al. (2018) tested five different probability 
distribution functions to predict the distribution of  the occurrence 
of  the maximum hourly annual precipitation. The quality of  the 
fit was assessed using the chi-square test, which indicated that the 
log-Pearson function had the best overall fit for the maximum 
hourly annual precipitation from most regions of  Japan.

Thus, regionalization and precipitation estimates are the 
main objectives of  this study, which is motivated by the regions of  
the Amazon that still lack rainfall gauge stations with long series of  
records. An example of  one of  these regions is the TAHR. In this 
case, the homogeneous regions were determined via the fuzzy 
c-means clustering technique. Probability distribution functions 
and regional models, determined through multiple regression 
models, were employed for precipitation height estimates.

MATERIAL AND METHODS

Study area

The TAHR is located between 0º 30 ‘and 18º 05’ south and 
45º 45 ‘and 56º 20’ west (Figure 1). It has an elongated configuration, 
with a south-north direction, following the predominant direction 
of  the main watercourses, the Tocantins and Araguaia Rivers, 
which intersect in the northern part of  the region, from which 
point they are called the Tocantins River, which empties into the 
Marajó Bay. The total area of  the TAHR is 918,822 km2, covering 
part of  the midwestern, northern and northeastern regions. 
The TAHR occupies 11% of  the national territory and includes 
the states of  Goiás (21.4%), Tocantins (30.2%), Pará (30.3%), 

Figure 1. Tocantins Araguaia Hydrographic Region (TAHR).
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Maranhão (3.3%), Mato Grosso 14.7%) and the Federal District 
(0.1%). This region is divided into three subbasins: Alto Tocantins 
(TOA), Baixo Tocantins (TOB) and Araguaia (ARA), a division 
adopted by the National Council of  Water Resources.

The TAHR has great importance for the development of  
the country since it provides electricity for the Brazil, through the 
Hydroelectric Power Plant (HPP) of  Tucuruí, and is important for 
mining, agribusiness, agriculture and livestock farming. According 
to studies conducted by the National Water Agency (ANA, 2006), 
the average annual precipitation is approximately 1,837 mm, and the 
rate of  flow is approximately 13,624 m3/s; the evapotranspiration 
is 1,371 mm, representing 75% of  the precipitation (the average 
annual evapotranspiration of  the country is 1,134 mm or 63% of  
the precipitation); and the average coefficient of  the surface flow 
is 0.30. According to ANA (2016a), 109.5 thousand hectares of  
irrigable areas were registered in this region in 2014 (Figure 2). 
The most relevant land use and occupation activities are categorized 
into urbanized areas, crops, forests, pastures and agricultural 
establishments (Figure 3).

Data sources

Precipitation data from 92 stations located at TAHR in the 
ANA database (ANA, 2016b) were used (Table 1). The stations 
were chosen based on the historical series; the chosen stations 
had the largest data series. Despite flaws found in the daily series, 

the annual and monthly accumulated data was not compromised. 
The  data consistency methodology adopted by ANA (2012) 
prioritizes the degree of  homogeneity of  the data, correcting 
possible errors.

To calibrate the models used in the regionalization, 
83 stations were used and in the validation, 9 target stations were 
used (Figure 1). Altitude information and station coordinates are 
available in the ANA database. The mean annual precipitation 
(P), altitude (H), latitude (la) and longitude (lo) of  each rainfall 
gauge station were used to identify the homogeneous regions of  
precipitation and to develop regional models of  precipitation 
estimation. Of  the 92 stations used, 70 have 30 years of  data 
(1975-2004), and the remaining 22 include 17 and 28 years.

Homogeneous regions

One of  the conditions necessary for the application of  
regionalization is the identification of  homogeneous regions, which 
are associated with regions that have hydrological similarities. 
The identification of  hydrologically homogeneous regions has two 
purposes: to impose boundaries between regions and to hydrologically 
characterize the regions. The identification of  homogeneous 
regions can be performed in several ways. However, the most 
widely adopted method in hydrological and environmental studies 
is cluster analysis. The applications developed by Satyanarayana and 
Srinivas (2011), Dikbas et al. (2011), Santos, Lucio and Silva (2014), 

Figure 3. TAHR Soil Uses (Source: IBGE, 2014).Figure 2. Irrigable Areas on TAHR (Source: ANA, 2016a).
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Table 1. TAHR rainfall gauge stations considered in the study.
ID Station Code P (mm) Alt (m) Lat Lon
E1 São José da Serra 01555005 1614 797 -15.8 -55.3
E2 Rio das Mortes 01554005 1690 551 -15.3 -54.2
E3 Alô Brasil 01251000 1658 339 -12.2 -51.7
E4 Santo Antônio Leverger 01250001 1581 205 -12.3 -51
E5 Barreira do Campo 00950001 1417 195 -9.2 -50.2
E6 Fazenda Caiçara 00650001 1730 95 -6.8 -50.5
E7 Faz. Estrela Norte 00350000 1931 22 -3.9 -50.5
E8 Acampamento IBDF 00151001 2012 11 -1.8 -51.4
E9 Maracacuera Florestal 00251000 2620 20 -2.2 -51.2
E10 Cachoeira Tracambeua 00349001 2382 50 -3.5 -49.2
E11 Abaetetuba 00148010 2584 13 -1.7 -48.9
E12 Vigia 00048006 2843 15 -0.9 -48.1
E13 Faz. Maringa 00348001 1933 20 -3.2 -48.1
E14 Tomé-Açu 00248003 2553 45 -2.4 -48.1
E15 Abreulandia 00949000 2117 240 -9.6 -49.2
E16 Almas 01147000 1524 427 -11.6 -47.2
E17 Alto Araguaia 01753000 1681 659 -17.3 -53.2
E18 Ananas 00648001 1562 191 -6.4 -48.1
E19 Araguacema 00849002 2048 203 -8.8 -49.6
E20 Araguatins 00548000 1552 122 -5.6 -48.1
E21 Arapoema 00749000 1867 215 -7.7 -49.1
E22 Aruanã 01451000 1537 200 -14.9 -51.1
E23 Bandeirantes 01350000 1456 276 -13.7 -50.8
E24 Bom Jardim de Goiás 01652000 1650 402 -16.2 -52.2
E25 Britânia 01551000 1417 297 -15.2 -51.2
E26 Cachoeira GO 01650000 1514 766 -16.7 -50.6
E27 Caiaponia 01651000 1632 713 -16.9 -51.8
E28 Campinaçu 01348000 2441 683 -13.8 -48.6
E29 Cavalcante 1347000 1850 821 -13.8 -47.5
E30 Colinas do Sul 01448000 1573 530 -14.2 -48.1
E31 Colinas TO 00848000 1801 229 -8.1 -48.5
E32 Colonha 01248001 1420 264 -12.4 -48.7
E33 Contagem 01547010 1570 1242 -15.7 -47.9
E34 Córrego do ouro 01650001 1544 569 -16.3 -50.6
E35 Dianópolis 01146000 1449 679 -11.6 -46.8
E36 Dois Irmãos Tocantins 00949001 2029 264 -9.3 -49.1
E37 Entroncamento S M 01349003 1635 345 -13.1 -49.2
E38 Estrela do Norte 01349000 1751 467 -13.9 -49.1
E39 Fátima 01048000 1897 352 -10.8 -48.9
E40 Faz Primavera 00748002 1816 257 -7.6 -48.4
E41 Faz São Bernardo 01752002 1674 750 -17.7 -52.8
E42 Faz. Lobeira 01148000 1556 243 -11.5 -48.3
E43 Faz. Santa sé 01547001 1684 573 -15.2 -47.2
E44 Flores GO 01447001 1144 200 -14.5 -47
E45 Goiantins 00747001 1572 185 -7.7 -47.3
E46 Israelândia 01650002 1597 406 -16.3 -50.9
E47 Itaberaí 01649007 1828 726 -16 -49.8
E48 Itacaja 00847001 1845 250 -8.4 -47.8
E49 Itapirapua 01550000 1589 343 -15.8 -50.6
E50 Itapuranga 01549002 1645 646 -15.8 -50.6
E51 Jeroaquara 01550001 1780 400 -15.4 -50.5
E52 Lagoa da Flexa 01450000 1436 200 -14.3 -50.7
E53 Mimoso 01548001 1308 687 -15.1 -48.2
E54 Miracema Tocantins 00948000 1707 210 -9.6 -48.4
E55 Monte Carlos GO 01551001 1543 400 -15.6 -51.4
E56 Mozarlandia 01450001 1654 400 -14.7 -50.6

*Target Stations; TAHR – Tocantins-Araguaia Hydrographic Region.
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Farsadnia  et  al. (2014), Parracho, Melo‑Gonçalves and Rocha 
(2015), Awan, Bae and Kim (2015), Latt, Wittenberg and Urban 
(2015) and Pessoa, Blanco and Gomes (2018) are examples of  
the successful use of  cluster analysis to identify hydrologically 
homogeneous regions, demonstrating their significant efficacy.

Fuzzy c-means (FCM)

The nonhierarchical fuzzy c-means method was initially 
proposed by Dunn (1973) and then generalized by Bezdek (1981). 
Known as fuzzy clustering, it is based on the premise that a set 
can be grouped into p groups by the degree of  membership that 
each element has to one or more sets. The fuzzy c-means group is 
generated by minimizing the objective function (Equation 1) and 
by iteratively performing the algorithm (FCM), which indicates 
the degree of  membership of  an element to a given cluster group. 
Therefore, technique, each element belongs to a group with a 

certain degree of  pertinence, which requiring an initial estimate 
of  the number of  groups.

( ) ( )   , ²
pn m

ij i j
i l j l

J u d X C
= =

= ∑ ∑ 	 (1)

where n is the number of  data points; p is the number of  groups; 
uij is the degree of  relevance of  the sample Xi to the j-th cluster; 
m is the fuzzy parameter; d is the Euclidean distance between 
Xi and Cj; Xi is data vector, with i = 1, 2,..., n, representing a data 
attribute; and Cj is the center of  a fuzzy cluster.

The fuzzy parameter (m) is also known as the fuzzy weight 
exponent, and is the parameter that controls the level of  diffusivity 
in the classification process. The cluster decision is defined by the 
greater degree of  relevance presented for each element analyzed. 
Thus, for a given Xi, its greater degree of  pertinence, determines 
which group this object belongs to.

Table 1. Continued...
ID Station Code P (mm) Alt (m) Lat Lon
E57 Muricilandia 00748003 1671 393 -7.2 -48.5
E58 Niquelândia 01448001 1704 568 -14.5 -48
E59 Nova América 01549004 1606 800 -15 -49.9
E60 Novo Acordo 01047001 1598 300 -10 -47.7
E61 Novo Planalto 01349001 1588 286 -13.2 -49.5
E62 Paraíso do TO 01048001 2281 390 -10.2 -48.9
E63 Perez 01551002 1499 299 -15.9 -51.9
E64 Pilar de Goiás 01449000 1948 765 -14.8 -49.6
E65 Pindorama do Tocantins 01147002 1615 444 -11.1 -47.6
E66 Piranhas 01651002 1583 356 -16.4 -51.8
E67 Piraquê 00648002 1761 184 -6.7 -48.5
E68 Ponte Paranã 01347001 1245 363 -13.4 -47.1
E69 Porto Gilandia 01047002 1656 220 -10.8 -47.8
E70 Porto Real 00948001 1599 200 -9.3 -47.9
E71 Porto Uruaçu 01449001 1468 572 -14.6 -49.1
E72 Rio Pintado 01350001 1444 200 -13.5 -50.2
E73 Sama 01348001 1411 375 -13.5 -48.2
E74 Santa fé 01551003 1615 400 -15.8 -51.1
E75 Santa Terezinha GO 01449002 1505 400 -14.4 -49.7
E76 São Ferreira 01651003 1673 361 -16.3 -51.5
E77 São João Aliança 01447002 1499 1009 -14.7 -47.5
E78 Tesouro 01653000 1715 389 -16.1 -53.5
E79 Torixoreu 01652002 1406 307 -16.2 -52.6
E80 Travessão 01550002 1517 450 -15.4 -50.7
E81 Tupiratins 00848003 1740 192 -8.4 -48.1
E82 Xambioá 00648000 1695 148 -6.4 -48.5
E83 Xavantina 01452000 1526 263 -14.7 -52.4
E84 Tucuruí* 01449000 2422 40 -3.8 -49.7
E85 Cametá* 01147002 2590 24 -2.2 -49.5
E86 Belém* 01651002 2943 10 -1.5 -48.5
E87 Trecho Médio* 00648002 1555 232 -14.1 -51.7
E88 Gurupi* 01347001 1497 353 -11.7 -49.1
E89 Formosa* do Araguaia 01047002 1708 247 -11.8 -49.5
E90 Faz. Marajá* 00948001 1498 666 -15.6 -48.6
E91 Pirenópolis* 01449001 1687 740 -15.9 -49
E92 Faz. Babilônia* 01350001 1632 699 -17.4 -53.1

*Target Stations; TAHR – Tocantins-Araguaia Hydrographic Region.
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PBM index

The PBM index proposed by Pakhira, Bandyopadhyay 
and Maulik (2004), which is an acronym of  the initials of  the 
authors’ names, serves to validate the number of  clusters or subsets 
formed from a set of  data by evaluating whether the clusters are 
well defined and separated. The PBM index is a maximization 
parameter; therefore, the higher its value, the better the quality 
of  the partition is. It is defined as the product of  three factors 
(Equation 2) and its maximization ensures that the partition has a 
small number of  compact groups with a large separation between 
at least two of  them.

( )  . . 
2

1
k

k

E1PBM K D
k E

 
=  
 

	 (2)

where K is the number of  clusters; E1 is the sum of  the distances 
of  each sample to the geometric center of  all samples; Ek is the 
sum of  the distances between the groups and Dk represents the 
maximum separation of  each pair of  groupings.

Heterogeneity test (H)

The measurement of  H (Equation 3) which is used in 
hydrology and meteorology, was proposed by Hosking and Wallis 
(1993) and aims to verify the degree of  heterogeneity of  a region 
by comparing the observed variability to the expected variability 
of  a homogeneous region based in L-moment statistics. H helps 
verify the homogeneity of  the regions formed in the cluster.

( ) 
 v

v

V
H

−
=

µ
σ

	 (3)

where V is the weighted standard deviation, μv is the arithmetic 
mean of  the statistics Vj, obtained by simulation and σv is the 
standard deviation of  the dispersion measure of  the estimated 
samples. According to a test of  significance, if  H < 1, the region 
is considered to be “acceptably homogeneous,” if  1 ≤ H < 2, the 
region is “possibly homogeneous” and finally if  H ≥ 2, the region 
must be classified as “definitely heterogeneous.”

Probability Distribution Functions – PDF

In hydrology, the PDFs produces a projection of  what will 
happen in the future, based on the frequency of  past occurrences. 
Thus, to model the frequency of  hydrological data, it is necessary 
to study its occurrence and to establish whether the variable can be 
larger or smaller than a given value. Several probability distribution 
functions have been used to verify precipitation behavior and 
variability. Among these, we use the normal, gamma two parameters, 
log-normal and Weibull distributions because they show good 
adjustments of  monthly and annual precipitation totals and some 
of  them are highlighted in the publications of  Li, Brissette and 
Chen (2014), Caldeira et al. (2015), Yuan et al. (2018).

The chi-square test (X2) was used to select the PDF that 
best fit the probability values of  monthly and annual precipitation. 
The choice of  this test is justified because it is the most commonly 

used to test frequency distributions. In the calibration of  the 
PDF, simulations were carried out using a computer code called 
PDF, created to generate the occurrence frequencies of  annual 
and monthly average precipitation heights of  each station in 
the homogeneous regions formed by the fuzzy c-means cluster. 
The  PDFs selected in the calibration evaluated by their fit in 
the 9 target stations, which were not adopted in the calibration 
step. Thus, the frequency distribution of  the target stations was 
determined by the best PDF obtained in the calibration.

Adhesion test - Chi-square (X2)

The chi-square test (Equation 4) was used to select the 
best probability function, adjusted to the observed data. The test 
is based on the comparison of  the sum of  the square of  the 
deviations to the observed and estimated frequencies. In this work, 
the application of  the chi-square test considered the number of  
degrees of  freedom to be equal to two; and the level of  significance 
to be equal to 5%, since these are the most usual values used in 
the application of  this test. Thus, the value of  the X2 is equal 
to 5.99 for all functions. For the probability distribution to be 
considered adequate, the calculated value of  X2 must be smaller 
than the table (CORDER; FOREMAN, 2009).

( ) 
 

2
0 e2

e

f f
X

f

 −
 =∑
  

	 (4)

where fo is the frequency observed (mm); and fe is the frequency 
(mm) estimated by the probability function.

Multiple regression models

According to Hair et al. (2005), this technique can be used 
to verify the relationship between a single dependent variable and 
several independent variables. The objective of  this method is to 
use the independent variables, whose values are known, to predict 
the values of  the dependent variable studied. The relationship 
between the dependent variable and the independent variables 
can be represented by a linear model (Equation 5).

     .  .  .  o 1 1 2 2 i iY X X X= + + + +β β β β ε 	 (5)

where Y is the dependent or predicted variable, X1, X2,…Xi, 
are the independent or explanatory variables. βo, β1, β2....βi, are 
the regression coefficients, and Ɛ denotes the residuals of  the 
regression. In the determination of  the dependent variable (Y), 
represented by the precipitation (P), the multiple regression method 
was applied between the independent variables (elevation - H, 
latitude - la, and longitude - lo). For the determination of  the 
parameters βo, β1, β2 and β3, the least squares method was adopted. 
Thus, precipitation was determined by the following regression 
models: linear (Equation 6), potential (Equation 7), exponential 
(Equation 8) and logarithm (Equation 9).

   .  . .o 1 2 3P H la lo= + + +β β β β 	 (6)

   31 2
oP H la lo= + + + ββ ββ 	 (7)
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 .  .  . o 1 2 3H la loP e + + += β β β β 	 (8)

( ) ( ) ( )  .ln .ln .o 1 2 3P H la ln lo= + + +β β β β 	 (9)

These models were chosen because they are successful 
in estimating hydrological variables. In most studies involving 
regression models, we only observe the use of  the variables 
latitude, longitude and altitude, which are most often available. 
However, this does not inhibit the success of  satisfactory results 
in the estimation of  precipitation, as in, for example, the work of  
Teixeira-Gandra, Damé and Simonete (2015) and Chatzithomas, 
Alexandris and Karavitis (2015).

Performance criteria

In the calibration of  the regression models, the mean 
annual and monthly precipitation values at the rainfall stations 
of  the formed groups were used. To evaluate the proposed 
regression models, we chose the performance criteria presented 
in Table 2. According to Nash and Sutcliffe (1970) and Rencher 
and Christensen (2012), the coefficient of  determination (R2) 
and Nash are equivalent, and the R2 value varies between 0 and 1. 
An R2 value of  9 indicates that 90% of  the total variability in the 
response variable is accounted for by the independent variables. 
The root mean squared error (RMSE) corresponds to the mean 
magnitude of  the estimated errors. According to Chai and Draxler 
(2014), the closer the value is to zero, the higher the quality of  the 
estimated values. The percentage relative error, E (%), and the mean 
relative root square error, ε (%), are coefficients used in several 
areas of  science. According to Jose (2017), the first evaluates the 
performance of  the model, considering the percentage difference 
between the values of  the observed estimated variables, and the 
second prioritizes the adjustment of  the relative values, using the 

weight of  values higher or lower. These coefficients are the most 
used in the applications of  prediction models of  hydrological 
variables, as observed in Mekanik  et  al. (2013), Chifurira and 
Chikobvu (2014), Supriya, Krishnaveni and Subbulakshmi (2015), 
Chatzithomas, Alexandris and Karavitis (2015) and Das and 
Umamahesh (2016).

For validation, 9 target stations were adopted. Based on 
the location and altitude data, the precipitation was estimated by 
applying the regression model, defined in the calibration. Thus, it 
was possible to compare observed and estimated mean annual and 
monthly precipitation data of  each target station. The estimated 
data were obtained by the regression model. The mean percentage 
relative error, E (%) (Table  2) was used as a reference in the 
validation of  the performance of  the regression models since the 
evaluation considers the observed and estimated values, allowing 
a more direct and objective analysis.

RESULTS AND DISCUSSION

Homogeneous regions

In the formation of  homogeneous regions, 63 clusters were 
performed, changing the fuzzification parameter to the range of  
1.2 to 2.0 and the number of  groups to 2 to 15. However, it was 
observed that the larger the number of  groups was, the lower the 
value of  the PBM index. Tests with up to 8 groups were considered 
since the PBM index would tend to decrease with clusters larger 
than 8. The choice of  the best cluster was decided by the PBM 
index, which presented a higher index (Figure 4) in the formation 
of  three groups with a fuzzing parameter equal to 1.9.

The groups formed represent the homogeneous regions of  
precipitation (Figure 5). Region I is formed by 52 stations, Region 
II is formed by 21 stations and Region III is formed by 10 stations. 
Regions I and II present average annual precipitation ratios of  

Table 2. Performance criteria of  multiple regression models.
Coefficients

F - Test F of  Significance. If  it is < 5% the model is useful.
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1,600 and 1,700 mm, respectively, while Region III presents an 
index of  approximately 2,400 mm.

Studies by Loureiro, Fernandes and Ishihara (2015), which 
used geostatistical interpolation in the region, identified that the 
precipitation totals decrease from north to south but did not 
define homogeneous regions. In the present work, in addition to 
confirming this result, it was possible to define three homogeneous 
regions by the fuzzy c-means clustering. In the verification of  the 

heterogeneity test (H), the value of  0.047 was obtained for Region I, 
-0.0049 for Region II and -0.7874 for Region III, conferring 
acceptably homogeneous regions, since H <1.

PDF applied to annual average precipitation

The PDFs from normal, log-normal, gamma (two parameters) 
and Weibull distributions had good adherence in the chi-square 
test since their values were all below the table value of  5.99, as 
can be observed in Table 3.

However, the log-normal distribution showed better graphic 
adjustment between the frequencies observed and estimated. 
Thus, the log-normal function is the most appropriate model for 
estimating the probability of  occurrence of  annual precipitation 
in homogeneous regions I, II and III of  the TAHR.

To validate the log-normal function in homogeneous 
regions, 9 target stations, three per homogeneous region, were 
tested using the chi-square test. The test values are below 5.99 
(Table 4), validating the log-normal function. The graphical analysis 
of  Figure 6 shows the good adjustment of  the probability of  
occurrence of  annual mean precipitation at the target stations in 
the TAHR. According to Naghettini and Pinto (2007), because 
the log-normal variable is positive and has a nonfixed asymmetry 
coefficient greater than zero, this distribution has a parametric 
form that is adequate to estimate precipitation heights monthly, 
quarterly or annually.

PDF applied to monthly average precipitation

The average monthly precipitation probabilities of  each 
region were evaluated for adherence to the probability models 
(normal, log-normal, gamma and Weibull) by the chi-square test. 
The results of  the chi-square test (Table 5) show that the gamma 

Figure 4. PBM index as a function of  the number of  groups.

Figure 5. Homogeneous Regions of  TAHR Precipitation.

Table 3. Chi-square test for the mean annual precipitation 
probability functions.

H. R. Result of  the chi-square
Normal Log-Normal Gamma Weibull

I 0.79 0.54 3.57 2.93
II 0.46 0.36 4.39 3.95
III 0.09 0.04 5.18 3.08

H. R. – Homogeneous Region.

Table 4. Chi-square values in the validation of  the log-normal 
function for the annual series.

Region Target Stations X2

Log-Normal
I Faz. Marajá 1.70

Pirenópolis 0.82
Faz. Babilônia 1.12

II Trecho Médio 2.95
Gurupi 0.76

Formosa do Araguaia 1.80
III Tucuruí 2.37

Cametá 0.59
Belém 2.96
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Figure 6. Probability of  occurrence of  observed and estimated annual mean precipitation at the target stations.

Table 5. Chi-square test with PDFs – probability distribution functions.
Normal Log Normal Gamma Weibull

HR I HR II HR III HR I HR II HR IIII HR I HR II HR III HR I HR II HR III
Jan 0.89 0.85 0.083 0.52 0.52 0.22 0.72 0.56 0.17 2.32 2.16 0.005
Feb 3.85 2.17 0.016 3.1 2.43 0.06 3.31 2.36 0.04 6.7* 1.97 1.23
Mar 1.06 1.29 0.05 1.61 1.14 0.23 1.02 1.21 0.14 1.31 1.92 0.09
Apr 10.11* 3.01 6.5* 6.15* 2.76 8.07* 5.67 2.48 7.7* 5.74 3.86 5.94
May 15.0* 1.68 0.37 4.64 2.54 5.58 1.16 2.14 1.9 1.63 1.3 1.52
June 46.58* 3.41 0.196 2.23 1.84 8.26* 2.14 1.83 1.76 1.44 1.53 1.56
July 49.58* 7.59* 0.38 2.52 7.94* 12.5* 2.02 6.9* 3.22 1.35 6.1* 3.04
Aug 12.15* 0.75 3.9 1.61 1.41 0.42 5.11 0.89 0.43 6.5* 0.58 0.47
Sept 7.75* 2.91 2.53 2.11 2.05 1.43 5.19 2.03 1.62 8.1* 2.57 2.08
Oct 2.88 0.91 0.16 5.18 1.03 0.75 2.52 0.96 0.31 3.86 0.88 0.12
Nov 4.86 0.37 0.12 15.4* 0.36 1.17 4.09 0.37 0.55 4.33 0.65 0.3
Dec 1.09 1.07 0.13 3.19 1.2 1.20 2.41 1.1 0.73 0.13 1.57 0.3

*Inappropriate Values; H. R. – Homogeneous Region.
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function had only 2 unsuitable values, while the normal, log-normal 
and Weibull function had 8, 7 and 5 values without adherence, 
respectively. This result indicates that, with the exception of  the 
months of  April and July (RH II and RH III), the gamma function 
offered lower values than the table value (5.99), indicating it adjusted 
well to the frequencies of  occurrence of  the monthly precipitation 
observed. Thus, the PDF gamma had the best adherence to the 
chi-square test for monthly precipitation.

In a general evaluation of  the adjusted graphs, in the 
November, December and January, the most adequate adjustments 
occur, whereas in the months of  April, June and July, less adequate 
adjustments occurred. This result was observed based on the number 
of  times the Chi-square values were above the chosen threshold 
(5.99), with a significance level of  5% and degree of  freedom 
equal to 2. To validate the gamma function, the probabilities of  
occurrence of  monthly average precipitation at the target stations 
were generated by this function. The results of  this validation 
indicate a good adjustment of  the gamma function, since the 
values of  the chi-square test were all adequate, as can be observed 
in Table 6 and in the adjustment of  the graphs that represent the 
probabilities of  observed and estimated occurrence of  average 
monthly precipitation (Figures 7, 8 and 9).

In comparison with other probability functions, the gamma 
function has presented good adjustments in the predictions 
of  the probability of  occurrence of  monthly precipitation. 
Sampaio et al. (2006) and Amburn, Lang and Buonaiuto (2015), 
for example, used different PDFs to estimate the occurrences of  
precipitation probabilities, and the gamma function had the best 
result for monthly precipitation data.

The results of  Table 5 show that there are many values 
with adherence in the normal, log-normal and Weibull models. 
However, according to Kist and Virgem Filho (2015), the adherence 
of  a distribution to the data does not necessarily mean that the 
adjustment is good, only that there was not enough evidence in the 
series for rejection. Thus, because four different distributions were 
tested, and some presented values considered adherent, we cannot 
totally rule out the use of  these functions in the studied region, 
and thus, the other PDFs could be adopted in this region if  they 
pass other measures of  calibration and validation. This analysis 
is also valid for the annual data series, in which the probability 
functions were also determined to be adequate by the Chi-square 
test (Table 3).

According to Murta et al. (2005), the gamma function, 
from the statistical point of  view, does not behave as if  evenly 
distributed around the mean value, but rather shows irregular 
and large deviations around the mean value. This function 
could guarantee a better result in the study of  average monthly 
precipitation if  the average value of  the series is not influenced 
by the results. Thus, the adhesion test (Table 6) and the graph 
adjustment (Figure 7, 8 and 9) confirm that the Gamma model 
is valid for application in TAHR.

Multiple regression models for annual mean 
precipitation estimates

The multiple regression models were tested considering 
three independent variables (altitude, latitude and longitude) from 
the set of  stations representing each homogeneous region. Thus, 
using the results of  the performance criteria, we determined the 
best model for estimating the dependent variable.

In homogeneous regions I and II, in relation to R2, R2_a 
and NASH, the models were not significant, with a R2 value 
varying from 0.39 to 0.46 (Table 7). In homogeneous region III, 
the models were more significant, with R2 values of  0.67 to 0.74. 
In terms of  percentage, this coefficient represents how much of  
the variability in precipitation is explained by the independent 
variables (altitude, latitude and longitude). Thus, the linear model 
represents 46% and 41% (0.46 and 0.41 - Table 7) of  the variability 
in precipitation that occurred in regions I and II, respectively, 
presenting the highest R2 value among the models for these regions. 
In homogeneous region III, this percentage was much better, at 74%. 
Considering E (%), ε (%) and RMSE, the models would perform 
well in the estimation of  precipitation, since the errors obtained 
are less than 7% and 0.7%, and the RMSE presented minimum 
values. Therefore, the linear model is the most significant for the 
estimation of  the annual precipitation in regions I, II and III, as 
it also presents higher R2 and Nash values (Table 7).

To validate the linear model, the percentage relative error, 
E (%), between the observed precipitations (Po) of  the target 
stations and the estimated precipitations (Pe) of  the linear model 
(Figure 10) was calculated. The percentage errors obtained by 
the linear model were lower than 9% for almost all of  the target 
stations. Only for the Fazenda Marajá station, which belongs 
to the homogeneous region II, was the error greater than 10%. 
However, for the Pirenopolis station located in the homogeneous 

Table 6. Chi-square test with frequencies observed and estimated by the gamma function at the target stations.

HR Station Months
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

I Faz. Marajá 0.07 0.2 1.46 0.63 0.52 0.53 2.71 1.64 0.14 1.13 2.71 0.06
Pirenópolis 3.8 2.84 0.03 1.36 0.96 0.46 2.21 1.04 0.19 0.77 0.81 0.5

Faz. Babilônia 0.57 0.71 0.83 1.1 2.41 0.54 0.29 3.6 0.95 0.07 0.78 0.65
II Trecho Médio 2.19 0.26 2.31 3.21 1.74 0.03 2.12 3.52 1.63 0.11 2.8 2.25

Gurupi 0.28 1.17 2.64 0.16 0.59 0.57 0.26 2.52 0.3 0.31 0.61 1.23
Formosa do Araguaia 3.19 0.92 0.98 3.28 2.39 0.09 3.12 0.75 3.4 3.36 2.58 2.36

III Tucuruí 3.69 1.52 2.23 3.61 4.38 3.59 1.35 1.99 0.44 1.08 3.38 2.65
Cametá 1.13 1.12 0.79 1.07 2.14 3.35 0.19 1.52 0.43 1.21 0.23 2
Belém 0.21 1.66 1.63 1.67 1.86 3.39 1.97 4.58 2.40 0.29 0.17 0.32

H. R. – Homogeneous Region.
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region II, the error was at least 0.16% (Figure 10). In general, the 
errors between the observed and estimated heights were acceptable.

Regression models for the rainy and dry season

The multiple regression models did not perform well in 
estimates of  monthly mean precipitation. The highest relative 
percentage errors occurred in the dry months, and the lowest 

errors occurred in the rainy season. Thus, the multiple regression 
was conducted on the dry and rainy season, in an attempt to 
obtain more representative and adequate models of  the estimation 
of  average monthly precipitation. Following this method, rainy 
months were considered, i.e., the months of  November, December, 
January, February, March and April. The dry months contain May, 
June, July, August, September and October. This analysis was 
performed using the monthly average values of  the rainy and dry 
months from each station in the homogeneous regions formed 

Figure 7. Probability of  occurrence of  observed and estimated monthly mean precipitation at the target stations – Homogeneous 
Region I.
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from the fuzzy c-means clustering. Thus, a multiple regression 
model was applied with the linear, potential, exponential and 
logarithm models, adopting the mean precipitation of  the rainy 
and dry season as a dependent variable. For the rainy months, the 
R2 and Nash values obtained from the regression models were all 

below 0.39 in homogeneous regions I and II (Table 8), indicating 
that there is a weak relationship between the independent variables.

The logarithm model, for example, can explain only 21% 
and 17% of  the precipitation variability in the homogeneous regions 
I and II, simultaneously (0.21 and 0.17 - Table 8). The percentage 

Figure 8. Probability of  occurrence of  observed and estimated monthly mean precipitation at the target stations - Homogeneous 
Region II.
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errors (E, ε) were below 6.4% and 0.46%, respectively, and the 
RMSE was minimal, indicating that the models may be useful, 
even though the R2 is low. In homogeneous region III, for the 

rainy season, all models presented values of  0.99 for the Nash 
coefficient, which indicates that they are excellent estimators. 
The R2 was approximately 0.64 to 0.73. The percentage errors 

Figure 9. Probability of  occurrence of  observed and estimated monthly mean precipitation at the target stations - Homogeneous 
Region III.
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were below 5% and 0.63%, giving an acceptable percentage with 
which to estimate the average precipitation of  the rainy season 
in this region.

In Figure  11d,  e,  f, which compares the observed and 
estimated precipitation from the stations of  each region to the 
rainy season values, the linear model shows a better fit in the 
three regions, as indicated by the small variability of  the points 
around the 1:1 line, and provides a better estimation of  the data, 
suggesting that the model simulates values close to the observed 
precipitation.

In the dry season, in homogeneous region II and 
homogeneous region III, although the percentage relative error, 
E (%), was greater than 10%, the R2 and Nash values range from 
0.59 to 0.80 and 0.59 to 0.89, respectively (Table 9), indicating that 
the models explain precipitation variability well. The RSME and 
the mean relative root square error, ε (%), were low, confirming the 
good fit of  the models. However, the potential model presented 

higher coefficients of  determination (0.62 and 0.89 - Table 9), 
and the data points of  the scatter plot in Figure 11g, h, f  are very 
close to line 1:1 when compared to the observed and estimated 
precipitation, thus indicating that the potential model is the most 
acceptable for estimating the mean precipitation in the dry season.

For the dry season, in Region I, the values of  R2, R2_a and 
Nash were approximately equal to 0.80, indicating that the models 
are representative. However, in the potential model, the values of  
the RSME and the percentage error were lower than those of  the 

Figure 10. Percent errors in annual mean precipitation by 
homogeneous region and target station.

Table 7. Regression models performance criteria for annual mean 
precipitation height estimation.

Homogeneous Region I
Models R2 R2_a E(%) ε(%) Nash RMSE

Linear 0.46 0.32 6.09 0.138 0.46 0.00017
Potential 0.42 0.28 5.61 0.138 0.42 0.00017

Exponential 0.45 0.30 5.61 0.139 0.45 0.00017
Logarithm 0.42 0.28 6.08 0.137 0.42 0.00017

Homogeneous Region II
Models R2 R2_a E(%) ε(%) Nash RMSE

Linear 0.41 0.26 3.89 0.58 0.41 0.00075
Potential 0.39 0.29 3.81 0.58 0.40 0.00076

Exponential 0.40 0.28 3.90 0.58 0.40 0.00075
Logarithm 0.39 0.22 3.80 0.58 0.39 0.00076

Homogeneous Region III
Models R2 R2_a E(%) ε(%) Nash RMSE

Linear 0.74 0.61 4.73 0.64 0.74 0.00071
Potential 0.67 0.51 5.75 0.63 0.68 0.00064

Exponential 0.72 0.58 4.51 0.65 0.75 0.00072
Logarithm 0.70 0.55 5.64 0.63 0.70 0.00046

R2 - determination coefficient; R2_a - adjusted coefficient of  determination; 
E (%) – the average percentage relative error; ε (%) – mean relative root square 
error; NASH – coefficient of  Nash Sutcliffe; RMSE – root mean squared error.

Table 8. Performance criteria of  the models for the rainy season.
Homogeneous Region I

Models R2 R2_a E(%) ε(%) Nash RMSE
Linear 0.38 0.23 6.00 0.11 0.38 0.0011

Potential 0.32 0.18 6.30 0.11 0.32 0.00104
Exponential 0.29 0.25 6.10 0.11 0.26 0.00109
Logarithm 0.21 0.16 6.20 0.11 0.21 0.00105

Homogeneous Region II
Models R2 R2_a E(%) ε(%) Nash RMSE

Linear 0.37 0.340 4.70 0.44 0.37 0.00341
Potential 0.17 0.027 4.80 0.44 0.17 0.00338

Exponential 0.18 0.037 4.70 0.45 0.18 0.0034
Logarithm 0.17 0.024 4.80 0.44 0.17 0.00339

Homogeneous Region III
Models R2 R2_a E(%) ε(%) Nash RMSE

Linear 0.73 0.44 4.60 0.60 0.996 0.00568
Potential 0.66 0.49 4.61 0.62 0.997 0.006

Exponential 0.64 0.41 4.63 0.60 0.996 0.00562
Logarithm 0.69 0.53 4.64 0.62 0.997 0.00427

R2 - determination coefficient; R2_a - adjusted coefficient of  determination; 
E (%) – the average percentage relative error; ε (%) – mean relative root square 
error; NASH – coefficient of  Nash Sutcliffe; RMSE – root mean squared error.

Table 9. Performance criteria for the models of  the dry season.
Homogeneous Region I

Models R2 R2_a E(%) ε(%) Nash RMSE
Linear 0.80 0.78 9.65 0.03 0.8 0.00391

Potential 0.80 0.78 9.22 0.04 0.79 0.00387
Exponential 0.80 0.79 9.57 0.04 0.81 0.00403
Logarithm 0.80 0.78 9.58 0.03 0.80 0.00391

Homogeneous Region II
Models R2 R2_a E(%) ε(%) Nash RMSE

Linear 0.60 0.53 11.09 0.17 0.6 0.00953
Potential 0.62 0.61 10.94 0.17 0.61 0.00948

Exponential 0.60 0.53 10.85 0.18 0.60 0.00965
Logarithm 0.59 0.52 11.21 0.16 0.59 0.00935

Homogeneous Region III
Models R2 R2_a E(%) ε(%) Nash RMSE

Linear 0.85 0.77 15.73 0.16 0.85 0.00527
Potential 0.89 0.87 14.08 0.27 0.80 0.00457

Exponential 0.87 0.82 13.78 0.23 0.87 0.00561
Logarithm 0.85 0.77 15.11 0.21 0.85 0.0036

R2 - determination coefficient; R2_a - adjusted coefficient of  determination; 
E (%) – the average percentage relative error; ε (%) – mean relative root square 
error; NASH – coefficient of  Nash Sutcliffe; RMSE – root mean squared error.
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other models, suggesting that the potential model is best for the 
prediction of  monthly precipitation in this region.

In the validation of  the rainy season data, the respective 
regression parameters were obtained from the calibration with 
the linear model and the information from the target stations 
(altitude, latitude and longitude). The percentage relative error 
was determined between Po and Pe that was calculated by the 

linear model. The Tucuruí station presented the maximum error 
of  13% (Figure 12) in the estimation of  monthly precipitation 
for the rainy season. However, the mean relative error was 5.6%, 
indicating that the model performed adequately for the rainy 
season in the 3 homogeneous regions.

In the validation of  the dry season data, the observed 
precipitation (Po) values were compared with the precipitation 

Figure 11. The 1:1 line for average annual precipitation and average monthly precipitation - rainy and dry season.
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values obtained by the potential model. The mean errors found 
were less than 10%. Despite the stations Faz. Babilônia and 
Cametá presenting errors of  12.78% and 14.23% (Figure 13), 
respectively, the potential model performed well in estimating 
the average monthly precipitation, with a mean error of  6.86% 
for the three homogeneous regions.

By the RMSE values obtained (Tables 7, 8 and 9), all the 
models evaluated could be considered as good estimators, since all 
were close to zero. However, when comparing the results of  other 
criteria, the models are not considered satisfactory. To avoid this 
type of  error, other measures were evaluated, such as the Nash, 
R2, percentage, E (%), and mean, ε (%), errors, and the choice of  
the most appropriate model was prioritized.

According to Nash and Sutcliffe (1970), the Nash coefficient 
allows the efficiency of  a model to be defined, and its value is 
analogous to the coefficient of  determination (R2); the closer the 
value is to 1, the better the model representation. In the results 
obtained, we can see that the value of  R2 approaches the Nash 
value. However, in the evaluation of  multiple regression models, 
R2 is the most important measure, as observed by Fumo and 
Rafe Biswas (2015), Alexander, Tropsha and Winkler (2015) and 
Bardak et al. (2016). Thus, R2 value is the most relevant value 
to consider for when choosing a regression model; however, its 
evaluation is more consistent when there is an integration between 
the other performance criteria.

The proposed methodology can be considered acceptable 
for estimating precipitation since it analyzed the results of  six 
performance criteria, evaluated observed and estimated precipitations 
using the dispersion graph and tested the proposed models 
with stations that were not considered in the calibration of  the 
models. Through this methodology, estimates of  the probability 
of  occurrence of  precipitation, as well as estimates of  monthly 
and annual precipitation can be performed in locations without 
monitoring in a satisfactory way, just knowing the location and 
altitude data of  a certain point within the basin studied. Table 10 
shows the multiple regression models for estimating annual and 
monthly precipitation heights, in dry and rainy seasons, in the 
three homogeneous regions formed in the TAHR.

CONCLUSION

The grouping techniques, fuzzy c-means, PBM index 
and H-test were able to form distinct groups, with well-defined 
precipitation averages and a spatialization of  the homogeneous 
regions appropriate to the rainfall recorded in the homogeneous 
regions. In the homogeneous regions I and II, formed to the 
southwest and center-west of  the TAHR, respectively, smaller 
pluviometric volumes were determined. For the homogeneous 
Region III, located in the north, a higher pluviometric volume 
was determined, as was to be expected because the Amazon forest 
exists to the north of  the TAHR and the Brazilian cerrado exists 
to the south.

Annual precipitation estimates performed well, both with 
the use of  the probability distribution functions and through the 
use of  multiple regression models. However, for the estimation of  
monthly averages, the regression models presented better estimates 

Table 10. Multiple regression models.
Regression models for the estimation of  annual mean 

precipitation totals
HR Linear

I . . * * . *P 272 3 0 27 H 31 la 33 4 lo= + + +

II . * . * . *P 1475 0 15 H 21 4 la 0 38 lo= − + +

III . * * *P 100063 1 5 H 97 la 149 lo= − + +

Regression models for the estimation of  monthly 
precipitation for the rainy season

HR Linear
I . . * . * . *P 20 14 0 11 H 5 13 la 5 6 lo= − + + +

II . . * . * . *P 363 56 0 014 H 1 7 la 1 86 lo= − + +

III . * . * . *P 1224 0 02 H 0 6 la 19 12 lo= + − +

Regression models for the estimation of  the average 
monthly precipitation for the dry season

HR Potential
I . . .. .0 089 0 23 1 24P 12 4 H la lo−= − + +

II . . .. .0 32 0 44 2 19P 8 14 H la lo= − + +

III . . .. .0 11 0 37 1 59P 11 67 H la lo− − −= + +

H. R. – Homogeneous Region.

Figure 12. Percent errors by homogeneous region and target 
station for monthly mean precipitation - rainy season.

Figure 13. Percent errors by homogeneous region and target 
station for monthly mean precipitation - dry season.
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when considering dry and rainy seasons. The monthly estimates 
were estimated satisfactorily using the probability functions without 
the need to consider dry and rainy seasons.

The performance criteria used in the validation of  multiple 
regression models, provide a better analysis of  the results, when 
used in an integrated way. The multiple regression models obtained 
use easy-to-obtain input variables, making them a useful tool 
for locations lacking precipitation data. Thus, the methodology 
developed can assist in the planning and management of  others 
river basins, in terms of  precipitation estimations.
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