Open-access Urban flood forecasting with multi-output neural networks: a physically-based and data-driven approach

Previsão de inundações urbanas com redes neurais de saídas múltiplas: uma abordagem baseada em física e em dados

ABSTRACT

Physically based models for spatial flood prediction are time and computationally expensive. Data-driven models, while faster, require large amounts of data for adjustment. This study presents an original methodology combining these two approaches, using a physically-based model (HEC-RAS 2D), adjusted with known events, to generate water depth data at control points and multi-output artificial neural networks (ANNs) for flood forecasting at these points. The performance of the ANN in this research, with application to the urban area of Lages-SC, southern Brazil, resulted in average mean absolute errors of 3.9, 9.8, and 46 cm, with corresponding Nash-Sutcliffe coefficients of 0.99, 0.98, and 0.75 at lead times of 3 h, 8 h, and 20 h, respectively. Multi-output ANNs exhibited greater robustness compared to single-output ANNs for spatial flood prediction. The methodology is suitable for developing models for spatial predictions of urban flooding, with sufficient agility to take necessary measures.

Keywords:
Urban flooding; Hydrodynamic modeling; Computational intelligence; Forecasting model

location_on
Associação Brasileira de Recursos Hídricos Av. Bento Gonçalves, 9500, CEP: 91501-970, Tel: (51) 3493 2233, Fax: (51) 3308 6652 - Porto Alegre - RS - Brazil
E-mail: rbrh@abrh.org.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Reportar erro