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ABSTRACT

Water distribution network (WDN) optimization has received special attention from various technicians and researchers, mainly due to 
its high costs of  implementation, operation and maintenance. However, the low computational efficiency of  most developed algorithms 
makes them difficult to apply in large-scale WDN design problems. This article presents a hybrid particle swarm optimization and 
tabu search (H-PSOTS) algorithm for WDN design. Incorporating tabu search (TS) as a local improvement procedure enables the 
H-PSOTS algorithm to avoid local optima and show satisfactory performance. Pure particle swarm optimization (PSO) and H-PSOTS 
algorithms were applied to three benchmark networks proposed in the literature: the Balerma irrigation network, the ZJ network and 
the Rural network. The hybrid methodology obtained good results when seeking an optimal solution and revealed high computational 
performance, making it a new option for the optimal design of  real water distribution networks.

Keywords: Water distribution systems; Complex networks; Optimization; Hybrid algorithm.

RESUMO

O dimensionamento ótimo de redes de distribuição de água (RDA) tem recebido atenção especial de projetistas e pesquisadores 
devido, principalmente, aos elevados custos de implantação, operação e manutenção. No entanto, a baixa eficiência computacional da 
maioria dos algoritmos dificulta a aplicação desses em RDA de grande porte. Diante disto, este artigo apresenta um algoritmo híbrido 
(H-PSOTS) baseado nos métodos particle swarm optimization (PSO) e tabu search (TS) para o projeto de RDA. Incorporar a TS, como 
um procedimento de melhoria da busca local, permite que o algoritmo H-PSOTS evite ótimos locais e apresente um desempenho 
satisfatório. O PSO padrão e o H-PSOTS foram aplicados a três redes de referência propostas na literatura: Balerma irrigation network, 
ZJ network e Rural network. O algoritmo híbrido obteve bons resultados na busca pela solução ótima e alto desempenho computacional, 
tornando-se uma nova opção para o projeto ótimo de redes de distribuição de água reais.
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INTRODUCTION

Water distribution networks (WDNs) are hydraulic systems 
composed of  reservoirs, pumps, pipes, valves, sensors and other 
accessories designed to transport drinking water with sufficient 
flow and pressure to meet consumers’ water needs continuously 
and appropriately. WDNs are an important part of  the water 
supply system, mainly due to their high cost of  implementation, 
operation and maintenance.

WDN designers seek to assign pipe diameters to minimize 
investment costs, including those related to implementing and 
purchasing materials and equipment. Traditionally, engineers 
design pipe networks using trial and error guided by experience. 
However, the state variables of  the problem are linked by the 
mass and energy conservation laws of  physics, which make the 
design of  large systems complex and exhaustive.

The term “optimization”, present in several engineering 
studies and projects, refers to the search for the best solution 
to a problem. WDN design is classified as a large combinatorial 
discrete nonlinear nondeterministic polynomial-hard (NP-hard) 
optimization problem (Moosavian & Lence, 2020). Such problems 
are nonlinear and non-convex, and global optimization techniques 
cannot usually solve them. Therefore, the development of  new 
models makes a substantial contribution to solving this type of  
problem (Cassiolato et al., 2020).

Technological evolution has led many researchers to 
develop and apply evolutionary algorithms to solve WDN design 
problems. These include ant colony optimization (Zheng et al., 
2017; Bahoosh et al., 2019), colliding bodies optimization (Kaveh 
& Dadras Eslamlou, 2020), differential evolution (Monsef  et al., 
2019; Chen et al., 2019), genetic algorithm (Reca et al., 2017; 
Rathi et al., 2020), genetic heritage evolution by stochastic 
transmission (Bolognesi et al., 2010), harmony search (Choi et al., 
2017; Jung et al., 2018), honey-bee mating optimization (Bozorg 
Haddad et al., 2016), particle swarm optimization (Bezerra & 
Macêdo, 2018; Monsef  et al., 2019), scatter search (Baños et al., 
2009), shuffled frog leaping (Mora-Melia et al., 2016), simulated 
annealing (Cunha & Marques, 2020), soccer league competition 
(Moosavian & Kasaee Roodsari, 2014) and whale optimization 
(Ezzeldin & Djebedjian, 2020). However, these mathematical 
models do not guarantee that the minimum cost solution found 
is the global optimum, and, although the methods present good 
solutions, their practical application remains rare.

The evaluation of  complex real-world problems using 
large search spaces is currently the main difficulty addressed in 
the specialized literature. The characterization of  the size of  a 
WDN is dictated by its number of  nodes and meshes, due to the 
growing number of  independent and variable equations to be 
determined during its dimensioning, in addition to the iteration 
between them, which makes the problem more complex and difficult 
to solve (Chen et al., 2019). In this context, this work presents a 
hybrid particle swarm optimization and tabu search (H-PSOTS) 
algorithm used to design large-scale WDNs. In recent years, the 
hybridization of  these techniques has been applied in several areas 
(Chentoufi & Ellaia, 2018; Tang & Lee, 2018; Ahmadian et al., 
2019; Alharkan et al., 2020; Ebadi & Jafari Navimipour, 2019; 
Toshev, 2019), but a literature search revealed no such applications 
to the proposed problem type.

Particle swarm optimization (PSO) is used widely in WDN 
design problems due to its ease of  implementation and the good 
results reported in the literature. At each iteration of  the PSO 
process, numerous particles explore the search space to find the 
best results for the objective function. During this process, the 
particles can resume the positions visited and revisit the positions 
already reached by other. In large problems, this iterative process 
results in high computational cost and execution time. Therefore, 
a tabu search (TS) algorithm was inserted into the PSO process to 
restrict repetitive movements. The TS algorithm gained popularity 
in the scientific community as an auxiliary adaptive procedure, as 
it improves the exploration of  local search spaces and facilitates 
greater solution diversification in the search of  the global optimum.

METHOD

The H-PSOTS algorithm was implemented using Matlab 
software. According to Chandramouli (2019), Matlab is best suited 
for all mathematical operations and can link external libraries. 
The EPANET input (.inp) file is first read to create the network 
model and obtain all network parameters (e.g. layout, node demands, 
pipe lengths). Matlab was combined with the functions of  the 
EPANET toolkit to simulate the various solutions indicated by 
the optimization algorithm. On Windows systems, the library is 
precompiled into a dynamic link library file called EPANET2.dll. 
All analyses were performed on a personal computer with an Intel 
Core i7 1.88-GHz processor and 8 GB of  RAM.

Optimal design of  WDN

In this article, WDN design was formulated as a least-cost 
optimization problem with a selection of  pipe diameters as the 
decision variables. In general, WDN optimization was defined 
as follows:

Minimize: Total cost of  the WDN
Subject to:

1. Conservation of  mass: Inflows and outflows must balance 
at each node;

2. Conservation of  energy: Head loss around a closed loop 
must be equal zero, and head loss along a path between 
two reservoirs must be equal to the reservoirs’ elevation 
difference;

3. Minimum pressure requirements: Minimum pressure must 
be provided at network locations for a given set of  demands;

4. Acceptable pipe sizes: Diameters must be selected from 
an admissible set.

The objective function (Equation 1) was assumed 
mathematically to be a cost function of  pipe diameters and lengths 
plus the penalty. Whenever the pressure at a node violated the 
minimum pressure requirement, a penalty was added to the total 
cost. This penalty made solutions that did not meet the minimum 
pressure requirement infeasible or infactible.
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where ( )if D  is the total cost of  the network, ( )if D  is the cost in 
pipe diameter per unit length, iL   is the pipe length, m and n are the 
number of  pipes and nodes of  the network, and jPP   is a penalty 
function intended to ensure that pressure constraints are satisfied.

During the optimization process, EPANET received 
the set of  new diameters as input and returned the pressures 
on the network nodes to the algorithm. The head loss equation 
depended on the problem evaluated; available choices included the 
Darcy-Weisbach, Hazen-Williams and Chezy-Manning equations. 
The original information from the case studies was maintained 
so the results could be compared with the works published in the 
literature. In addition, the optimization models included integer 
variables, and no approximations were used to find the diameter 
values in the discrete set of  commercially available diameters.

Particle Swarm optimization

The PSO algorithm is widely used because of  its simplicity 
and attractive search efficiency. Kennedy & Eberhart (1995) 
developed the parallel evolutionary computation technique 
based on the social behavior metaphor to solve unconstrained 
optimization problems (Yang et al., 2019). In the PSO algorithm, a 
set of  particles, called a population or swarm, is used to “research” 
for the best solution to the optimization problem. The search 
space is dictated by the objective function and the restrictions 
imposed, and each particle represents a unique set of  solutions 
to the problem. The particle movement cognitive system allows 
the best solutions to be identified more quickly, decreasing the 
computational cost of  the exploration process. However, a larger 
swarm size, dictated by the complexity of  the problem, results in 
increased execution time.

The particles’ movement is associated with Gbest, the best 
position reached within the search space for the swarm particles, and 
Pbest, the best individual position reached within the search space 
for each particle. In successive iterations, the particle’s new velocity 
is calculated using its previous velocity (weighted by an inertia factor) 
and the distance from its current position to its Pbest position and the 
Gbest position (weighted by social and cognitive factors), as shown in 
Equation 2. To manage Gbest or Pbest’s influence on particle motion, 
Kennedy & Eberhart (1995) adopted two positive constants, called 
acceleration coefficients c1 and c2, which are directly linked to “social 
and cognitive factors”. In this work, following the recommendation 
of  these authors, value 2 was adopted for the coefficients. The current 
velocity vector is added to the previous particle position, t

iX , giving 
rise to the new position, t 1

i X +  (Equation 3).

( ) ( )t 1 t t t t t t t t
i i 1 1 i i 2 2 i iV w .v c .r Pbest X c .r Gbest X+ = + − + −  (2)

t 1 t t 1
i i iX X v+ += +  (3)

Where: iv  and iX  are the velocity and position of  the ith particle, 
w is inertia weight that introduces the weighting of  the current 

velocity on the particle in the next generation, iPbest  represents 
the position with the best fitness found so far by the ith particle,

i Gbest  is the position with the best fitness found so far by all the 
particles in the population, c1 and c2 are positive constants, 1r   and 
2r   are random numbers between 0 and 1, t is the number of  the 

iteration, and w is the inertia weight that controls the impact of  the 
velocity history on the current velocity to influence the trade-off  
between global and local experiences.

The inertia factor (Equation 4) is related to the portion 
of  the velocity vector that is connected directly to the particles’ 
movement. The balance between the global and local exploration 
of  the particles is related to this factor’s value. Eberhart & Shi 
(2000) proposed that the factor varies between an initial value 
of  0.9 and a final value of  0.4 in the iterations and decreases 
gradually. In addition, they noted that high factor values are more 
effective at the beginning of  the search, exploration, because they 
accelerate convergence and spread the particles over a broader 
search space. Smaller values favor local exploration by improving 
the refinement of  the search for the final solution.

( )t
ini fin fin

N tw w w w
N
− = − + 

   (4)

Where: iniw  and finw  are the initial and final inertia factors; and N is 
the total number of  iterations. In order to determine the values of  
initial and final inertia factors, a sensitivity analysis was performed 
on the first network evaluated, Balerma irrigation network.

Iteration tolerance (IT) is one of  the stopping criteria 
attributed to the PSO algorithm to prevent simulations from 
entering an infinite loop. This factor interrupts the optimization 
process when the number of  iterations with the same result exceeds 
a certain proportion of  the total number of  iterations that have 
already occurred. In this work, an IT of  30% was adopted in all 
case studies. Additionally, it is highlighted that this work adopted a 
maximum number of  iterations, in each simulation, equal to 1000.

H-PSOTS hybrid algorithm

Glover (1989) proposed the concept of  the tabu search 
(TS) heuristic. The basic principle of  the TS is to pursue a local 
search by allowing non-improving moves whenever it encounters a 
local optimum. Five key elements (i.e. search space, neighborhood 
structure, tabu list, aspiration criteria and termination criteria) 
must be designed when developing a TS (Yang et al., 2017). 
A fundamental element of  TS is using flexible memory functions 
(tabu list) to forbid transitions, called “moves”, from the current 
solution to other previously visited candidate solutions. The list is 
updated with each move of  the particles and remains in memory 
for a number of  iterations. The longer the list, the more restrictive 
the search process and the longer the computer runtime. Another 
factor that improves the method’s quality is restricting moves that 
guide the particles to new search space neighborhoods, avoiding 
premature convergence in a local optimum.

Inserting the TS algorithm into the PSO algorithm’s search 
process increased particle movement efficiency because the TS 
improves local exploration and decreases premature algorithm 
convergence and computational cost. The convergence speed 
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of  TS depends on the initial solution, and the parallelism of  
the PSO population helps the TS find promising search space 
regions very quickly. Incorporating TS into a PSO algorithm as a 
local improvement procedure enables the algorithm to maintain 
the population’s diversity (Shen et al., 2008). During the present 
study’s exploration process, the algorithm reduced the repetition 
of  executed movements, allowing a greater diversification of  
solutions in the search for the global optimum.

The initial position of  the particles in the PSO process 
comprised the tabu list’s movement restrictions. As the position 
of  the particles was updated and before the calculation process in 
the hydraulic simulator and the objective function, the algorithm 
verified whether a particle of  the swarm had already reached the 
position. If  it was a new position, the particle did not move, the 
swarm update process continued and the list received that position 
as an increment. However, if  the particle’s position was already on 
the tabu list, it was updated. This process was repeated until the 
whole swarm was updated when its particles visited new positions. 
When every particle in a swarm has been updated, the list can be 
updated equally with the new positions, depending on whether 
the particles were able to keep the previous ones. The number 
of  times or positions stored in the list was determined based 
on a sensitivity analysis carried out in one of  the case studies. 
To guarantee algorithm convergence regardless of  the situation, 
the Gbest position was not part of  the list.

In addition to the tabu list size, the aspiration criterion 
was defined. This criterion removed the tabu list status from 
particles with high values in the final optimization phase (close to 
the maximum number of  iterations or iteration tolerance). Thus, 
the particles had more freedom to seek solutions, preventing 
the algorithm from stagnating in a local optimum. This criterion 
directed the particles to the best identified cost, returning solutions 
that could be useful in swarm diversification. Another criterion 
adopted for the list was related to the particles that presented the 
same position as Gbest, facilitating better particle positions and 
the convergence of  the algorithm. In all case studies, the criteria 
for stopping the search were an iteration tolerance of  30% and 
a maximum of  1000 iterations. The general flowchart of  the 
H-PSOTS algorithm is shown in Figure 1.

Because evolutionary algorithms are not deterministic, 
a sensitivity analysis was performed to define the number of  
particles in the PSO algorithm and the tabu list size. The other 
input parameters of  the PSO algorithm were adopted based on 
the literature and remained as a standard configuration (default) 
for all case studies. The adoption of  specific parameters for each 
case study would present better results, but a single algorithm 
configuration was chosen to determine a typical configuration 
suitable for any network.

Figure 1. General flowchart of  the H-PSOTS algorithm.
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RESULTS AND DISCUSSION

For comparison, the PSO and H-PSOTS algorithms were 
applied to three complex WDNs referenced in the literature. The first 
network studied was the large irrigation system located in Balerma 
(Reca & Martínez, 2006), in the province of  Almeria (Andalusia, 
Spain). The second, known as the ZJ network (Zheng et al., 2011), 
was a provincial water supply network in China. The last case 
study, the Rural network, was also a complex irrigation system, 
initially presented by Marchi et al. (2014). Network layouts are 
shown in Figure 2.

Balerma irrigation network

The Balerma irrigation network (Reca & Martínez, 2006) 
is an adaptation of  the WDN for the irrigation system in the 
Sol-Poniente district, located in Balerma, province of  Almeria, 
Spain. This irrigation network includes 454 PVC pipes, 443 nodal 
demands, eight loops and four reservoirs. The diameter set 
consisted of  10 diameter types ranging from 113 to 581.8 mm: 
D(mm) = {113.0, 126.6, 144.6, 162.8, 180.8, 226.2, 285.0, 361.8, 
452.2, 581.8}. Table 1 presents the costs of  the specified diameters. 

Figure 2. Case studies.
Sources: (a) Reca and Martínez (2006), (b) Zheng et al. (2011), (c) Marchi et al. (2014).

Table 1. Pipe diameters and costs for the Balerma irrigation network.
Pipe diameters (mm) Cost (€/m) Pipe diameters (mm) Cost (€/m)

113.0 7.22 226.2 28.60
126.6 9.10 285.0 45.39
144.6 11.92 361.8 76.32
162.8 14.84 452.2 124.64
180.8 18.38 581.8 215.85
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The minimum pressure required at each node was 20 meters, and 
pipe friction head loss was computed for all pipes using the Darcy-
Weisbach equation with a roughness coefficient of  0.0025 mm.

The algorithm was applied to this network with two 
objectives: (a) to determine the parameters: inertia factors, 
number of  particles, and the tabu list size, which defined the 
number of  restrictive positions that the particles occupied 
in each iteration, and (b) to verify the proposed algorithm’s 
performance. The complexity of  the WDN design problem 
is related to the number of  sections in the network and the 
diameters available for the design. Therefore, this network 
has a search space with 10454 possible solutions (viable and 
non-viable).

To determine the inertia factor (Equation 4), the PSO 
algorithm was applied in 50 simulations for different iniw  and finw  
values, keeping the number of  particles (100 particles) and the 
social and cognitive factors (equal to two) constant. The iniw  and 

finw  values ranged from 0.3 to 1.0. Figure 3 shows the results of  
the sensitivity analysis, where the center of  each circle indicates 
the average values of  runtime and cost obtained in 50 simulations, 
while the diameter represents the standard deviation of  costs. Some 
simulations with values less than 0.3 and greater than 1.0 were 
performed; however, it was decided not to include them in the 
text, as they obtained premature convergence in local minimums 
or high simulation runtime. Thus, this work adopted 0.4 and 
0.9 for the iniw  and finw  values, respectively.

With the inertia factor defined, the next step was to 
determine the number of  particles used during the optimization 
process. For this, several simulations were performed with the 
PSO algorithm by varying the number of  particles from 10 to 
200. The best values of  the simulations’ results are shown in 
Figure 4. The best solution, € 2.10 million, remained stable from 
160 particles. Therefore, this value was adopted for the H-PSOTS 
algorithm because the increase in particles would result in a higher 
computational cost and a consequent increase in execution time. 
The relationship between the number of  particles and the number 
of  variables (pipe diameters) was 35%. This relationship was 
maintained in the other networks studied, even though increasing 
the number of  particles can yield better results.

To analyze and determine the hybrid algorithm’s tabu list 
size, simulations were performed in which the list retained up 
to four previous positions for each particle until the complete 
swarm update. The best values of  the analysis for each the list size 
increment are shown in Figure 5. It is noteworthy that, regardless 
of  the tabu list size, each new position was added to the list during 
the particle update process. In addition, at the end of  the swarm 
update, the newly generated positions replaced were added to the 
old ones, depending on the choice adopted.

Increasing the tabu list worsened the algorithm’s solution 
execution time, demonstrating that a simple list is the best option. 
The time increase resulted from a growth in the number of  checks 
performed on the list during each particle’s updates. In terms 
of  cost, large lists limited the swarm’s diversification, which is, 
in many cases, essential for the improvement of  results in the 
process’s advanced stages. During advanced stages of  simulation, 
this diversification helped to decrease the chances of  premature 
convergence in local minima.

Figure 3. Analysis of  the influence of  inertia factor on the 
optimization process of  the Balerma network.

Figure 4. Analysis of  the influence of  particle number on the 
optimization process of  the Balerma irrigation network.

Figure 5. Analysis of  the influence of  tabu list size on the 
optimization process of  the Balerma network.

After all parameters were determined, the H-PSOTS 
algorithm was applied, and its results compared with those 
of  the PSO algorithm and the literature (Zheng et al., 2011; 
Sheikholeslami et al., 2016; Bi et al., 2020) (Table 2). The H-PSOTS 
algorithm obtained a minimum cost of  € 1.998 million, close to the 
best-known minimum cost of  € 1.923 million found by Zheng et al. 
(2011) using NLP-DE2. Although the result obtained by hybrid 
algorithm might not represent the best cost in the literature, it 
determined a good solution with a low simulation runtime in 
relation to the PSO algorithm.

Figure 6 shows the evolution of  the costs of  the best solutions 
found by algorithms PSO and H-PSOTS during the optimization 
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Figure 6. Cost evolution of  the best solutions – Balerma irrigation 
network.

Figure 7. Results obtained on the optimization process of  the Balerma irrigation network: (a) costs and (b) simulation runtimes.

Table 2. Results obtained for the Balerma irrigation network using various methods.
Authors Method Solution (106 €)

Reca & Martínez (2006) Genetic algorithm 2.302
Zheng et al. (2011) Differential evolution 1.923*

Sheikholeslami et al. (2016) Cuckoo search 2.036
Sheikholeslami et al. (2016) Hybrid cuckoo harmony search 1.988

Lee et al. (2016) Decomposition approach 2.066
Zheng et al. (2017) Ant colony optimization adapted 2.020

Bi et al. (2020) Differential evolution 2.002
Bi et al. (2020) Ant colony optimization 2.332

Saldarriaga et al. (2020) Optimal power use surface 2.015
PSO 2.099

H-PSOTS 1.998
*Current best-known solution

processes, while Figure 7 shows the graphical representations 
of  the results obtained (costs and simulation runtimes) in the 
100 simulations performed (50 for each algorithm).

The H-PSOTS algorithm determined the optimum solution 
with a simulation runtime of  19 minutes, while the PSO algorithm 
required 43 minutes. The H-PSOTS algorithm resulted in greater 
exploration of  the search space in a shorter execution time because 
calculation processes were avoided when moving the particles during 
each iteration. The algorithm’s runtime offers the designer more 
flexibility to scale real systems, and it offers a set of  viable solutions 

with similar prices and reliability. Figure 8 shows the diameters of  
the optimized network and the nodal pressures obtained by the 
H-PSOTS algorithm.

ZJ network

The ZJ network, originally described by Zheng et al. (2011), 
is a real network in an eastern province of  China. It comprises 
50 loops, 164 pipes, 113 nodes and a single reservoir. The minimum 
pressure required at each node was 22 meters, which can be 
considered the lower pressure limit of  the WDN’s nodes. Pipe 
friction head loss was computed using the Hazen-Williams equation, 
whose coefficients were ω = 10.667, α = 4.871 and β = 1.852; 
the dimensionless roughness coefficient C was 130 for all pipes. 
Fourteen potential pipe diameters between 150 and 1000 mm 
were available for the network design (Table 3); therefore, 
the search space for this optimization problem consisted of  
14164 = 9.226 × 10187 possible solutions.

The number of  particles adopted in this case study was 
58, which corresponds to 35% of  the number of  pipes in the 
network. This follows the relationship determined in the analysis 
of  the Balerma network. The results of  the design using the 
PSO and H-PSOST algorithms and the works in the literature 
are shown in Table 4.
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Table 4. Results obtained for the ZJ network using various methods.
Authors Method Solution (106 $)

Zheng et al. (2011) NLP – differential evolution 7.082*

Bi et al. (2020) Differential evolution 7.125
Bi et al. (2020) Ant colony optimization 7.579

PSO 8.330
H-PSOTS 7.704

*Current best-known solution.

Table 3. Pipe diameters and costs for the ZJ network.
Pipe diameters (mm) Cost ($/m) Pipe diameters (mm) Cost ($/m) Pipe diameters (mm) Cost ($/m)

150 24.530 400 93.610 750 261.228
200 35.200 450 113.784 800 291.742
250 47.388 500 134.024 900 355.322
300 61.160 600 180.158 1000 426.690
350 76.450 700 234.74

Figure 8. Optimal pipe size solutions and nodal pressures obtained for the Balerma irrigation network using the H-PSOTS algorithm.

The value obtained using the H-PSOTS algorithm was 
$ 7.70 million, which corresponds to a reduction of  approximately 
7.5% compared to the PSO algorithm. The current best-known 
solution for the ZJ network reported in the literature is $ 7.082 million, 
as reported by Zheng et al. (2011), which was preceded by Bi et al. 
(2020), with a solution of  $ 7.431 million.

Figure 9 shows the evolution of  the costs of  the best 
solutions found by algorithms PSO and H-PSOTS during 
the optimization processes, while Figure 10 shows graphical 

representations of  the results obtained (costs and runtimes) in 
the 100 simulations performed. For the best results obtained, the 
simulation runtimes were 20 and 24 minutes for the H-PSOTS 
and PSO algorithms, respectively. As expected, the H-PSOTS 
algorithm presented a more efficient search, which resulted in a 
reduction in execution time of  about 20% compared to the PSO 
algorithm. This decrease occurred because of  the reduced number 
of  mathematical operations and iterative processing between 
Matlab and EPANET.
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Figure 9. Cost evolution of  the best solutions – ZJ network.

Table 5. Pipe diameters and costs for the Rural network.
Pipe diameters (mm) Cost ($/m) Pipe diameters (mm) Cost ($/m) Pipe diameters (mm) Cost ($/m)

44.0 12.0 141.0 55.0 307.0 146.0
64.0 17.0 159.0 61.0 384.0 199.0
80.8 21.0 207.0 98.0 480.0 285.0

104.0 34.0 225.0 116.0 518.0 334.0
117.0 42.0 262.0 126.0 622.0 411.0

Figure 10. Results obtained on the optimization process of  the ZJ network: (a) costs and (b) simulation runtimes.

Optimal WDN design presents a good configuration of  
diameters and nodal pressures, with gradual variations in diameters. 
In other words, it always presents the flow direction from the largest 
diameter to the smallest. Figure 11 shows the network diameters 
and nodal pressures obtained using the H-PSOTS algorithm.

Rural network

The Rural network is a real WDN based on an irrigation 
system and consists of  379 junction nodes, 98 loops, and two 
reservoirs linked by 476 PVC pipes. Because it contains numerous 
loops, the Rural network is a good representative example of  a 
highly complex WDN. The network was initially optimized by 
Marchi et al. (2014) using the genetic algorithm, PSO and differential 

evolution algorithms. The minimum pressure required at each 
node is zero, and the Darcy-Weisbach equation was adopted to 
calculate head loss using a roughness of  0.012 mm for all pipes.

The available set of  diameters used to design the network 
comprised 15 possible pipe diameters (Table 5). The large number 
of  possible diameters increased the search spaces, which presented 
15476 (6.61 × 10559) possible solutions, making it a good challenge 
for the algorithm proposed in this research.

The swarm consisted of  167 particles in the simulations 
with the PSO and H-PSOTS algorithms, and the results are shown 
in Table 6. Although the PSO algorithm had several iterations with 
values close to those of  the H-PSOTS algorithm, its solution and 
execution time were worse. Figure 12 shows graphical representations 
of  the results obtained (costs and simulation runtimes) in the 
100 simulations performed, while Figure 13 shows the evolution 
of  the costs of  the best solutions found by algorithms PSO and 
H-PSOTS during the optimization processes.

The H-PSOTS algorithm reached values close to the 
current best-known solution ($ 30.99 million) in 29 minutes, with 
an execution time that was 19% shorter than that of  the PSO 
algorithm (36 minutes). The algorithms’ evolutionary behavior profile 
is similar, with small evolutions at each iteration. Figure 14 shows 
the pipe diameters and nodal pressures of  the network optimized 
using the H-PSOTS algorithm.

The methodology proposed in this study is aimed at 
improving the design of  WDNs based on the execution time and 
the quality of  the results. This technique, which involves two high 
performance algorithms in applications of  this type, creates a set 
of  solutions that meet the water demands and minimum pressures 
at a minimum cost and in an acceptable execution time.
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Table 6. Results obtained for the Rural network using various methods.
Authors Method Solution (106 $)

Bi et al. (2015) Differential evolution 35.17
Marchi et al. (2014) Differential evolution 31.22

Bi et al. (2020) Differential evolution 30.99*

Bi et al. (2020) Ant colony optimization 36.74
PSO 46.45

H-PSOTS 35.68
*Current best-known solution.

Figure 11. Optimal pipe size solutions and nodal pressures obtained for the ZJ network.

Figure 12. Results obtained on the optimization process of  the Rural network: (a) costs and (b) simulation runtimes.



RBRH, Porto Alegre, v. 26, e11, 2021

Macêdo et al.

11/13

CONCLUSION

The H-PSOTS algorithm proved to be a good option 
for the optimal design of  large WDNs. The H-PSOTS and PSO 
algorithms were applied using the same conditions for three 
benchmark networks proposed in the literature (i.e. the Balerma 
irrigation network, the ZJ network and the Rural network). In all 
cases, the H-PSOTS algorithm achieved lower costs compared 
to the PSO algorithm with shorter execution times. The results 
were also compared with those of  other studies.

The Balerma irrigation network was used to determine the 
specific input parameters for the algorithms to establish a standard 
configuration for the design of  any WDN. It is noteworthy that, if  
the algorithms’ parameters were adjusted for each case study, they 
could obtain better results. In all cases, the criteria for interrupting 
the algorithms were an iteration tolerance of  30% and a maximum 
number of  1000 iterations.

The H-PSOTS algorithm found good solutions within a 
reasonable runtime. It explored the search space more efficiently 

than did the PSO algorithm, minimizing the calculations and the 
exchange of  information between the optimization algorithm and 
the hydraulic simulator. The results also demonstrated that the 
H-PSOTS algorithm can be applied in real systems and projects 
and can serve as an efficient tool to assist designers.
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Figure 13. Cost evolution of  the best solutions – Rural network.

Figure 14. Optimal pipe size solutions and nodal pressures obtained for the Rural network using the H-PSOTS algorithm.
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