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ABSTRACT

Change detection based on remote sensing images, has attracted increasing attention from researchers throughout the world. The 
synthetic aperture radar (SAR) images have become key resources for detecting changes on the land surface. However, due to the 
presence of  speckle noise and its stochastic nature, SAR data require methodologies that consider these peculiarities. This article 
presents a similarity measure that considers the randomness present in SAR data. To retrieve the random component in the SAR data, 
we used the stochastic distance. The similarity measure is carefully elaborated as a function of  the stochastic distance such that its 
variation space is the interval [0, 1], facilitating its interpretation. Our proposal shows promising results in two applications: contrast 
evaluation, ocean surface change detection and binary change map. It is noteworthy that the possible limitations of  our proposal are 
investigated through simulations guided by a Monte Carlo experiment.
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RESUMO

A detecção de mudanças com base em imagens de sensoriamento remoto tem atraído cada vez mais atenção de pesquisadores em todo 
o mundo. As imagens de radar de abertura sintética (SAR) tornaram-se recursos fundamentais para detectar mudanças na superfície 
terrestre. No entanto, devido à presença do ruído speckle e sua natureza estocástica, os dados SAR requerem metodologias que considerem 
essas peculiaridades. Este artigo apresenta uma medida de similaridade que considera a aleatoriedade presente nos dados SAR. Para 
recuperar o componente aleatório nos dados SAR, usamos distância estocástica. A medida de similaridade foi cuidadosamente elaborada 
em função da distância estocástica de forma que seu espaço de variação fosse o intervalo [0, 1], facilitando sua interpretação. Nossa 
proposta mostra resultados promissores em duas aplicações: avaliação de contraste, detecção de mudanças na superfície oceânica e 
mapa binário de mudanças. Vale ressaltar que as possíveis limitações de nossa proposta foram investigadas por meio de simulações 
guiadas por um experimento de Monte Carlo.

Palavras-chave: Imagens SAR; Distância estocástica; Medida de similaridade; Detecção de mudanças na superfície do oceano.
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INTRODUCTION

Due to its independence from sunshine conditions, the 
processing of  synthetic aperture radar (SAR) images has furthered 
important advances in the scientific research of  the remote sensing 
community. Examples include segmentation and identification of  oil 
patches in the sea (Marques et al., 2012; Huang et al., 2005; Ivanov 
& Ermoshkin, 2004), mapping of  the extent of  natural disasters 
such as floods (Long et al., 2014), mapping of  underground rivers 
in arid areas (Skonieczny et al., 2015), mapping of  terrestrial surface 
waters (Xu et al., 2016), mapping of  various biophysical properties 
in forests (Jesus & Kuplich, 2020), changes detection (Yang et al., 
2006; Barreto et al., 2016; Jia et al., 2019, 2020; Li et al., 2021), and 
other fields. The large number of  applications of  SAR systems is 
mainly due to the unique characteristics of  this type of  radar since 
it provides high-resolution two-dimensional images, independent 
of  daylight, cloud cover and climatic conditions (Moreira et al., 
2013). However, the images formed by this system are damaged 
by multiplicative noise called speckle.

Due to its stochasticity, statistical approaches are usually 
necessary to address speckle noise. Therefore, the choice of  
an adequate probability distribution to describe SAR data is of  
fundamental importance. Here, we opted for the G0

I distribution 
to describe the intensity of  SAR data. Frery et al. (1997) present 
this distribution as a good alternative for this task since it enables 
the modeling of  homogeneous, heterogeneous and extremely 
heterogeneous regions of  SAR data. Contrast analysis is an important 
task for understanding SAR images. The derivation of  contrast 
measures can be useful to quantify how distinct two regions in an 
image are. In this context, we can highlight the stochastic distances 
(Nascimento et al., 2010) as possible measures of  contrast.

Based on stochastic distances, Marques  et  al. (2012) 
presented a segmentation measure called difficulty of  segmentation, 
hereinafter called DoS. Because its construction considers the 
concept of  stochastic distance, DoS was used in this study as a 
measure of  contrast evaluation. Although quite interesting, this 
measure has some limitations. For example, when applied to 
regions with similar DoS, this parameter tends to infinity, and when 
applied to equivalent regions, DoS cannot be calculated because 
in this case, there is an undefined mathematical. To circumvent 
this problem, we present in this article an improved version of  
the DoS metric. This new measure was successfully applied to two 
different SAR image processing problems: contrast evaluation and 
change detection. In particular, our proposal contributes to solving 
change detection problems in SAR images such as: i) generating 
a change measure or the change indicator and ii) allowing the use 
of  the change measure threshold to produce a binary change map.

Over the last several decades, various change detection 
approaches have been developed. The review article (Asoka & 
Anitha, 2019) gives a brief  account of  the main techniques of  
change detection and discusses the need for development of  
enhanced change detection methods. According to the authors of  
the article, change detection techniques that present information 
about areas of  change in the form of  a binary map showing 
significant changes are desirable. Our method allows us to obtain 
binary maps showing changes, thus guaranteeing one of  the 
qualities expected of  a change detection method.

Shafique et al. (2022), present deep learning techniques, 
such as supervised, unsupervised, and semi-supervised for different 
change detection datasets, such as SAR, multispectral, hyperspectral, 
VHR, and heterogeneous images, highlighting its challenges. 
The authors point out that image pre-processing may have a 
significant beneficial impact on the quality of  feature extraction 
and image analysis outcomes. A feature that we consider important 
in our proposal is that it does not require pre-processing steps 
for the SAR images, such as filtering. All information contained 
at the pixel level is captured through the probability distribution 
Gi0, and supplied to the method.

The rest of  this paper is organized as follows: In Section 2, we 
presented the proposed methodology and all theoretical background 
used, followed by the experiments and results in Section 3. Finally, 
Section 4 summarizes our findings and conclusions.

MATERIAL AND METHODS

Statistical model for SAR data

To describe the Z return of  the SAR system, we used 
the G0

I distribution. The function probability density of  the G0
I 

distribution is defined as:
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where, z > 0, α < 0 is the roughness parameter, γ > 0 is the scale 
parameter, L > 0 is the number of  looks, and Γ(.) is the gamma 
function. The G0

I distribution facilitates the description of  
homogeneous, heterogeneous, and extremely heterogeneous regions 
in SAR images intensity (Frery et al., 1997). This characteristic 
can be considered an advantage because it is not found in other 
probability distributions used to model SAR data, such as the K 
and Weibull distributions (Gao et al., 2013).

Parameter estimation.

The log-cumulative method (LCM) has been used with 
satisfactory results in SAR image processing, especially for 
small samples, and is a critical method in several applications 
(Krylov et al., 2013). There are studies in the literature that use 
the parameters estimated by the log-cumulative method as input 
to guide classification methods (Singh & Datcu, 2013) and the 
detection of  changes in SAR images (Bujor et al., 2004). The LCM 
formulation is described below. Let Z be a continuous random 
variable with probability density function fZ(z,θ) defined in R+. 
The LCM is based on the Mellin transform of  fZ(z, θ) (Nicolas, 2002; 
Gao et al., 2013; Tison et al., 2004; Cheng et al., 2013) given by:
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s is a complex number with a unitary norm (Nicolas, 2002). The 
log-moment of  order v can be obtained by:
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By applying the natural logarithm of  ϕZ(s), we can obtain the 
log-cumulant of  order v as (Nicolas, 2002; Cheng et al. 2013):
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with ψz(s) = log((ϕz(s)). The strategy of  the log-cumulative method 
for estimating the parameters of  the G0

I distribution is based on the 
relationship between the log-moments and log-cumulants given by:
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In general, vk  is a function of  the vector of  parameters, and 
therefore, the estimation of  the parameters is achieved by replacing 
vm  with the corresponding sample logmoment, which is given by 
Nicolas (2002):
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where zi, i ∈ {1, 2, ..., n}, is a sample of  the random variable Z.
For the probability distribution G0

I, the estimation of  the 
parameters α, γ and L consists of  solving the system of  nonlinear 
equations of  the Equation 8 (Cui & Datcu, 2011):
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The functions Ψ0(.), Ψ1(.) and Ψ2(.) cannot be inverted, so the 
solution of  the system of  equations in (8) cannot be obtained 
explicitly, and therefore, numerical procedures are necessary.

Stochastic distance

Stochastic distances are useful for investigating whether 
two random samples can be considered realizations of  the same 
probability distribution. A list of  stochastic distances is presented in 
(Nascimento et al., 2010), among which is the arithmetic geometric 
distance (Taneja, 1995) adopted here. The mathematical formalization 
of  this stochastic distance is presented below. Let Z1 and Z2 be 
continuous random variables defined in the same probability space, 
with probability density functions 1Zf (z, θ1) and 2Zf (z, θ2), respectively, 
where θ1 and θ2 are vectors of  parameters. Assuming that both densities 
share a common basis, the arithmetic-geometric stochastic distance 
between 1Zf (z, θ1) and 2Zf (z, θ2) is given by (Nascimento et al., 2010):
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Next, we present the definition of  the DoS measure. This 
measure was used in some applications in this study and inspired 
us to develop a new similarity measure.

Difficulty of  segmentation

Marques et al. (2012) proposed a measure whose initial 
objective is to evaluate the segmentation of  SAR images. Using 
the concept of  the stochastic distance, the measure quantifies the 
contrast between the background and foreground in SAR images. 
The authors noted this measure as DoS, expressed as:

( ) ( )1 2
1 2
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DoS Z Z
d Z Z

= 	 (10)

where agd (Z1,Z2) ≥ 0 is the arithmetic-geometric stochastic distance 
between two random variables Z1 and Z2. A list of  stochastic 
distances is presented in (Nascimento et al., 2010).

Proposed method

DoS, represented in Equation 10, is a way to quantify 
contrast in SAR images. Based on this concept, it is reasonable 
to consider DoS to be a measure of  similarity between regions, 
with the possibility of  different applications. However, DoS has 
some limitations that may hinder interpretations. As the stochastic 
distance between two regions approaches zero, DoS tends to 
infinity. On the Other hand, when the stochastic distance between 
two regions is zero, it is not possible to obtain DoS because in this 
case, there is an undefined mathematical operation. In summary, 
DoS presents difficulties in the interpretation between very similar 
or low contrast regions. To circumvent the limitations of  DoS, 
we propose the following correction:

( ) ( )1 2
1 2 ,

1,
ag

mod d Z Z
DoS Z Z

e
= 	 (11)

with e being the Euler-Mascheroni constant (Arfken & Weber 2005). 
With this modified version of  DoS, the limitations are overcome. 
The variation spaces of  DoSmod and DoS can be mapped from 
the values that agd  can assume. Using the concept of  limit, we can 
verify that when agd  tends to +∞, both DoSmod and DoS tend to 
0, see Equations 12 and 13:
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On the other hand, when agd  approaches zero from the 
right, DoSmod tends to 1, and DoS tends to +∞. Equations 14 and 
15 show these behaviors.
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However, when SD = 0, DoS is mathematically undefined, 
while DoSmod = 1. Therefore, DoSmod ∈ [0, 1] and DoS ∈ [0,+∞). 
DoS also exhibits an abrupt decay in its value (Figure 1(a)). This 
behavior is not observed in DoSmod (Figura 1(b)). To demonstrate 
the advantages of  DoSmod over DoS, we performed experiments 
with simulated and real data. Descriptions of  the experiments are 
given in the following section.

Experiments to validate DoSmod

Experiments with simulated SAR data

To evaluate the performance of  the proposed method, a 
Monte Carlo experiment was performed. This experiment was 
performed with the software R version 4.1.1 in a computer with 
a 2.20 GHz CPU with 4 GB of  RAM, and the processing time 
was 106.36 seconds. Using the simulation procedure, random 
samples of  the GI0 distribution were generated by combining 
the parametric spaces α ∈ {−1.5,−3,−5,−8,−12}, L ∈ {1, 3, 5, 8} 
and without loss of  generality, the scale parameters were chosen 
in such a way that EGI0 [ZI ] = 1. Note that each combination 
represents a scenario; that is, twenty scenarios were evaluated. 
The steps of  the Monte Carlo experiment are described below:

●	 Step 1: Simulate two random vectors (vi,1, vi,2) of  size n 
from the GI0 Distribution with parameters according to 
the scenario Ci, i ∈ {1, 2, 3, ..., 20}.

●	 Step 2: Calculate dAG(vi,1, vi,2) and DoSmod(vi,1, vi,2).

●	 Step 3: Repeat steps 1 and 2, K times.
In this study, n = 100 and K = 1000 were used. The objective 

of  the Monte Carlo experiment was to verify the influence of  the 
intrinsic variability of  the probability distribution on the results 
of  DoSmod.

Experiments with real SAR data

First, we investigated the performance of  our proposed 
method in terms of  the evaluation of  contrasts. For this purpose, 
clippings from different regions of  a real SAR image with different 
intensity were obtained, DoSmod and DoS were calculated between 
each pair of  clippings, and the results were evaluated. Another 
important application of  our proposal was to detect changes. 
The flowchart of  Figure 2 shows the two steps of  the change 
detection algorithm.

The input data of  the algorithm are two SAR images from 
the same region taken at different times, i.e., bitemporal SAR 
images. Inspired by the idea of  Mejail et al. (2003), the algorithm 
calculates DoSmod between corresponding pixels of  the bitemporal 
images. The result of  the algorithm is an image that represents 
the similarities between the images. In this study, this image is 
denoted by a matrix indicator changes (MIC). An important aspect 
of  the MIC is that it presents small changes (DoSmod close to 1) 
to significant changes (DoSmod close to zero). From the MIC, we 
can generate maps showing the most significant changes using a 
thresholding process.

Figure 1. Comparison between DoS and DoSmod.

Figure 2. Flowchart for the change detection methodology.
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RESULTS

Results with simulated SAR data

The results of  the Monte Carlo experiment can highlight 
some situations that are less or more favorable in terms of  the 
use of  DoSmod. Table 1 shows the results of  the Monte Carlo 
experiment. We can observe that, in general, as the number of  
looks (L) increases, the stochastic similarity (DoSmod) increases, and 
the standard deviation decreases, thus revealing the importance 
of  the L parameter in the sensitivity of  our proposal (DoSmod). 
This behavior is expected because the number of  looks can be 
considered a control parameter of  the speckle noise; that is, the 
greater the number of  looks, the less influence the noise has. 
Therefore, the experiments show that where there is a greater 
presence of  the speckle, applying DoSmod is more challenging.

Regarding the influence of  the roughness parameter (α) 
in our proposal, the Monte Carlo experiment reveals that this 
parameter is very sensitive when L = 1, the most challenging 
case. From the first column of  results in Table 1, we can see that 
DoSmod results increase significantly and that the standard deviations 
decrease from extremely heterogeneous regions (α = −1.5) to 
homogeneous regions (α = −12). These behaviors identified from 
the Monte Carlo experiment are associated with a greater or lesser 
presence of  speckle noise. One of  the implications of  speckle 
noise is its ability to reduce contrast in SAR images as the contrast 
value decreases. In terms of  probability distribution, noise affects 
the form of  the distribution. In the case of  the GI

0 distribution, 
when the noise is milder, it leads to a greater kurtosis (widening 
of  the distribution shape); otherwise, a lower kurtosis occurs. 
Figure 3 allows us to visualize the combinations of  parameters 
of  the GI

0 distribution that results in lower or higher kurtosis.

Table 1. Mean values and standard deviations for DoSmod from the Monte Carlo experiment.
α L=1 L=3 L=5 L=8

-1.5 (0.7292 ± 0.2645) (0.9349 ± 0.0857) (0.9614 ± 0.0466) (0.9719 ± 0.0335)
-3.0 (0.8643 ± 0.1706) (0.9664 ± 0.0414) (0.9865 ± 0.0175) (0.9911 ± 0.0091)
-5.0 (0.8920 ± 0.1474) (0.9804 ± 0.0252) (0.9924 ± 0.0082) (0.9930 ± 0.0063)
-8.0 (0.9099 ± 0.1218) (0.9873 ± 0.0165) (0.9931 ± 0.0063) (0.9925 ± 0.0069)
-12.0 (0.9165 ± 0.1205) (0.9888 ± 0.0134) (0.9928 ± 0.0068) (0.9935 ± 0.0056)

Figure 3. View of  the Monte Carlo experiment from the G0I distribution.
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Results with real SAR data

Contrast evaluation

To verify the performance of  DoSmod and DoS in the 
evaluation of  contrast in real SAR images, clippings were taken 
from different regions of  the San Francisco Bay image (USA), as 
shown in Figure 4. This image was obtained by the Airborne SAR 
(AIRSAR) sensor, with the HH polarization channel and 3 looks.

The image shows 3 different types of  regions: i) homogeneous 
(clippings 1 and 2, corresponding to water); ii) heterogeneous 
(clippings 3 and 4, vegetation); and iii) extremely heterogeneous 
(clippings 5 and 6, urban areas). For each pair of  clippings, DoS 
and DoSmod measures were calculated, and the values are shown in 
Tables 2 and 3, respectively. The asterisks in Table 2 are reflections 
of  the mathematical definition of  DoS, something that does not 
occur with DoSmod (see Table 3). In general, we can observe in 
Tables 2 and 3 that the results for DoSmod are more intuitive to 
interpret, as DoS ∈ [0,∞) and DoSmod ∈ [0, 1]. This experiment was 

Figure 4. Real SAR image – San Francisco Bay (USA), with 50x50 pixel clippings.

Table 2. Values for segmentation difficulty (DoS).
Clippings 1 2 3 4 5 6

1 *

2 4.0850 *
3 0.8130 0.4246 *
4 0.9727 0.4633 0.0081 *
5 0.3581 0.2365 5.0813 3.3761 *
6 0.3367 0.2299 4.1408 2.8035 277.7778 *

* means mathematically undefined.

Table 3. Values for the measurement of  the stochastic similarity (DoSmod).
Clippings 1 2 3 4 5 6

1 1.0000
2 0.7828 1.0000
3 0.2921 0.0949 1.0000
4 0.3577 0.1155 0.9920 1.0000
5 0.0612 0.0145 0.8214 0.7437 1.0000
6 0.0513 0.0129 0.7854 0.6999 0.9963 1.0000
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important for verifying how the measures behave when applied 
to different intensity conditions in real SAR images.

Application to change detection in ocean surface

Inspired by the idea of  Mejail et al. (2003), we calculated 
the parameters for each pixel of  the multitemporal images using 
a 5x5 pixel window from the log-cumulant method. From the 
pixel-by-pixel calculation of  the arithmetic-geometric stochastic 
distance between the images, it was possible to obtain the DoS 
matrix shown in Figure 5(c). In parallel, it was possible to obtain 
the DoSmod matrix shown in Figure 5(d), which displays pixels 
with DoSmod values. These two matrices are considered here to 
be MICs. After the results were obtained, the computational time 
consumed to obtain the change indicator matrix was measured. 
This process requires the time taken for each of  the steps present 
in the flowchart of  Figure 2.

This experiment was performed with R version 4.1.1 in 
a computer with a 2.20 GHz CPU with 4 GB of  RAM, and the 

processing time was 135.5 seconds. Figures 5(a) and 5(b) show 
SAR images of  the same region obtained at different times by the 
RADARSAT sensor, with 1 look and the HH polarization channel. 
We can verify the appearance of  a dark spot and the presence of  
a shiny object, but they are not perceptible at the pixel level (due 
to the speckle noise).

In another analysis, we calculated the MIC for another 
multitemporal scenario with real SAR images of  the Brazilian 
Northeast coast obtained by the RADARSAT sensor, with 3 looks 
and HH polarization, shown Figures 6(a) and 6(b). For both cases, 
we can see that the change indicator matrices are able to capture 
the changes in the scenes. The MIC generated from DoSmod allows 
interpretation of  the measurements. Using MIC, we can build a 
binary change map. For this, we just use a simple thresholding 
procedure, like, replace the pixel at position (x, y) by zero if  the 
DoSmod at the position (x, y) is less than p ∈ (0, 1) and 1 otherwise. 
The Figure 7, shows the binary change map (for p = 0.6) of  the 
DoSmod matrix of  the Figure 6(d). Here, it is worth mentioning 
the flexibility of  our proposal in being able to generate binary 
change map from the choice of  p.

Figure 5. Real multitemporal SAR image - spot and target at sea.
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CONCLUSION

In the present study, we present a similarity measure 
(DoSmod) obtained with easy integration that may be useful in 
SAR image processing problems. The experiments with synthetic 
SAR data revealed that DoSmod is sensitive to small random 
fluctuations, especially for single look SAR images that have 
extremely heterogeneous regions. Our proposal was also applied 
in two experiments with real SAR images. Applying DoSmod to 
evaluate contrast, we observed that the results could be intuitively 
interpreted, as DoSmod ∈ [0, 1]. Finally, we used DoSmod to evaluate 
the detection of  changes in ocean surface. The construction of  
the change indicator matrix was proposed, which was able to 
capture the most significant changes in the scenarios analyzed. 
In this sense, our proposed similarity measure can be used in 
applications with SAR images; however, further studies on the 
properties of  DoSmod can be undertaken to corroborate the 
developments of  this study.
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