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ABSTRACT

Reservoirs considerably affect river streamflow and need to be accurately represented in environmental impact studies. Modeling 
reservoir outflow represents a challenge to hydrological studies since reservoir operations vary with flood risk, economic and demand 
aspects. The Brazilian Interconnected Energy System (SIN) is an example of  a unique and complex system of  coordinated operation 
composed by more than 160 large reservoirs. We proposed and evaluated an integrated approach to simulate daily outflows from most 
of  the SIN reservoirs (138) using an Artificial Neural Network (ANN) model, distinguishing run-of-the-river and storage reservoirs and 
testing cases whether outflow and level data were available as input. Also, we investigated the influence of  the proposed input features 
(14) on the simulated outflow, related to reservoir water balance, seasonality, and demand. As a result, we verified that the outputs of  the 
ANN model were mainly influenced by local water balance variables, such as the reservoir inflow of  the present day and outflow of  the 
day before. However, other features such as the water level of  4 large reservoirs that represent different regions of  the country, which 
infers about hydropower demand through water availability, seemed to influence to some extent reservoirs outflow estimates. This result 
indicates advantages in using an integrated approach rather than looking at each reservoir individually. In terms of  data availability, it 
was tested scenarios with (WITH_Qout) and without (NO_Qout and SIM_Qout) observed outflow and water level as input features 
to the ANN model. The NO_Qout model is trained without outflow and water level while the SIM_Qout model is trained with all 
input features, but it is fed with simulated outflows and water levels rather than observations. These 3 ANN models were compared 
with two simple benchmarks: outflow is equal to the outflow of  the day before (STEADY) and the outflow is equal to the inflow of  
the same day (INFLOW). For run-of-the-river reservoirs, an ANN model is not necessary as outflow is virtually equal to inflow. For 
storage reservoirs, the ANN estimates reached median Nash-Sutcliffe efficiencies (NSE) of  0.91, 0.77 and 0.68 for WITH_, NO_ 
and SIM_Qout respectively, compared to a median NSE of  0.81 and 0.29 for the STEADY and INFLOW benchmarks respectively. 
In conclusion, the ANN models presented satisfactory performances: when outflow observations are available, WITH_Qout model 
outperforms STEADY; otherwise, NO_Qout and SIM_Qout models outperform INFLOW.

Keywords: Reservoir outflow estimate; Machine learning.

RESUMO

Reservatórios afetam consideravelmente a vazão dos rios e por isso precisam ser adequadamente representados em estudos de impactos 
ambientais. Simular defluência de reservatórios representa um desafio para estudos hidrológicos já que sua operação depende do risco 
de inundações e aspectos econômicos e de demanda. O Sistema Interligado Nacional (SIN) é um exemplo de um sistema único e 
complexo de operação coordenada composto por mais de 160 grandes reservatórios. Então foi proposto e avaliado uma abordagem 
integrada para simular defluências diárias da maioria dos reservatórios do SIN (138) usando um modelo de Redes Neurais Artificiais 
(RNA), distinguindo reservatórios de armazenamento e a fio d’água e testando casos em que defluência e nível estavam disponíveis ou 
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INTRODUCTION

River dams are structures that affect the natural streamflow 
and needed to be accurately represented on hydrological studies 
(Zajac  et  al., 2017). Reservoirs assume a regulation function, 
modifying river flow duration curves and attenuating flow peaks 
(Ayalew et al., 2013; Li et al., 2010; Vogel et al., 2007; Volpi et al., 
2018). These structures hold water on land, approximately 
tripling the mean age of  the river water worldwide, which has 
impact not only on the natural hydrograph but on the sediment 
flux and the re-oxigenation of  surface water (Vörösmarty et al., 
1997). Regarding water volume, reservoir operations and water 
irrigation are responsible to reduce the global river discharge in 
approximately 2.1% (Biemans et al., 2011).

Worldwide, Lehner et al. (2011) estimated that there are 
nearly 3 million impoundments larger than 0.1 ha, in consequence, 
only 36% of  rivers longer than 1,000 km are free flowing rivers, i.e. 
present natural connectivity (Grill et al., 2019). Nowadays, nearly 
60,000 large dams (defined as over 15 m height or impounding 
more than 3 million cubic meters) are listed in the World Register 
of  Dams database of  which 20% to 25% are intended for 
hydropower purposes (International Commission on Large Dams, 
2020). And the number of  hydropower reservoirs are consistently 
growing. In 2014, over 3,000 major dams with capacity over 
1 MW were planned to be built, mostly in developing countries 
(Zarfl et al., 2014). The large number of  existing and planned 
reservoirs and their cumulative effect on streamflow justifies an 
explicit representation of  hydropower reservoirs for accurate 
streamflow estimates.

There are several difficulties in estimating reservoir operation 
and outflows, as they are influenced by fluctuations on demand, 
downstream conditions, costs of  other sources of  energy, bed 
floor leakage and irregular inflow series. These challenges are 
more pronounced at large-scale context (national, continental, 
global). In several cases, operating systems deal with a cascade 
of  reservoirs which demand complex optimization technics to 
maximize energy production (Liu et al., 2011; Pereira & Pinto, 
1985; Zahraie & Karamouz, 2004).

Some studies have proposed simplified operation schemes 
to estimate reservoir outflows in a large-scale context. For sake of  
general applicability, these outflow simulations only use inflow and 

storage as input (Hanasaki et al., 2006; Shin et al., 2019), although 
extra information about the reservoir purpose, such as water 
demand for irrigation and maximum discharge for flood control, 
might be needed on the optimization process (Haddeland et al., 
2006) or as a limiting condition (Zhao et al., 2016). In general, 
these simplified operation schemes are composed by few linear 
equations, tested on global/continental hydrological models with 
a monthly time step and they yield adequate results for a limited 
data situation and a large-scale context.

On the other hand, machine learning techniques are 
interesting alternatives to evaluate specific reservoirs and their 
operation when enough data is provided. Machine learning 
techniques have ability to represent highly non-linear relations 
and can autonomously detect patterns and provide predictions. 
Artificial neural networks (ANN), for example, has proved useful 
for optimizing reservoir operations (Carneiro & Farias, 2013; 
Chaves & Chang, 2008; Senthil Kumar et al., 2013) and estimating 
reservoir inflows (Paz et al., 2008; Valipour et al., 2013). Different 
machine learning techniques were used to simulate operation of  
specific reservoirs, such as decision-tree methods (Yang et  al., 
2016), supporting vector machine, ANN of  a single layer and deep 
learning (Zhang et al., 2018). In a broader scale, Ehsani et al. (2016) 
proposed a general reservoir operation scheme (GROS) based on 
ANN, suitable for large-scale modelling. The authors coupled an 
ANN with a water balance model to simulate reservoir storage 
and release from reservoir inflow, using the output variables as 
input for the next steps. GROS presented better performance 
compared to other simplified methods to estimate operation.

Brazil has a complex and unique operation system where 
the largest reservoirs were created for hydropower purposes. 
Nowadays over 60% of  the energy production comes from 
hydraulic sources and this number was much higher (over 90%) 
no more than 15 year ago (www.aneel.gov.br/dados/geracao). 
Brazil is the second country in installed hydropower capacity, with 
nearly 110 GW (International Hydropower Association, 2019). 
It has more than 160 large hydropower plants on its National 
Interconnected Energy System (SIN), distributed in different 
climates. The National Operator of  the Energy System (ONS) 
orientate hydroelectric companies to operate reservoirs connected 
on SIN based on the country’s energy demand, cost of  alternative 

não como dados de entrada. Além disso, foi investigada a relação entre as variáveis de entrada propostas (14) e a defluência simulada, 
sendo as variáveis relativas ao balanço hídrico do reservatório, sazonalidade e demanda indireta. Como resultado, foi verificado 
que as saídas do modelo de RNA foram principalmente influenciadas pelas variáveis locais de balanço hídrico, como a afluência do 
mesmo dia e a defluência do dia anterior. No entanto, outras variáveis como o nível de 4 grandes reservatórios representativos de 
diferentes regiões do país (que infere sobre à demanda pela disponibilidade de água para geração de energia) aparentemente teve uma 
influência considerável nas saídas do modelo. Esse resultado aponta para vantagens em se usar uma abordagem integrada ao invés 
de olhar cada reservatório isoladamente. Em termos de disponibilidade de dados, foram testados cenários com (WITH_Qout) e sem 
(NO_Qout and SIM_Qout) defluência e níveis observados como variáveis de entrada do modelo de RNA. Esses 3 modelos de RNA 
foram comparados com dois benchmarks simples: a defluência é igual a defluência do dia anterior (STEADY) e a defluência é igual 
a afluência do mesmo dia (INFLOW). Em reservatórios de armazenamento, as estimativas dos modelos atingiram uma mediana do 
coeficiente de Nash-Suthcliffe (NSE) de 0.91, 0.77 e 0.68 para os modelos WITH_, NO_ e SIM_Qout respectivamente, comparado 
com uma mediana do NSE de 0.81 e 0.29 para o STEADY e INFLOW respectivamente. Concluindo, os modelos RNA apresentaram 
performances satisfatórias: quando dados de defluências dos dias anteriores estão disponíveis, WITH_Qout é superior ao STEADY; 
caso contrário, NO_Qout e SIM_Qout são superiores ao INFLOW.

Palavras-chave: Estimativa de escoamento do reservatório; Aprendizado de máquina.
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energy sources and water availability. Thus, Brazil’s interconnected 
system of  hydropower reservoirs ends up being an interesting 
example that require an integrated approach for modeling outflows 
rather than using local and specific features only.

In this paper, we simulate daily outflows of  most of  the 
hydropower reservoirs connected to the SIN using ANN and assess 
the model capacity to represent a coordinated system. This work 
characterizes a proof  of  concept that machine learning techniques 
can model individual reservoirs of  a complex hydropower system 
in a large-scale context. It was proposed several input features 
related not only to local reservoir water balance, seasonality, and 
demand, but also information from other reservoirs. The relevance 
of  each variable was evaluated distinguishing run-of-the-river 
and storage reservoirs and testing cases whether outflow and 
water level data were available as input. We have not focused on 
proposing an optimized operation but simulated daily outflows 
that can be useful for environmental impact studies on specific 
river reaches or coupling to hydrological models to understand 
effects on basin scale.

METHODOLOGY

The national interconnected hydrothermal energy 
system (SIN)

All Brazilian major dams are operated considering the SIN, 
which concentrate almost 68% of  the national electrical production 
capacity (Operador Nacional do Sistema Elétrico, 2019). Due to the 
significantly diverse hydrological characteristics, currently the SIN 
is divided as regional interconnected subsystems (South, Southeast/
Central-west, Northeast, and North), where all the reservoirs 
within each subsystem are treated as a single equivalent reservoir. 
Currently, there are more than 160 reservoirs in the SIN (Figure 1). 
It is coordinated by the ONS, which tries to minimize spills and 
maximize the hydro electrical energy production, in order to avoid 

the utilization of  the expensive and air-polluting thermal energy, 
while it also guarantees consumptive water uses and environmental 
restrictions (Operador Nacional do Sistema Elétrico, 2019). It is 
a hard task, because it considers the randomness of  the affluent 
flows, the expansion of  the system, flows downstream, future 
demands, the current reservoirs storage, etc. (Zambon, 2015). 
A system wide operation strategy prevails over individual ones, 
and the operation of  a given hydropower plant affects other units 
downstream. The system allows hydropower plants to dispatch 
and transfer the energy to another region, where the reservoirs 
are low in storage, avoiding the use of  local thermal plants.

Artificial neural network model

ANN is a self-learning technique that estimates an output 
variable giving a proper amount of  data. It is composed by an 
input layer (formed by the input features), one or more hidden 
layers, and an output layer, which contains the information learned 
by the neural network. Input features multiplied by coefficients 
(synaptic weights) feed an activation function, resulting on 
“neurons” (nodes) that build a first hidden layer. Following the 
same steps, neurons of  the first hidden layer are multiplied by 
synaptic weights to generate neurons of  a next layer and so on. 
A trained ANN have optimized weight matrices, which is usually 
obtained through an iterative method called backpropagation 
(Rumelhart et al., 1986). This method compares observations to 
ANN outputs, generating deltas that are propagated backwards 
on the network to correct the weight matrices, from the output 
to the input layer. ANN are often referred to arrangements with 
few hidden layers, as neural networks composed by many hidden 
layers are often called deep-learning techniques (Shen, 2018).

In this paper, it is proposed an ANN of  a “nearly” single 
hidden layer (Figure 2) and sigmoidal activation functions to predict 
outflow in time t (OUT0). The input variables are submitted to 
feature scaling (normalization) in order to guarantee equal range 
between features and enable weight comparison. We selected 

Figure 1. Drainage Network in South America and location of  SIN reservoirs in Brazil.
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17 input features (yellow and blue circles on Figure 2) to build the 
ANN of  each reservoir which are explained on the next paragraphs:
i)	 water balance variables: inflow (INF), reservoir water 

surface level (LEV) – which is supposed to be an equivalent 
alternative to storage – and outflow (OUT);

ii)	 time related variables: time of  the year (SINE and COS), 
weekday (WDAY) and continuous time (CDAY);

iii)	 state of  other reservoirs: upstream and downstream reservoir 
water levels (UPST and DOWN, respectively) and energy 
availability (LRL) inferred by SIN reservoir levels (UHE).

The features related to the water balance are often the 
most relevant variables, sometimes used exclusively as input in an 
ANN for operation prediction. It was selected as input: inflow on 
time t (INF0), inflow one and two days before (INF1 and INF2, 
respectively), water level and outflow one and two days before 
(LEV1, LEV2, OUT1, OUT2).

Time variables are important to account for seasonality and 
demand. The time-of-the-year feature consists of  a day within a year 
from 1 to 365 and was adapted to circular representations (i.e. sine and 
cosine of  day2

365
π ) in order to provide continuity from one year to the 

other (e.g. from December 31st to January 1st). The weekday feature 
is important on hydropower operation since there is a significant 
reduction of  energy demand on weekends as industries stop working. 
WDAY assumed a value of  1 if  it is weekend or holiday and 0 if  it is 
a workday. Continuous time refers to the day since the beginning of  
a reservoir operation and it was considered to infer eventual changes 
on the operation due to changes on the energy demands.

Finally, operation of  Brazilian hydropower reservoirs 
is integrated and optimized to generate most energy for the 

interconnected system. Thus, it was considered information of  
other reservoirs as well. It was evaluated the water level of  one 
reservoir upstream and other downstream, when applicable, in 
order to account for level restrictions, safety operations (e.g. flood 
control) and maximum energy generation for the cascade system 
of  reservoirs. These variables are the UPST and DOWN features. 
In addition, the accumulated water volume of  other hydropower 
reservoirs indicates the water availability for energy generation 
and, consequently, the energy demand for that specific reservoir. 
For example, if  most of  the great hydropower plants are operating 
in high water levels, consequently the country’s energy demand is 
likely to be met, and the operator decision of  a specific reservoir 
might be to reserve water for times of  scarcity. Then, it was 
selected 4 large storage reservoirs from different regions of  Brazil 
(North, Northeast, Southeast and South) as a proxy of  the current 
potential of  hydropower energy generation: Tucuruí, Sobradinho, 
Marimbondo and Foz do Areia. These reservoirs are important 
in terms of  energy production and are old enough to provide a 
long time series of  inflow, outflow and water level. The water level 
in time t-1 from these 4 reservoirs (UHE1, 2, 3 and 4) are input 
to a first node named LRL (large reservoirs level), which consist 
of  the only neuron that composes the first hidden layer, but it 
can be interpreted as a neuron on the input layer (Figure 2) if  we 
consider that this ANN has only a single hidden layer.

Data acquisition and ANN training

The ANN input data and output observations were obtained 
through the Brazilian Reservoir Monitoring System (SAR) database 
from the Brazilian National Water Agency (ANA). The SAR 

Figure 2. Artificial Neural Network proposition with one hidden layer (+LRL) and a single output which is the outflow in time t 
(the bias constant was not illustrated).
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database provided inflow, outflow, and water level time series 
from 159 reservoirs connected to SIN by the day it was accessed 
(Nov/2019) (Table 1). Then, it was selected reservoirs that had 
at least 8 years of  not necessarily consecutive data registered with 
information of  all input features (Figure 3). Thus, 21 reservoirs 
were discarded, remaining 138 of  which 71 are classified by the 
ONS as run-of-the-river and 67 as storage reservoir.

Data was randomly split into training data (60%), cross-
training data (20%) and validation data (20%). The training data 
are used on the optimization process, but the weight matrices are 
selected based on the model fitness to the cross-training data. 
The backpropagation algorithm is fed exclusively with the training 
data while the cross-training data helps to select unbiased and 
not overfitted weight matrices on previous algorithm iterations. 
Then, the validation data, which was left untouched, indicates the 
ANN performance.

A complexity test was performed in order to identify an 
adequate number of  neurons in the hidden layer. We selected two 
large and important reservoirs in terms of  energy production for the 
complexity test, each representing a different type of  hydropower 
facility: run-of-the-river reservoirs (Itaipu) and storage reservoirs 

(Furnas). It was assessed ANN arrangements with 1, 2, 3, 5, 7, 10, 
15 and 20 hidden neurons and in each configuration the ANN was 
trained 10 times in order to obtain a more reliable and representative 
result and not depend on the algorithm starting point.

After deciding on an adequate number of  hidden neurons, 
the ANN was specifically trained for each reservoir with the training 
data. It was used a momentum term of  0.96 (Rumelhart et al., 1986) 
and an initial learning rate of  0.0001 that is adapted based on the 
error evolution (Vogl et al., 1988), both technics applied to accelerate 
the convergence of  the gradient descent. The backpropagation 
algorithm was run three times to improve chances of  reaching a 
good set of  weight matrices, selecting the best results based on 
the cross-training sample.

ANN assessment

Information about the reservoir level and previous releases 
are essential to estimate the present outflow. However, this data is 
not always available, or the latency period is too long for immediate 
applications. So, we have shaped this ANN model to fit a short 

Table 1. Table 1. List of  the 159 SIN reservoirs labeled by the first year of  data available: i) superscript 1 [< 1991]; ii) superscript 2 
[1991/2000]; iii) superscript 3 [2001/2010]; iv) superscript 4 [> 2010]. The reservoir names in uppercase letter (total of  138) were 
assessed in this article and the lowercase reservoirs (total of  21) were discarded due to the limited amount of  data available.

SIN RESERVOIRS
CAMARGOS1 ESPORA3 SALTO OSORIO2 ILHA POMBOS2 CAÇU3 CURUA-UNA2

ITUTINGA1 I.SOLTEIRA2 SALTO CAXIAS2 TOCOS2 B.COQUEIROS3 BALBINA2

FUNIL-MG3 HENRY BORDEN2 BARRA GRANDE3 LAJES2 FOZ DO RIO 
CLARO3

COARACY NUNES2

FURNAS1 BILLINGS2 CAMPOS NOVOS3 SANTANA2 SALTO3 dardanelos4

M.MORAES1 GUARAPIRANGA2 MACHADINHO3 VIGARIO3 S.R.VERDINHO3 ferreira gomes4

L.C.BARRETO1 PONTE NOVA2 ITÁ2 GUILM.AMORIM2 SEGREDO2 garibaldi4

JAGUARA1 EDGARD SOUZA2 PASSO FUNDO2 SÁ CARVALHO2 SANTA CLARA-PR3 Jirau4

IGARAPAVA2 B. BONITA2 MONJOLINHO3 SALTO GRANDE 
CM2

FUNDÃO3 passo são joão4

VOLTA GRANDE1 BARIRI2 FOZ CHAPECÓ3 PORTO ESTRELA3 JORDÃO2 simplicio4

P.COLOMBIA1 IBITINGA2 QUEBRAQUEIXO3 CANDONGA3 SALTO SANTIAGO2 sto antonio do jari4

CACONDE1 PROMISSÃO2 SÃO JOSÉ3 BAGUARI3 JAGUARI2 belo monte4

E. DA CUNHA1 N.AVANHANDAVA2 ERNESTINA2 AIMORES3 FUNIL2 cachoeira caldeirão4

LIMOEIRO1 TRÊS IRMÃOS2 PASSO REAL2 MASCARENHAS2 SANTA CECILIA2 colider4

MARIMBONDO1 JUPIÁ2 JACUI2 ROSAL2 PICADA3 itiquira ii4

A.VERMELHA1 PORTO 
PRIMAVERA2

ITAUBA2 STA.CLARA-MG3 SOBRAGI2 pimental4

S.DO FACÃO1 JURUMIRIM2 D.FRANCISCA2 IRAPE3 BOA ESPERANÇA2 são domingos4

EMBORCAÇÃO2 PIRAJU3 CASTRO ALVES3 ITAPEBI3 SERRA DA MESA2 são manoel4

NOVA PONTE2 CHAVANTES2 MONTE CLARO3 PEDRA DO 
CAVALO2

CANABRAVA3 teles pires4

MIRANDA2 OURINHOS3 14 DE JULHO3 RETIRO BAIXO3 SÃO SALVADOR3 fontes2

C.BRANCO-13 SALTO GRANDE 
CS2

G.P.SOUZA2 TRÊS MARIAS2 PEIXE ANGICAL3 nilo peçanha2

C.BRANCO-23 CANOAS II2 SALTO PILÃO3 QUEIMADO3 LAJEADO3 pereira passos4

CORUMBA-33 CANOAS I2 MANSO3 SOBRADINHO2 ESTREITO3 anta4

CORUMBA-43 CAPIVARA2 ITIQUIRAI3 LUIZGONZAGA2 TUCURUÍ2 mauá4

CORUMBA2 TAQUARUÇU2 PONTE DE 
PEDRA3

MOXOTO2 SANTO ANTONIO4 batalha4

ITUMBIARA1 ROSANA2 JAURU3 P.AFONSO1,2,32 GUAPORE3

C.DOURADA1 ITAIPU2 PARAIBUNA2 P.AFONSO42 SAMUEL2

SÃO SIMÃO1 G.B.MUNHOZ2 SANTA BRANCA2 XINGÓ2 RONDONII3
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information and large-scale context. For example, this ANN model 
could have included variables such as energy price and demand 
or even weather forecast for flooding control, but we rather have 
proposed water and time related variables that are usually available 
or even can be simulated by hydrological models. ANN can be 
used to simulate different scenarios and make projections, and 
reservoir levels and outflows could be products from previous 
modeling steps. In order to evaluate the best alternative to simulate 
reservoir outputs, we proposed 3 different ANN configurations:

WITH_Qout – Reservoirs outflow in previous days are 
available. Thus, it is trained a complete ANN, with all the 
features proposed.

NO_Qout – Observed outflow in recent previous days is 
unavailable. Then, the ANN is trained without the OUT1, 
OUT2, LEV1 and LEV2 features.

SIM_Qout – Observed outflow in recent previous days 
is unavailable. The ANN is trained with all the proposed 
features, including OUT1, OUT2, LEV1 and LEV2 as 
input. However, OUT1 and OUT2 are those simulated on 
the last steps and LEV1 and LEV2 are calculated based on 
a water balance equation using the reservoir specific stage-
volume curve. The stage-volume curve was approximated 
by a 2nd degree polynomial equation using observations 
of  level difference, inflow and outflow. This approach is 
similar to GROS (Ehsani et al., 2016) however presenting 
a different ANN structure and more input features.

These three ANN models are compared with two simple 
benchmarks: outflow of  time t is equal to outflow in time t-1, 
which we called steady hypothesis (STEADY); and outflow is 
equal to inflow (INFLOW). The performances are evaluated in 
terms of  the normalized root mean squared error (NRMSE) and 
Nash-Sutcliffe efficiency (NSE) which are given by:

( )
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where Q  is the simulated outflow; oQ  is the observed outflow; iQ  
is the mean simulated outflow; oQ  is the mean observed outflow 
and n is the number of  samples.

17 features were proposed on this ANN arrangement, water 
balance, time or demand related. We evaluated the influence of  
every feature on the ANN output in order to understand which 
input variables are more relevant. We adopted the Weight method 
(Garson, 1991 apud Gevrey et al., 2003), which basically multiply 
normalized synaptic weights from layer to layer. In this specific 
case, there is just one hidden layer, thus there are only two weight 
matrices (and a third to build the LRL neuron which was not 
evaluated, see Figure 2). The weight method was conducted as 
follow: i) Consider the first weight matrix ( hΘ ), with dimensions n h×  
(nº of  features × nº of  neurons); ii) hΘ  is normalized dividing each 
component by the sum of  the coefficients related to each neuron 
(column); iii) the second weight matrix ( oΘ ), with dimensions h 1×  
(nº of  neurons × nº of  outputs), is also normalized; iv) finally the 
input features influence on the output is given by the dot product 
of  the normalized weight matrices.
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where  is the number of  input features; h  is the number of  hidden 

neurons; hΘ  is the first weight matrix, from the input to the hidden 
layer; xhΘ  is a specific line of  hΘ  that correspond to the weights of  
feature x ; and oΘ  is the second weight matrix, from the hidden to 
the output layer. As the proposed ANN only has one output, the 
second weight matrix ( oΘ ) has just one column. Thus, the weight 
influence of  feature x  in the output ( xW  – synaptic weight factor) 
is given by the dot product of  the normalized line correspondent 
of  x  on the first weight matrix and the normalized column of  the 
second weight matrix (Equation 3).

RESULTS

The complexity test indicates the number of  hidden 
neurons that should be used in the ANN in order to provide an 
efficient and accurate performance. Figure 4 demonstrates the 
ANN performance considering different number of  neurons in the 
hidden layer in terms of  NRMSE. The NRMSE have converged to 
20% in Furnas and to 4.75% in Itaipu, which suggest that an even 
larger number of  hidden neurons would not improve the ANN 

Figure 3. Data quantification of  all 159 SIN reservoirs available 
on the SAR database. Blue dots represent reservoirs selected on 
this study, red dots are the discarded reservoirs and the red line 
represents a threshold of  eight years of  data. The black triangles 
represent four specific reservoirs named above.
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performance. The run-of-the-river reservoir has converged with 
lesser hidden neurons: 5 in Itaipu compared to 7 in Furnas. This 
was expected since there is almost no range of  storage volume 
for reservoir operation in a run-of-the-river reservoir and, by 
definition, outflow is mostly governed by inflow. It is common 
practice to select the smallest number of  hidden neurons that 
provide a good performance. Since the same ANN arrangement 
are applied to all reservoirs, we adopted an ANN composed by 
10 hidden neurons as a cautious alternative.

The ANN training seemed to succeed. First results show 
that usual regression problems such as overfitting were avoided, 
since training (TRAIN), cross-training (X-TRAIN) and validation 
(VALID) data presented similar performances (Figure 5). Also, 
outflow estimation was reasonable as NRMSEs median were 
around 14% and 18% for WITH_Qout and NO_Qout ANN 
models, respectively.

The influence of  every input feature on the predicted 
variable was evaluated in terms of  synaptic weights through the 
Weight method. Although this method has no physical meaning, 

it infers about input features that are more influent on the ANN 
output. Figure 6 illustrate the Weight method results as a box 
plot using the 138 selected SIN reservoirs as samples. The input 
variables DOWN and UPST were not considered in this specific 
test since they are not applicable to all reservoirs.

For the WITH_Qout model, the inflow in time t (INF0) 
is the feature that has the most influence on the ANN predicted 
variable (OUT0), followed by the outflow in time t-1 (OUT1). 
However, this sample analysis is biased since outflows of  run-
of-the river reservoirs are largely dominated by inflow. Analyzing 
each type of  reservoir individually, we can see that outflow of  
run-of-the-river reservoirs are indeed governed by inflow; but on 
storage reservoirs, OUT1 has more influence on the predicted 
variable than INF0.

For the NO_Qout model, outflow and level are not input 
variables, thus INF0 largely influences the ANN output. However, 
looking at storage reservoirs, other features that are related to 
time or demand presented a high weight factor as well. The LRL 
feature, for example, is indirectly related to hydropower demand 

Figure 4. Complexity test which indicates the ideal number of  neurons on the hidden layer on two reservoirs. (a) Furnas, which is a 
storage reservoir; and (b) Itaipu, which is a run-of-the-river reservoir.

Figure 5. Performance of  the training, cross-training and validation data for the (a) WITH_Qout; and (b) NO_Qout ANN models.
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based on the water level of  large SIN reservoirs. This feature 
presented a relatively high synaptic weight factor, which indicates 
the benefits of  an integrated operation to simulate hydropower 
reservoirs in Brazil.

The ANN was able to predict relatively well outflow for most 
SIN reservoirs (Figure 7). When outflow and level observations 
were available as input to the ANN (WITH_Qout), the sample 
median NRMSE (NSE) was 14% (0.95) compared to 25% (0.83) 
and 24% (0.85) of  the STEADY and INFLOW benchmarks, 

respectively, and the RMSE upper (NSE lower) quartile was 19% 
(0.90) compared to 38% (0.74) and 59% (0.08). If  outflow and level 
observations were unknown, the ANN performance deteriorates. 
In general terms, SIM_Qout presented a performance similar to 
INFLOW, but for storage reservoirs SIM_Qout performance was 
much superior. NO_Qout presented a superior performance in 
average compared to INFLOW and STEADY, but for storage 
reservoirs exclusively, STEADY was a slightly better. Given this 
ANN arrangement and input features, these results indicate that it is 

Figure 6. Inference of  each input variable influence on the ANN output (outflow in time t) for 138 SIN reservoirs based on the 
synaptic weights. LRL – Large Reservoirs Level; INFx – Inflow from x days before; OUTx – Outflow from x days before; LEVx – 
Water level from x days before; SINE and COS – variables related to the day of  the year; WDAY – variable related to the day of  the 
week; CDAY – Number of  days since the beginning of  the reservoir operation.
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better to train an ANN without non-observed variables (OUT and 
LEV – NO_Qout), rather than training an ANN with all features 
and use simulated variables as input (SIM_Qout). The latter was 
adopted by GROS (Ehsani et al., 2016), which provided adequate 
results in large-scale, however it is important to remark that the 
authors used a different ANN structure with more hidden layers 
and less input features.

The performances of  outflow predictions were strongly 
dependent of  the type of  the hydropower reservoir. Errors were 
much smaller for run-of-the-river reservoirs compared to storage 
reservoirs, which was expected since outflow of  the former 
is easier to be estimated. Indeed, the INFLOW assumption 
presented a performance as good as WITH_Qout for run-of-the-
river reservoirs; however, for storage reservoirs its performance 
considerably worsens. This indicates that storage reservoirs must 
be well represented in a hydrological model in order to provide 
accurate estimation of  discharge downstream rather than only 
simulate natural streamflow. Furthermore, NO_Qout provided 
results similar to STEADY for storage reservoirs. While the 
former is a good option if  no outflow and level data is available 
on the simulation period, the latter becomes a simple alternative 

to represent storage reservoir releases if  previous days outflow 
is known.

Figure  8 illustrates and exemplifies the ANN results 
through outflow hydrographs of  four storage reservoirs: Furnas 
(a), Jurumirim (b), Sobradinho (c) and Tucuruí (d). It can be 
seen that ANN provide better estimates compared to INFLOW. 
The ANN were able to represent reservoirs with high regularization 
capacity that significantly impacts natural streamflow regimes. 
In fact, WITH_Qout outflow considerably approximates to 
observation, while outflows from NO_Qout and SIM_Qout 
provide adequate seasonal tendencies but are rarely accurate in 
a daily scale. The weekday feature can be detected on the ANN 
outflow hydrographs as a 7 days cycle where outflow reduces on 
the last day; this variable seems to be important to predict outflow 
especially in Furnas. Particularly on Tucuruí, ANN NRMSE 
varied from 9% (WITH_Qout) to 17% (SIM_Qout), while 
INFLOW presented a NRMSE of  33%. In terms of  Nash Sutcliff  
coefficient, ANN performances varied from 0.99 (WITH_Qout) 
to 0.95 (SIM_Qout), while INFLOW was 0.81. These results 
indicate that Tucuruí has a relatively well-defined operation and 
the ANN was capable to capture that.

Figure 7. Performance of  the complete series (through NRMSE and NSE) of  each approach to represent outflow considering (a) all 
reservoirs; (b) only the run-of-the-river reservoirs; and (c) the storage reservoirs.
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CONCLUSION

This paper offered a first evaluation of  the potential of  using 
machine learning techniques to simulate a complex coordinated 
system of  hydropower reservoirs such as the Brazilian SIN. It was 
proposed an ANN model to predict daily outflow from most of  
hydropower reservoirs connected to SIN giving water balance, 
time, and demand input variables.

We used 14 input features and assessed their influence on 
the model output. As expected, model outflow is mainly influenced 
by water balance variables, such as the outflow of  previous 
days and inflow. However, features as the water levels in 4 large 
representative reservoirs (LRL), which infers about hydropower 

demand through the water availability in different regions of  the 
country, seemed to influence to some extent reservoirs outflow 
predictions, indicating advantages of  an integrated assessment 
of  SIN reservoirs.

The ANN was trained with (WITH_Qout) and without 
(NO_Qout and SIM_Qout) reservoir water level and outflow 
observations as input features to represent usual situations of  
outflow estimates. The ANN results were compared to two simple 
benchmarks: outflow is equal to the outflow of  the day before 
(STEADY) and outflow is equal to inflow (INFLOW). There is a 
significant difference between estimating outflow on run-of-the-
river and storage reservoirs since the latter considerably modify the 

Figure 8. Hydrographs illustrating the results of  each ANN model (WITH_, NO_ and SIM_Qout) and the observed outflow and 
inflow. The hydrographs are for the year 2008 and the following reservoirs: (a) Furnas; (b) Jurumirim; (c) Sobradinho; (d) Tucuruí.
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natural streamflow hydrograph. Using ANN for run-of-the-river 
reservoirs seemed unnecessary as inflow is almost equal to outflow. 
However, for storage reservoirs, the ANN model presented a superior 
performance compared to the benchmarks. When outflow data 
is available, the WITH_Qout ANN model (median NSE=0.91) 
outperforms STEADY (median NSE=0.81). When outflow data 
is not available, ANN performance deteriorates, dropping to NSE 
medians of  0.77 (NO_Qout) and 0.68 (SIM_Qout), however it is 
still much superior to INFLOW (median NSE = 0.29).

In conclusion, we have simulated daily outflow from 
138 reservoirs individually but using input features that include 
information from other reservoirs as well and the model 
performance has been superior to the benchmarks. These results 
indicate that an integrated approach benefits simulation of  a 
coordinate hydropower system and machine learning techniques 
are interesting tools for estimating reservoir outflow. However, 
other ANN arrangements, other possible input features and/
or deep learning techniques might improve outflow predictions 
(Zhang et al., 2018) giving this large amount of  data and high non-
linearity. The ANN model reasonably approximates to reservoir 
operations and becomes an interesting tool for large scale analysis 
of  streamflow impacts. However, this is a general model and does 
not substitute specific reservoirs models that include important 
local information such as water supply demands, flood control, 
and environmental legislation for management purposes.
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