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ABSTRACT

Uncertainty estimation analysis has emerged as a fundamental study to understand the effects of  errors inherent to hydrodynamic 
modeling processes, of  aleatory and epistemic nature, due to input data such as discharge, topography and bathymetry, to the structure 
and parameterization of  the mathematical models used and to their necessary boundary and initial conditions. The study reported in this 
paper sought to apply a Bayesian-based methodology, associated with thousands of  Markov Chain Monte Carlo simulations, in order 
to identify and quantify the uncertainty related to the Manning’s n roughness coefficient in a 1D hydrodynamic model and the total 
uncertainty involved in the prediction of  hydrographs and water surface elevation profiles resulting from flood routing through a reach 
located in the upper São Francisco river, between the Abaeté river outlet and the town of  Pirapora. The results show that the Bayesian 
scheme allowed an adequate posterior identification of  the parametric uncertainties and of  those associated to other sources of  errors, 
with important changes in the prior probability distributions. In addition, the residuals analysis corroborates the applicability of  the method 
to the analysis of  uncertainties in hydrodynamic modeling through the use of  a more flexible likelihood function than the classical one 
based on the hypotheses of  normality, homoscedasticity and uncorrelated residuals. Future work includes the sensitivity evaluation of  the 
posterior distributions to the addition of  lateral inflows, especially concerning the residuals serial correlation, as well as the adoption of  
other variables to update the prior uncertainties, and the validation of  the methodology through the use of  the posterior distributions to 
estimate the total uncertainty involved in the prediction of  floods other than the ones used in the inference process.

Keywords: Uncertainty estimation; Hydrodynamic models; Bayesian inference; Markov chain Monte Carlo simulation; Probabilistic 
flood inundation maps.

RESUMO

A avaliação de incertezas tem emergido como estudo primordial para se conhecerem os efeitos dos erros inerentes aos processos de 
modelagem de perfis de escoamento de vazões de cheia, de natureza aleatória e epistêmica, presentes em dados de entrada como vazões e 
topobatimetria, na estrutura e parametrização dos modelos matemáticos utilizados e nas suas necessárias condições de contorno e iniciais. 
Dessa forma, o estudo reportado neste artigo buscou aplicar uma metodologia de cunho Bayesiano, associada a milhares de simulações 
de Monte Carlo por Cadeias de Markov, a fim de identificar e quantificar a incerteza inerente ao coeficiente de rugosidade de Manning 
de um modelo hidrodinâmico unidimensional e a incerteza total envolvida na predição de hidrogramas e profundidades resultantes da 
propagação de cheias por um trecho do Alto rio São Francisco, entre a foz do rio Abaeté e a cidade de Pirapora. Os resultados mostram 
que o esquema Bayesiano permitiu uma adequada identificação a posteriori das incertezas paramétricas e associadas às demais fontes de 
erros, com alteração importante das distribuições de probabilidade estipuladas a priori. Ademais, a análise estatística dos resíduos da 
modelagem veio corroborar a aplicabilidade do método à análise de incertezas na modelagem hidrodinâmica por meio do uso de uma 
função de verossimilhança mais flexível do que a clássica função baseada nas hipóteses de normalidade, homoscedasticidade e ausência 
de correlação serial para os resíduos. A continuidade deste trabalho prevê ainda a avaliação de sensibilidade das incertezas a posteriori à 
inserção de afluências laterais, sobretudo no que tange à correlação temporal dos resíduos, bem como a adoção de outras variáveis como 
informação de atualização das incertezas, e a validação da metodologia por meio do uso das incertezas a posteriori para estimação da incerteza 
total envolvida na predição de outros eventos de cheia que não tenham sido utilizados no processo de inferência.

Palavras-chave: Estimação de incertezas; Modelos hidrodinâmicos; Inferência Bayesiana; Simulações de Monte Carlo por Cadeias 
de Markov; Mapas de inundação probabilísticos.
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INTRODUCTION

The evaluation of  floods and inundations, and their effects 
on riverine populations, has been the object of  study by water 
resources engineers worldwide. Numerical models of  hydraulic 
and hydrologic simulation have advanced greatly in the last two 
decades, which is partially due to the increase of  computational 
data processing capacity and the possibility of  acquiring accurate 
topographic bases in many parts of  the globe, especially in the 
United States and European countries. Despite the improvements 
made in the technical and data acquisition fields, and the efforts 
of  many governments and agencies at local and federal scales, to 
prevent and control floods and their impacts, some studies indicate 
that the associated damages continue to increase (MERWADE 
et al., 2008). In Brazil, it is estimated that the economic losses 
caused by floods amount to between US $ 1 billion and US $ 2 
billion per year (MILOGRANA, 2009). Thus, reducing losses, more 
accurately forecasting affected areas, and disseminating pertinent 
information for civil defense, planning agencies, and for the overall 
public, become essential activities for mitigating and reducing the 
effects of  flooding on riverine populations in urban and rural 
areas, as well as on the local economy (MERWADE et al., 2008).

Advances and improvements in models and in the quality 
and quantity of  input data, as well as the increasing need to 
understand, control and mitigate floods and their effects, have 
opened up new research and opportunities for the water resources 
sector. Some of  the new challenges are: (i) the importance of  
dealing with equifinality, or the possibility of  obtaining model 
outputs with comparable adjustment qualities from different, 
and sometimes numerous, possible combinations of  parameters 
(BEVEN, 2006); (ii) the definition of  the degree of  refinement 
and complexity required for a model to have a reasonable or 
acceptable physical response from the point of  view of  hydrological 
and hydraulic realism (DI BALDASSARRE et al., 2010); (iii) the 
need of  quantifying uncertainties or errors associated with input 
data, parameters and model structure (MERWADE et al., 2008); 
(iv) the estimation of  how the aforementioned information 
influences each other and contributes to total uncertainty (JUNG; 
MERWADE, 2012, 2015); (v) the quantification of  predictive 
uncertainty, which means the errors involved in predicting output 
variables as estimated by models (TODINI, 2007); and (vi) the 
attribution of  probabilities to the individual results provided by 
models, replacing the commonly adopted deterministic approach 
(MERWADE et al., 2008).

In this paper, we intend to seek alternatives to the issues 
(iii), (v) and (vi) above mentioned, in order to understand the 
reliability and limitations of  a hydrodynamic model widely used 
in the national and international technical and academic fields, 
powered by topobathymetric, discharge and stage data commonly 
available in Brazil and other countries.

In a great retrospective compilation on advances and 
challenges of  hydrologic and hydraulic modeling focused on flood 
studies and flood inundation mapping, Merwade et al. (2008) 
argued that the uncertainty quantification would be one of  the 
central points to be urgently studied in the following years by the 
community of  water resources engineers. After 10 years of  this 
compilation, there is a relevant amount of  studies in this field 
concentrated on rainfall-runoff  transformation (STEDINGER 

et al., 2008; VRUGT et al., 2008a, 2008b), supplied by numerous 
examples developed in previous years (see, for example, the 
compilation of  BEVEN; BINLEY, 2014). Hydraulic modeling, 
in steady or unsteady regimes, on the contrary, has presented 
a modest number of  examples (CAMACHO et al., 2015). 
In this case, the methods based on the theory of  probability for 
uncertainty representation prevail (HALL, 2003), as well as those 
of  approximate nature. These two aspects are characteristic of  
situations in which it is not possible to obtain analytical solutions 
to quantify either the uncertainty associated with each one of  the 
components of  an environmental system model (such as input 
and output, parameters and model structure), which is generally 
non-linear in nature, or the predictive uncertainty. Among the 
techniques with such attributes, those having wide applicability in 
hydrologic and hydraulic modeling are the ones based on Monte 
Carlo experiments (CAMACHO et al., 2015) and on updating the 
prior knowledge on the uncertainties of  each component of  an 
environmental system model through Bayes’s theorem (AYYUB; 
KLIR, 2006; HUTTON et al., 2011).

In regard to the hydraulic and hydrodynamic modeling 
focused on flood inundation water surface profile definition and 
mapping, the uncertainties are due to a number of  aspects that are 
inherent to the structure of  models, their parameters and input 
data, among which the most relevant are:

•	 Design peak discharge or design flood hydrograph, which 
are estimated either by local or regional frequency analysis, 
or regional regression curves based on basin physical 
features, or rainfall-runoff  modeling. Such techniques add 
uncertainties due to factors such as inaccurate or ill-defined 
rating curves, few streamflow measurement data available 
for its calculation and lack of  flood stage records. When a 
hydrologic model is used, the main sources of  errors are 
due to rainfall data acquisition procedures and methods for 
rainfall spatial interpolation, rainfall time distribution, and 
the uncertainties arisen from model parameters estimation 
(MERWADE et al., 2008);

•	 Topographic and bathymetric data for hydrologic and 
hydraulic models and their treatment for insertion in 
modeling, whose uncertainties can be attributed to the 
spatial resolution and to the vertical accuracy of  the 
information, and to the different methods available for 
spatial interpolation of  the raw data to generate digital 
terrain models (MDTs) or digital elevation models (MDEs) 
(COOK; MERWADE, 2009);

•	 Hydraulic modeling itself, which adds uncertainty due to: 
the parameters, especially the roughness; the number of  
dimensions considered (1D, 2D or 3D), the representation 
of  the main channel; the numerical method adopted for 
solving the hydrodynamic flow equations; the mesh or grid 
quality (whether 2D or 3D) or the cross sections spacing 
(if  1D); and the representation of  boundary conditions 
upstream and downstream of  structures such as bridges, 
levees and culverts (PAPPENBERGER et al., 2005; 
HUTTON et al., 2011); and

•	 If  the main goal is the development of  flood inundation 
maps, then errors due to the different techniques and 
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algorithms used in the flood extension generation defined 
from model output are added up (MERWADE et al., 2008).

Jung and Merwade (2012, 2015) pointed out the uncertainty 
estimation involved in hydrodynamic modeling as a tool to aid in the 
detection of  variables and data that require greater improvement in 
terms of  acquisition, calculation or treatment (such as topographic 
data and regional equations to obtain design floods), in order to 
reduce their contribution to total uncertainty.

Moreover, the propagation of  the uncertainties attributed 
to different sources of  errors in modeling through the respective 
model allows the quantification of  the total uncertainty associated 
with possible future values of  output variables, both for forecasting 
and prediction, called predictive uncertainty (TODINI, 2007; 
STEDINGER et al., 2008; SCHOUPS; VRUGT, 2010). When 
it comes to hydraulic and hydrodynamic modeling, predictive 
uncertainty characterizes the impact of  uncertainties on discharge 
and stage hydrographs along the river reach of  interest, and on 
flood inundation areas, the arrival time of  a flood wave and on 
the velocity variation in the main channel and floodplains.

In several studies of  uncertainty estimation in hydraulic 
and hydrodynamic modeling focused on flood inundation 
mapping, the predictive uncertainty associated with a design flow 
has been represented in the form of  a probabilistic flood map 
(PAPPENBERGER et al., 2005, 2006; DI BALDASSARRE et al., 
2010; BEVEN et al., 2011; JUNG; MERWADE, 2012). In such 
a situation, the contours depict floodplain areas with greater or 
lesser chances of  being reached than others, given the same design 
flow, due to uncertainties in data, parameters and equations that 
are involved in flood simulation and forecasting.

Finally, some studies exemplify how to represent the 
predictive uncertainty associated with hydraulic and hydrodynamic 
modeling on flood hazard maps, (PAPPENBERGER et al., 
2006), as well as on functions defined to support decision making 
process and flood warning in the occurrence of  extreme floods 
(TODINI, 2007).

The Bayesian approach applied to the uncertainty 
estimation

Among the several methods that emerged in the last decades 
aimed at quantifying uncertainties in models used in several areas of  
knowledge, those of  Bayesian approach find examples in hydrology, 
hydraulics and hydrogeology (HUTTON et al., 2011; VRUGT, 
2016). Generally speaking, these methods allow the combination 
of  the initial knowledge about the variability of  parameters and 
variables involved in modeling with one or more sets of  systematic 
observations of  a phenomenon associated with them (HUTTON 
et al., 2011). Part of  the explanation that follows was adapted 
from Vrugt (2016) and is focused on the model parameters in a 
similar fashion to several studies (PAPPENBERGER et al., 2005; 
BLASONE et al., 2008; The SCHOUPS; VRUGT, 2010; SILVA 
et al., 2014; CAMACHO et al., 2015). In the following paragraphs, 
the expression “probability density function” is replaced by the 
abbreviation PDF.

Consider that  { }1, , ny y=Y 

  is a discrete vector of  
measurements, or observations, of  a certain phenomenon (e.g. flow 

in a gauged river cross section) at times { }1, , n=t 
 that summarizes 

the response of  certain environmental system ℑ due to observed 
input data { }1, , nx x=X 





 . In a simplified way, observations are associated 
with this physical system through the following relationship:

( )← ℑ +Y θ ε  	 (1)

where { }1, , dθ θ= θ  represents a parameter vector and { }1, , nε ε= ε  
is a n-vector of  residuals (i.e. errors).

Having a mathematical model to explain the physical 
process in question, it can be represented by the generic expression:

( ) ( )0 0, , , ,← + = +Y X E Y X E θ ϕ θ ϕF 	 (2)

where 0ϕ   signifies the initial conditions; { }1, , ne e=E 
  includes errors 

in observed data (both in input, X , and output variables, Y ), as well 
as errors inherent to the F  model itself  and its parameterization 
θ; and ( ) { }0 1, , , , ny y=Y X θ ϕ  is the output vector simulated by 
the model.

The problem synthesized by equations 1 and 2 can be 
analyzed through a Bayesian approach, in which the posterior 
joint PDF of  parameters “can be derived by conditioning the 
spatio-temporal behavior of  the model on measurements of  the 
observed system response” (VRUGT, 2016). In other words, 
the resulting probability distribution expresses the uncertainty 
associated with the model parameters, previously represented by 
the prior knowledge, which has been updated using the available 
information. Formally, these concepts may be represented by the 
Bayes’s theorem, adapted to the uncertainty estimation, as shown 
in Equation 3:

( ) ( ) ( )
( )

p ·p |
p |

p
=

Y
Y

Y







θ θ
θ 	 (3)

where ( )p θ  and ( )p | Yθ  represent, respectively, the prior and the 
posterior joint PDFs of  the model parameters, and ( ) ( )p | L |≡Y Y θ θ  
denotes the likelihood function. The evidence represents the 
prior joint predictive PDF, which operates as a normalizing 
constant (scalar) such that the posterior distribution integrates 
to unity. In practice, ( )p Y  is not required for posterior estimation, 
since all statistical inferences about ( )p | Yθ  can be made from the 
unnormalized probability density below (KAVETSKI et al., 2003; 
CAMACHO et al., 2015; VRUGT, 2016):

( ) ( ) ( )p | p ·L |∝Y Y θ θ θ  	 (4)

The concept expressed in Equation 4 is widely employed 
in order to quantify parametric uncertainty and propagate it 
through the model in order to calculate predictive uncertainty. 
Kavetski et al. (2003) have proposed an adaptation from this 
classical formulation to allow the separation of  the uncertainties 
due to input data errors of  those arising from errors of  the 
parameters in a rainfall-runoff  modeling.

Based on these initial concepts, four basic elements are 
necessary to implement the Bayesian approach in order to quantify 
modeling uncertainties, as pointed out by Hutton et al. (2011):

•	 Definition of  the content of  the prior information, expressed 
by means of  theoretical prior probability distributions for 
each one of  the model parameters;
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•	 Choice of  an appropriate error model, which consists of  
assumptions about the expected behavior of  the residuals 
vector E, as well as the theoretical probability distribution 
that best represents them;

•	 Deduction of  an appropriate likelihood function, starting 
from the hypothesized error model; and

•	 Analytical deduction of  the posterior joint PDF, whenever 
possible, or application of  numerical methods for its 
estimation, which is the case in most practical situations 
in environmental system modeling (HUTTON et al., 2011; 
BOZZI et al., 2015).

The prior probability distribution may be non-informative or 
informative. In the first case, non-informative distributions are used, 
which conceptually demonstrate the vague prior knowledge about 
the parameters or represent the expectation that the information 
provided by observed data might exceed the prior content of  
parameters (FERNANDES; SILVA, 2017). For this purpose, 
several authors consider the uniform distribution with lower and 
upper limits that express the plausible values range of  a given 
variable or parameter (PAPPENBERGER et al., 2005; VRUGT 
et al., 2008a; SCHOUPS; VRUGT, 2010; JUNG; MERWADE, 
2012). The Gamma distribution with small scale parameter may be 
used to prescribe a rigorously formal non-informative distribution 
with unlimited θ (FERNANDES; SILVA, 2017).

In the second case, an informative distribution should be 
elicited, thus reflecting the previous knowledge about the evaluated 
variable or parameter. Distributions such as the Normal (truncated 
or not), Beta, Gamma or Triangular may be applied, as reported 
by Kavetski et al. (2006) and Bozzi et al. (2015).

In turn, the likelihood function ( ) L | Yθ  can be interpreted 
as a metric that summarizes the differences between the model 
simulations and the corresponding observations (i.e. errors, or 
residuals). In other words, it is summarized in most cases by 
a probabilistic expression that denotes the functional relation 
between output data and θ, and thus indicates the overall 
behavior assumed for the residuals. This is the reason why its 
definition depends directly on the so-called error model, as 
defined by Kavetski et al. (2006), Schoups and Vrugt (2010) and 
Hutton et al. (2011). It does not need to be properly represented 
by a PDF - which in turn defines whether the method is formally 
Bayesian or not (STEDINGER et al., 2008; HUTTON et al., 2011; 
VRUGT, 2016). A widely adopted hypothesis is that the residuals 
( ) ( ) ( ) ( ){ }1 , , ne e= − =E Y Y

θ θ θ θ  are free from autocorrelation, in 
which case the likelihood function can be expressed by Equation 5:

( )


( )( )


( )( )


( )( )
1 1

1

L | f f f
tn

n

n ty yy
t

y y y
=

= × × =∏Y 

θ θ θ θ 	 (5)

where ( )fa b  denotes the PDF of  a evaluated at b (VRUGT, 
2016). Depending on the assumptions made about the model 
residuals, expressions ( )fa b  are deduced to obtain likelihood 
functions applicable to different environmental systems. For 
example, if  it is assumed that the residuals are normally distributed, 
e.g. ( ) ( )2~ 0, ˆt te σθ  , then Equation 5 becomes:

( )
 ( )


2

2

2
1

1 1L | , ·exp ·
2

ˆ
2 ˆ

n
t t

t tt

y y

=

  − = −    σσ   
∏Y

θ
θ σ

π 	
(6)

where  { }1,ˆ , tσ σ= σ  is a vector of  the standard deviations of  
errors contained in observations (when compared to simulation 
outputs). Equation 6 allows consideration of  homoscedasticity 
(constant variance) or heteroscedasticity (variance depending on the 
information magnitude). Variables associated with residuals, such 
as those of  vector σ̂, may be inferred along with the parametric 
vector θ, in circumstances in which a posterior estimation from the 
error series is not possible or even when the objective is to quantify 
its uncertainties in a similar fashion to the ones performed for 
the model parameters. They are generally assigned to error model 
parameters (SCHOUPS; VRUGT, 2010) or latent or nuisance 
variables (KAVETSKI et al., 2003, 2006; VRUGT, 2016).

For reasons of  numerical stability and algebraic simplicity, 
it is convenient to work with the log-likelihood function. Thus, 
Equation 6, for example, takes the format of  Equation 7:

( ) ( ) ( ){ }
 ( )


2

2

1 1

1L | , ·log 2 log ·ˆ
2 2

n n
t t

t
t t t

y yn π σ
σ= =

 −
= − − −   

 
∑ ∑Y

θ
θ σ 	  (7)

which can be reduced to Equation 8 (KAVETSKI et al., 2003):

( ) ( )( )2

1

1L | ·log
2

n

t
t

n e
=

 − ∝ −   
   

∑Yθ θ  	 (8)

if  the errors are homoscedastic. In this case, the variance 
can be estimated, after Bayesian inference, using Equation 9 
(KAVETSKI et al., 2003):

( ) 2
2

1

1 ˆ·
n

t
tn

eσ
=

 ≈  ∑ θ 	 (9)

in which θ̂ is the mode of  the posterior parametric vector estimate.
Equation 8 is the most adopted likelihood function in 

uncertainty assessment studies associated with rainfall-runoff  
transformation or hydrodynamic models that have used the formal 
Bayesian approach (KAVETSKI et al., 2003; VRUGT et al., 2003, 
2008a; CHENG et al., 2014; CAMACHO et al., 2015).

However, the correct prescription of  the error model, 
and, consequently, of  the likelihood function, remains one of  
the major challenges of  the Bayesian approach applied to the 
study of  uncertainties, since most modeled physical processes 
have nonlinear behavior and show autocorrelated, heteroscedastic 
and non-Gaussian modeling residuals (KAVETSKI et al., 2003; 
SCHOUPS; VRUGT, 2010). Thus, the adoption of  likelihood 
functions similar to equations 7 and 8 may lead to poor, incorrect 
estimation of  the posterior joint PDF (KAVETSKI et al., 2003; 
HUTTON et al., 2011).

Due to this standoff, several studies of  likelihood functions 
evaluation were carried out to define expressions with the ability 
to adequately characterize the above conditions for the residuals 
(SCHOUPS; VRUGT, 2010; SMITH et al., 2010; SCHARNAGL 
et al., 2015), at the cost of  adding some variables related to them. 
This aspect certainly resulted in more complexity to the Bayesian 
estimation process and in the possibility of  better identification 
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of  the uncertainties associated with the modeling parameters, in 
addition to the perspective of  being able to represent, albeit implicitly, 
the structural uncertainties and those associated with input and 
output data (STEDINGER et al., 2008; HUTTON et al., 2011).

Once the prior PDFs and the likelihood function have been 
defined, the posterior joint PDF estimation of  the parameters of  the 
model and also of  those related to the residuals, when applicable, 
is then estimated. Due to the nonlinear nature of  most real systems 
and their models, this task becomes impractical through the use 
of  equations or analytical approximations (VRUGT, 2016). Thus, 
iterative methods based on Monte Carlo simulations (MC) are 
generally used for generating posterior distribution samples and 
obtaining their statistical descriptors.

Classic Monte Carlo simulation methods are based on 
generating thousands of  samples from the prior PDFs. Although 
already widely used, they have been shown to be ineffective both 
in exploring higher order multidimensional parametric spaces 
and in situations of  incorrect prescription of  the prior PDFs 
(HUTTON et al., 2011).

The major shortcoming of  MC simulations is that 
information from the model sampling procedure at each run is 
not used to improve exploration of  the HPD – High Probability 
Density – region of  parameter space (HUTTON et al., 2011). As 
a way to overcome this limitation, techniques based on Markov 
Chain Monte Carlo (MCMC) simulations emerged about 70 years 
ago (METROPOLIS et al., 1953; HASTINGS, 1970), based on 
the generation of  a random walk through parametric space that 
progressively reaches a stationary distribution representing the 
target distribution, which, in the case of  Bayesian techniques, can 
be considered as a posterior joint distribution. Using some objective 
criterion to perform the jumps between successive iterations in a 
chain, guided by the so-called proposed distribution, a sample of  
parameters is generated from the target distribution, and assigned 
to an acceptance probability, thus defining whether the current 
state of  the chain should be used to evolve to the next step, or if  
it should be done from the previous state.

MCMC techniques have evolved over the last decades to 
accelerate chain convergence toward stationary distribution, and 
to ensure the applicability of  the method to high dimensional 
models. Among the most recent advances, two algorithms are 
mentioned: Differential Evolution Markov Chain or DE-MC (TER 
BRAAK, 2006 apud VRUGT, 2016), and Differential Evolution 
Adaptive Metropolis or DREAM (VRUGT et al., 2008a, 2008b, 
2009). Vrugt (2016) presents a retrospective compilation of  the 
most important MCMC algorithms, the main differences among 
them and the improvements provided by each one.

Regarding the hydraulic modeling of  floods, in steady or 
unsteady regimes, the studies of  uncertainty quantification that 
use informal likelihood functions prevail, this being the reason 
why they are called pseudo-Bayesian methods. These functions are 
based on performance measures commonly used in hydrologic and 
hydraulic modeling, involving the differences between simulated 
and observed values ​​of  the output variables (discharge in the basin 
outlet or the downstream end of  the river reach; depth and width 
in cross sections; flood inundation area along a river reach). The use 
of  these expressions generally does not adequately express the 
nonlinear nature inherent to most environmental system models 
and their residuals, which may lead to the incorrect estimation of  
the posterior parameter PDFs, as exemplified by Kavetski et al. 
(2003), Stedinger et al. (2008), Vrugt et al. (2008b) and Camacho 

et al. (2015). Moreover, these equations are not necessarily 
constructed from hypotheses about the statistical behavior of  
residuals, unlike equations 7 and 8. This aspect is pointed out by 
Stedinger et al. (2008) as one of  the reasons why informal Bayesian 
methods do not allow estimation of  model structure and output 
data uncertainties, implicitly represented by residuals ( )te θ .

Another important difference between formal and informal 
Bayesian procedures that may compromise posterior estimation, 
when the latter are used, is the criterion for selecting valid simulations 
for the inference process. In the first case, it is the application 
of  equation 4 to each iteration of  MC or MCMC schemes that 
provides convergence to the HPD region in multiparametric space. 
The informal Bayesian techniques require the user to define what 
this selection will be like, using, for example, the 10% best outputs, 
in the light of  the chosen performance measure(s).

The use of  informal likelihood functions and criteria such 
as the aforementioned for estimating the posterior joint PDF of  
vector θ has been established with the advent of  GLUE - Generalized 
Likelihood Uncertainty Estimation, proposed by Beven and Binley 
(1992). An important part of  studies focused on the uncertainty 
quantification in hydrodynamic modeling draws on its methodological 
framework (PAPPENBERGER et al., 2005, 2006; BEVEN et al., 
2011; JUNG, 2011; JUNG; MERWADE, 2012; STEPHENS et al., 
2012; ALI et al., 2015; CAMACHO et al., 2015).

As an alternative approach to Bayesian, there are studies that 
perform the propagation of  parameter uncertainty, prescribed in 
the form of  marginal PDFs, via Monte Carlo simulations, without 
adopting any criteria to evaluate and compare their performance. 
Such is the case of  the study by Smemoe et al. (2007), where the 
evaluated parameter was the CN - Curve Number used in the SCS 
- Soil Conservation Service rainfall-runoff  method (MISHRA; 
SINGH, 2003) and its impact on the 100-year flood inundation 
mapping. Another approach to flood modeling under various 
simplifications is that given by Bozzi et al. (2015), who deduced 
analytical equations for the depth variation in a prismatic channel 
under steady and uniform regime due to uncertainties in roughness 
and flow, as represented by the Normal distribution with different 
position and scale parameters.

Despite the importance of  comparing results obtained 
from these different methods (HUTTON et al., 2011), such 
studies are sparse in the field of  hydraulic modeling. In a rare 
exception, Camacho et al. (2015) evaluated the posterior PDF 
for the roughness of  a 3D modeled estuarine region estimated 
from the formal application of  the Bayes Theorem via MC and 
MCMC simulations, as well as with the use of  GLUE, always under 
the hypothesis of  normality, homoscedasticity and absence of  
autocorrelation for the model residuals. In the first two conditions, 
similar results were found, while GLUE did not improve the 
estimation of  uncertainties regarding the prior knowledge.

MATERIAL AND METHODS

In the present study, we used the formal Bayesian approach 
applied to a hydrodynamic modeling aimed at obtaining flood water 
surface profiles, with the purpose of  quantifying the uncertainties 
regarding the parameters of  the model used, as well as those 
associated with other sources of  modeling errors – as the ones 
from the model structure and input and output data. Finally, the 
uncertainties arising from all these sources are jointly propagated 
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through the model in order to evaluate their effect on outputs 
such as the outflow hydrograph, the water surface profiles along 
the selected river reach and the flood inundation area in its final 
portion, and ultimately inferring the total predictive uncertainty.

As the main objective is to evaluate the applicability of  the 
method to this type of  modeling, it was decided to select a simple 
hydraulic model widely used in both national and international 
technical and academic fields, named HEC-RAS (River Analysis 
System), in its 5.0.5 version, developed by the USACE Hydrologic 
Engineering Center.

Although HEC-RAS allows 1D or 2D flow modeling, the 
first option was chosen due to the availability of  topobathymetric 
data and also to avoid the introduction of  uncertainties caused 
by the combination of  topographic bases with different accuracy 
and resolution (technique often used in 2D modeling due to the 
different sources of  information available to shape the terrain 
surface).

For the present case, the Bayes Theorem was applied, as 
in equation 4, making a judicious selection of  the four elements 
suggested by Hutton et al. (2011) for its application to hydrodynamic 
modeling with the information available in the chosen river 
reach, as detailed in the next three subsections of  this paper. 
The remaining subsections deal with the estimation of  parametric 
and total predictive uncertainty, the river reach characterization 
and the preliminary hydraulic evaluations conducted previously 
to the uncertainty quantification.

Prior PDFs selection

The hydraulic model parameters, θ, are the Manning’s 
roughness coefficients for main channel (nc) and floodplains 
(np), considered to be independent of  each other, in the same 
cross section. For simplicity and similarly to previous studies 
(PAPPENBERGER et al., 2005; JUNG, 2011), it was hypothesized 
that two values per simulation, drawn from the prior PDFs for 
each of  these two parameters, are sufficient to represent the 
roughness of  the river reach considered. Pappenberger et al. (2005) 
showed that the performance of  a hydrodynamic model is worse 
when considering different values of  nc and np between various 
topobathymetric cross sections, as compared to the hypothesis 
adopted in the present study. The preferred option also reflects 
the similarity of  either the vegetation cover in the floodplains 
or the bed material in the main channel along the stream reach 
under study.

Further, estimates about the variability of  roughness in 
both main channel and floodplains were made from tables shown 
in references such as Chow (1959), Arcement and Schneider (1989) 
and Hicks and Mason (1991) that would correspond to natural 
channels. Due to the absence of  additional elements that would 
allow differentiation between the different possible values for this 
type of  channel, it was defined that the prior knowledge about the 
uncertainty of  the roughness coefficients should be described by 
the Uniform distribution. Inferior and superior limits were then 
extracted from the mentioned bibliography, and any values in this 
interval were assigned equiprobability.

Conceptual model for the residuals and the 
correspondent likelihood function

The HEC-RAS model hydrodynamic component is based 
on an implicit finite difference scheme for numerical solution of  
Saint-Venant’s equations, which involves partial differences for 
discharge and depth over time and space and nonlinear relationships 
between hydraulic and geometric variables. Due to these aspects, 
nonlinear behavior is expected between the input variables (inflow 
hydrograph at the upstream end of  the reach) and the boundary 
and initial system conditions and the output variables, expressed 
in terms of  hydrographs and cross-section depths of  any cross 
section along the river reach.

Thus, it is expected that this feature, together with the 
presence of  several sources of  uncertainties that contribute to the 
final uncertainty, measured through the differences ( ) ( )= −E Y Yθ θ , 
give the latter characteristics as serial correlation, heteroscedasticity, 
skewness and kurtosis. To represent such assumptions mathematically, 
the Generalized Likelihood function proposed by Schoups and 
Vrugt (2010) was adopted, and thus named for its ability to 
synthesize a variety of  statistical characteristics of  the modelling 
residuals. To express them, these authors proposed the following 
statistical model for the modeling errors ( )te θ :

( ) ·p t t te aσ=BΦ , with ( )~ SEP 0,1, ,ta ξ β  	 (10)

where ( )
1

1 ·B
p

i
p i

i

φ
=

= −∑BΦ   is an autoregressive polynomial with p parameters 
iφ , B is the delay operator ( )Bi

t t ie e −= , tσ  is the standard deviation 
at time t, and ta  is the i.i.d. random error with zero mean and unit 
standard deviation, described by a distribution known as SEP 
(Skew Exponential Power), with parameters ξ  and β , which are 
associated, respectively, with the skewness and kurtosis expected for 
this type of  error. The autoregressive polynomial aforementioned 
quantifies the serial correlation that may occur in nonlinear model 
residuals. Heteroscedasticity, in turn, is considered by assuming 
that the residuals standard deviation, tσ , increases linearly with the 
simulated flow rate, ty , i.e.:

0 1·t tyσ σ σ= +  	 (11)

where 0  σ  and 1σ  are, respectively, the intercept and the slope 
coefficient.

Finally, the SEP distribution models the remaining noise 
after autocorrelation and heteroscedasticity removal, thus adapting 
itself  to different degrees of  skewness and kurtosis. Its PDF is 
given by the following expression (SCHOUPS; VRUGT, 2010):

( ) ( )( )2/ 1

,1

2
p | , · ·exp ·t ta c a

βξ
β β ξ

σ
ξ β ω

ξ ξ
+

−= −
+

 	 (12)

where 

( ) ( )sinal ·
, · ·ta
t ta aξ ξµ σ

ξ ξ ξξ µ σ− += + 	 (13)

represent the standardized residuals ta  so that parameter ξ  varies 
in the interval [ ]1,1− . Additionally, ξµ , ξσ , cβ and βω  values are 
calculated as functions of  parameters ξ  and β , as in Schoups 
and Vrugt (2010). Special SEP cases, depending on the values 
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assigned to these two parameters, include the Uniform, Normal, 
and Laplace distributions.

Considering equations 10-13, the Generalized log-likelihood 
function has the form of  equation 14, according to the deduction 
described in Schoups and Vrugt (2010):

( ) ( )2/ 1

,1
1 1

2
L , | ·log log ·

n n

t t
t

e
t

n c a
βξ β

β ξ

σ ω
σ

ξ ξ
+

−
= =

 
= − − + 

∑ ∑Yθ η  	 (14)

where, similar to the notation given in Equation 7, { },c pn n=θ  is the 
parameter vector of  the hydrodynamic model, and { }0 1, , , ,pe φ σ σ ξ β=η  is 
the vector of  representative variables for the residuals te , considered 
as latent or nuisance variables to the Bayesian inference process, 
and whose uncertainties will be estimated together with those 
corresponding to θ.

It is worth noting that the error model proposed by Schoups 
and Vrugt (2010) also incorporates a parameter corresponding 
to the probable bias in outputs due to errors in input and output 
data, as well as in the model structure. However, it was not 
considered herein due to the expectation that there would not be 
such systematic error acting on the Y vector, when compared to Y .

Numerical method for sampling the posterior PDF

For numerical estimation of  the posterior joint and marginal 
PDFs, the MCMC method known as Differential Evolution Adaptive 
Metropolis, hereinafter called DREAM, and proposed by Vrugt 
et al. (2008a, 2008b, 2009), was used. Its algorithm has some 
advantages over previous MCMC techniques, such as parameter 
subset sampling rather than sampling from the entire parametric 
space, as well as outlier detection, and the use of  fewer chains 
to ensure convergence (VRUGT, 2016). Another advantage of  
DREAM is its availability in Matlab software language (VRUGT 
et al., 2008a; 2008b; 2009; VRUGT, 2016), in the form of  several 
subroutines that perform simulations of  N  simultaneous Markov 
chains, evaluate their convergence, and also provide results such 
as parameter values ​​in all chains throughout the sampling process, 
and their posterior statistical descriptors. Some internal parameters 
of  the method should be defined by the user, such as the number 
of  chains, N , in this case in an amount equal to or greater than the 
total number of  inferred parameters, according to Vrugt (2016); 
the number of  iterations, denoted by T, for each chain, and of  
parameters (for both hydrodynamic and error models); and, finally, 
the likelihood function to be used. The minimum and maximum 
limits for each parameter, their respective prior PDFs, and the 
observed data vector Y , which will serve as a paradigm for the 
uncertainty calibration from the Bayesian perspective, must also 
be prescribed.

Finally, a subroutine defining the model   for the evaluated 
system must be coupled to the main DREAM routine, whose 
outputs will be compared with the observed data at each iteration 
for each Markov chain. For this purpose, a Matlab script was also 
prepared for command activation of  the HEC-RAS Controller 
(GOODELL, 2014; LEON; GOODELL, 2016), a set of  routines 
developed by USACE to automate various modeling steps in 
HEC-RAS, such as: data input, simulations under different flow 
and/or geometry scenarios and results plotting.

Parametric and predictive uncertainty estimation

To evaluate the convergence of  the N  chains considered, 
the statistic of  Gelman and Rubin (1992) for each parameter 
was calculated, as recommended by Gilks et al. (1998) and Vrugt 
(2016). Accordingly, the burn-in period was considered as the 
number of  iterations *T  required for the parameter that reached 
convergence last. Thus, the posterior PDF could be constructed 
from samples extracted from the ( )*·N T T−  iterations of  each 
parameter throughout the N  chains. Since each Markov chain starts 
from distinct points in the multiparametric space and achieves 
the same stationary distribution (the target distribution, or the 
posterior joint PDF), the results can be estimated by merging the 
parameter values between the chains once convergence is reached.

From these samples, it is possible to construct histograms 
and to calculate point estimators and credibility intervals for each 
of  the parameters, so as to assess the parametric uncertainty after 
observing the information contained in data Y .

To elaborate credibility intervals, the following concept 
was used, given in Equation 15 (FERNANDES; SILVA, 2017):

( )p d 1
U

L

w w = −α∫  	 (15)

where w is the variable of  interest, ( )p w  is its probability distribution 
(prior, or posterior, for example), and L and U are, respectively, 
the lower and upper limits of  the credibility range, which, in the 
Bayesian approach, represents the highest density probability 
range of  containing w, at the level ( )100· 1 %α− .

The construction of  credibility intervals is also one of  the 
ways to measure the predictive uncertainty for output variables 
extracted from the hydrodynamic model, denoted in this case 
by the variable py  and the vector pY . To do so, it is necessary 
to propagate the posterior uncertainties through the model, 
i.e. those associated either with the parameters, or with other 
sources, represented herein by latent variables. The py  percentiles, 
associated with a non-exceedance probability expressed by 1 α− , 
and hereafter named as 1y α− , are obtained from the following 
relation (SCHOUPS; VRUGT, 2010), represented in vector form:

( ) ( ) ( )( )1 11
P | P | | 1pY Y X Y X E Y Xα αθ ηe J

α− −
 ≤ = + ≤ = − 



    	 (16)

where J sets, as formed by parameters and latent variables { }, eθ η , 
are randomly drawn from the posterior joint FDP obtained by 
applying the chosen MCMC method and are used to generate J time 
series for model outputs, Y, and residuals, denoted in Equation 
16 as ( )eE η  since, in order to compose the predictive uncertainty, 
their generation depends on the error model parameters included 
in vector eη . These J time series correspond to J hydrodynamic 
model predictions at each time interval, from which it is possible 
to calculate predictive percentiles 1y α−  for each time step. Thus, for 
example, using 1  = 0.975α−  and 1  = 0.025α− , predictive percentiles 
with 97.5% and 2.5% of  non-exceedance are obtained for each time 
step of  the predicted hydrograph, which together will make up the 
95% credibility interval. If  ( )  = 0eE η , the predictive percentiles 
thus obtained embody only the predictive uncertainty associated 
with the parameters of  the hydrodynamic model.
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The computation of  errors in expression (16) requires the 
generation of  independent samples of  the ( )SEP 0,1, ,ξ β  distribution, 
which was performed using an algorithm provided by Schoups and 
Vrugt (2010) and detailed in their study. Once J series from the 
SEP are calculated, it is necessary to add the heteroscedasticity tσ  
and the serial correlation expressed by pφ , with the corresponding 
latent variables extracted from the set { }, eθ η  of  each draw.

Equation 16 can be applied to the same flood used as the 
paradigm Y , such that to evaluate the total uncertainty contained 
in its simulation through the selected hydrodynamic model and 
calculated with the available topobathymetric information and 
boundary conditions. Similarly, it can also be used to estimate 
the predictive uncertainty of  other floods, provided that the error 
structure in the outflow hydrographs and the parameters and 
latent variables uncertainty remain valid. This hypothesis seems 
reasonable for floods with magnitude similar to the flood used 
for the uncertainty calibration through the proposed scheme.

Predictive percentiles with 97.5%, 50% and 2.5% of  non-
exceedance corresponding to the peak discharge were used to 
construct the probabilistic flood inundation map at the downstream 
end of  the river reach studied, as well as probabilistic water surface 
profiles along it, associated with the flood used in the Bayesian 
inference process. For this, the flow rates corresponding to such 
percentiles were simulated through the HEC-RAS model under 
the steady flow regime condition. In this case, as their values ​​
incorporate other sources of  uncertainty than that contained in 
the roughness coefficients, the estimated posterior median values 
of  cn  and pn  were used. The results, expressed in terms of  flood 

inundation area and depths along the stream, should be considered 
with caution, as further evaluations need to be performed to 
check whether the structure of  residuals computed for these two 
variables is similar to that of  the obtained errors corresponding 
to outflow hydrographs.

Characterization of  the river reach and data 
availability

The methodology was applied to a reach of  the Upper 
São Francisco river, between the Abaeté river mouth and the city 
of  Pirapora, in the state of  Minas Gerais, within UTM SIRGAS 
2000 (zone 23S) coordinates of  473,600 and 513,700 E and 
8,005,150 and 8,087,000 N, making up about 100-km length, as 
shown in Figure 1.

This reach has 2 upstream river gauges, operated by 
CEMIG - Companhia Energética de Minas Gerais, one located 
on the São Francisco river and the other on the Abaeté river, 
30 km and 40 km upstream of  their confluence, respectively. At 
the downstream end, next to the BR-365 highway bridge, in the 
urban area of  Pirapora, there is another river gauge, operated by 
the Brazilian Geological Survey (CPRM), whose daily mean flow 
records were considered as the Y  information, particularly those 
related to the major floods on the record. The position of  the 
stream gauges in relation to the river network of  interest is shown 
in Figure 1 and some of  their features are summarized in Table 1.

Figure 1. Studied river reach position in relation to the regional drainage network.
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Due to the existence of  the Três Marias hydropower plant 
upstream, CEMIG has carried out topobathymetric surveys on 
several occasions, which make up the extension from the dam to 
the city of  Pedras de Maria da Cruz, about 300 km downstream. 
For the reach selected in this study, there are 22 cross sections 
available, surveyed in 2011, whose locations are indicated in Figure 1.

Also available is an MDT constructed by CEMIG for 
the riverbed and floodplains along the reach between the Abaeté 
river mouth and the city of  Pirapora, with 1m x 1 m horizontal 
resolution, which encompasses the banks and a 1 to 2 km wide 
band in the floodplains from each bank.

Hydraulic model construction and its coupling to 
DREAM

With this information, it was possible to develop a 
preliminary 1D hydraulic model in the preselected reach, which 
was extended to the mouth of  the Velhas river, in order to verify 
the dominant flow regime, the presence and influence of  hydraulic 
controls and their representation by the available cross sections, 
and, finally, to decide on the actual reach features that needed to 
be represented by the model. This appraisal was conducted mainly 
due to the expectation that the flow regime would be predominantly 
subcritical, which requires the prescription of  a downstream control 
condition. Although the rating curve of  the downstream river 
gauge (Pirapora-Barreiro; code 41135000) could be an excellent 
boundary condition in other circumstances, it was not applied in 
the present case, since the aim was precisely to evaluate the errors 
between the observed flows in the corresponding cross section 
and those simulated by the model. Thus, the river reach finally 
selected was that from the Abaeté river mouth to the cross section 
that acts as the hydraulic control for the downstream river gauge.

In view of  the information expressed in the available 
topobathymetric cross sections, it was verified that the rapids 
located in the upstream part of  the river stream along the city 
of  Pirapora operate as a control for discharges up to 5,000 m3/s 
at Pirapora-Barreiro gauge. Above this threshold, the backwater 
effect caused by the confluence between the São Francisco and the 
Velhas rivers needs to be taken into account, and additional sources 
of  uncertainty should be considered in the inference process in 
order to represent the hydraulic control and the effects imposed 
by this important tributary. Thus, since the main objective is to 

verify the applicability of  the methodology in order to quantify 
the parameter uncertainties and the total predictive uncertainty, 
it was defined that the model should finish at the cross section 
located immediately upstream to these rapids, considering flood 
propagation up to the abovementioned threshold flow.

To estimate these uncertainties, respecting the indicated 
upper flow limit conditioned by critical downstream control, the 
February 1992 flood event, one of  the largest recorded in the 
Upper São Francisco river, was selected. The peak discharge at 
the downstream gauge, Pirapora-Barreiro, has reached 5,098 m3/s. 
The hydrograph considered as an upstream boundary condition 
was obtained by summing the daily mean discharges at the two 
upstream gauges, under the assumption that the propagation 
effect would not be significant due to the short reach length from 
these gauges until the confluence between the Abaeté and São 
Francisco rivers. Thus, the inflow peak discharge was estimated 
to be 4,577 m3/s. In addition, lateral inflows were not considered, 
due to the lack of  river gauges on main tributaries and to the fact 
that the incremental area is not higher than 10%. In this case, it 
was assumed that the uncertainties entailed by flood hydrograph 
estimates in ungauged basins obtained from rainfall-runoff  
modeling or by regionalization methods would be greater than 
the difference between the downstream river gauge drainage area 
and the sum of  the contributions to the two upstream gauges.

The data selected as the  Y  vector for updating the prior 
information span the period from 12/01/1992 to 16/03/1992, 
and was selected to ensure the stability of  the hydraulic model 
and to fully represent the rising and falling limbs of  the flood 
hydrograph. After a series of  simulations in steady and unsteady 
regimes to assess the sensitivity to the boundary conditions, the 
flow range and the predefined limits for the roughness coefficients, 
the hydraulic model, as constructed in the light of  the mentioned 
information and assumptions, was coupled to the DREAM method 
toolbox. To this end, a Matlab routine was designed to open the 
HEC-RAS application at each iteration of  the Markov chains in 
order to access the constructed model and change the parameters 
under evaluation, in this case, the Manning’s roughness coefficients.

Table  2 summarizes the prior distributions and their 
respective limits considered for the hydraulic model parameters, 

{ },c pn n=θ , and the error model parameters, { }0 1, , , ,pe φ σ σ ξ β=η , 
as well as their units.

Table 1. Characteristics of  the stream gauges used.

Code 
(ANA, 2009) Name Operator River name

Geographical 
Coordinates SIRGAS2000 Data Availability Drainage 

Area (km2)Latitude Longitude
41020002 UHE Três 

Marias Jusante
CEMIG São Francisco river 18°11’13”O 45°15’10”S 01/1957 to 11/2017 50,816

41090002 PCH Salto do 
Paraopeba Ponte 

BR 040

CEMIG Abaeté river 18°06’32”O 45°27’43”S 04/1963 to 11/2017 5,186

41135000 Pirapora 
Barreiro

CPRM São Francisco river 17º22’09”O 44º56’36”S 06/1968 to 11/2016 62,200
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RESULTS

In the MCMC numerical scheme, 8 Markov chains were 
used, each with 8,000 iterations, so that each parameter of  the 
vector { }, eθ η  could have a maximum of  64,000 iterations. Of  these, 
the first 14,000 (i.e. 1,750 per chain) were discarded as a burn-in 
period, considering the number of  iterations required for the last 
parameter to reach convergence according to the Gelman-Rubin 
criterion.

Observing the autocorrelation values for each parameter 
along each chain, it was decided to skip 5 lags in order to compose 
the final samples, so that to ensure an adequate sampling of  each 
chain, with the attributes of  being representative and long enough 
for the 7 parameters to be inferred, following recommendations 
by Vrugt (2016). Thus, the results were obtained on the basis of  

( )*· / lag N T T −  = 10,000 samples extracted from the 8 chains, for 
each parameter.

The initial criterion for MCMC simulations was the 
need for 5 latent variables to adequately represent the modeling 
residuals, namely: 1φ , assuming that an AR (1) model would be 
sufficient to explain their serial correlation; 0σ  and 1σ , expecting a 
linear increase in variance with simulated discharge; and β  and ξ , 
to model, respectively, kurtosis and the existence of  heavy tails, 
and skewness that may occur in the error series after the removal 
of  autocorrelation and heteroscedasticity. The linear model for 
the variance as a function of  the discharge magnitude expresses 
the hypothesis that flows extracted from the upper branch 
of  rating curves might have greater relative errors than those 
corresponding to discharges in the middle and lower branches, 
as mentioned by Potter and Walker (1985), Kuczera (1996), and 
Domeneghetti et al. (2012).

The results under this criterion (not shown in here) indicated 
that although the modeling residuals ( )te θ  met their assumptions, 
the posterior estimates for the parameters of  the hydrodynamic 
and error models yielded very large 95% uncertainty bands for 
the outflow hydrograph, including negative 2.5% percentiles in 
the descending limb. This unfavorable aspect was credited to 
the high values inferred to 1φ , with a mean value of  0.9. Values 
close to the unit produce time series that are similar to a random 
walk, resulting in large random errors. Such behavior was found 
in the uncertainty calibration of  a hydrological model through a 
Bayesian scheme in one of  the watersheds studied by Schoups 
and Vrugt (2010).

For this reason, new tests were performed, considering 
an AR (2) model. Although in this scenario the mean of  1φ  has 
decreased in comparison to its value in the previous case, accounting 
for serial correlation up to lag 2 still yielded very large values for 
the 95% uncertainty range, with negative discharges at the lower 
limit of  the hydrograph falling limb.

Additionally, the values of  the 1st order autocorrelation 
coefficients for the ( )E θ  residual series generated from the prior 
PDFs of  the vector θ were estimated. A mean value of  0.75 was 
obtained, which is quite different from the value of  0.90 estimated 
in the first scenario. However, the still high value is thought to be 
due to the influence of  the rising branch of  the inflow hydrograph, 
which is quite pronounced as compared to its middle portion and its 
descending branch. This aspect might have been intensified by not 
accounting the lateral inflows into the hydrodynamic simulations.

From these first results, and given the relevance of  parameter 
1φ  in composing the predictive uncertainty in the present situation, 

a new scenario was defined, in which { }1 0, , ,e φ σ ξ β=η . In this 
case, parameter 1σ  was set to a constant value, estimated from 
other previously tested scenarios, in which invariably its mean 
tended to 0.01. Again, the posterior distribution for 1  φ  showed 
an aspect similar to that produced in the first scenario, with a 
mean close to 0.90.

Given the overestimation of  1φ  in the scenarios previously 
simulated, and in order to obtain more realistic intervals for the 
total predictive uncertainty, this variable was removed from the 
Bayesian uncertainty calibration, by fixing its value in a procedure 
similar to that described by Schoups and Vrugt (2010) and Silva et al. 
(2014). To this end, it was defined that 1φ  = 0.75, obtained directly 
from the ( )E θ  series, as outlined above. Thus, the inference 
process followed with the presence of  5 latent variables, being 

1φ  constant, and 0σ , 1σ , β  and  ξ  subject to the estimation of  their 
uncertainties, with uniform prior PDFs, defined within the lower 
and upper bounds shown in Table 2.

In order to corroborate the hypotheses established 
for the residuals ( )te θ , several evaluations of  these and of  the 
residuals after removing serial correlation were made, followed by 
heteroscedasticity extraction. The residuals thus obtained, denoted 
by ta  (see Equation 10), in theory should follow a SEP distribution 
with zero mean, unit standard deviation, parameter β  between -1 
and 1, and  > 0ξ . Part of  these analyses is illustrated in Figure 2.

It is observed that the residuals ( ) te θ  actually have variance 
that depends on the observed flow magnitude Y  (graph 02.a), 
although it undoubtedly becomes stable from a given discharge value 

Table 2. Prior distributions and lower and upper limits assigned to the parameters of  the vectors θ and eη .

Name Notation Unit Prior PDF Inferior 
bound

Superior 
bound

Manning’s roughness coefficient in the main channel nc -

UNIFORM

0.012 0.150
Manning’s roughness coefficient in the floodplains np - 0.020 0.200
Standard deviation: intercept σ0 m3/s 0 1000
Standard deviation: slope coefficient σ1 − 0 1
Kurtosis β − -1 1
Skewness ξ − 0.1 10
p-order serial correlation coefficient ϕp - 0 1
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on (about Y  > 2,000 m3/s). After the heteroscedasticity removal 
(graph 02.b), the dispersion in relation to Y  presents constant aspect, 
except for some points that remained more scattered. The mean 
values ​​of  residuals ta , obtained at each time step t of  the outflow 
hydrograph, in turn, show adherence to part of  the SEP distribution 
(0,1, β̂ ,  ξ̂ ), with β̂  and ξ̂  drawn from the set { }0 1, , ,e σ σ ξ β=η  which 
presented the highest value for log-likelihood ( )L , |e Yθ η , equal to 
0.978 and 1.078, respectively (graph 02.c: probability density of  
empirical quantiles versus theoretical ones - markers versus dotted 
line). These values ​​indicate that residuals after serial correlation 
and heteroscedasticity removal adhere to an approximately 
symmetrical Laplace distribution, with a sharper pattern than a 
Normal distribution. This shows that the stipulated error model is 
more representative of  outliers than a model under the normality 
hypothesis, as argued by Schoups and Vrugt (2010). It is worth to 
note, however, that the series formed by the empirical quantiles, as 
corresponding to the mean values ​​of  the residuals ta , has positive 
skewness, with higher concentration of  points to the right side of  
its mean (whose value is close to 0.00), as shown in graph 02.c. Part 
of  the posterior values of   ξ̂  (between about 1.00 and 1.367 – see 
Table 3) reflects this behavior, as values of   ξ̂  greater than 1.0 denote 
positive skewness in the ( )SEP 0,1, ,ξ β  distribution. It is estimated 
that the skewness of  the  ta  series could be better represented by 
the parameter  ξ̂  if  more points (i.e. observed flows) were used as 
information Y  in order to feed the DREAM numerical scheme. 
Using the sgedFit routine from the fGarch package (WUERTZ et al., 
2017) in the R Studio computer program, it was possible to estimate 
the parameter  ξ̂  of  all ta  series calculated after removing serial 
correlation with 1φ= 0.75 and the corresponding values of  tσ  from 
the ( )E θ  series obtained with the posterior θ samples. There was a 
dispersion of  ξ̂  around 0.9 and 2.1 (interquartile amplitude), so that 
the posterior PDF calibrated for this parameter, centered around 
1.054 and with 97.5% percentile equal to 1.367, partly represents 
the actual skewness values ​​of  the ta  series.

Finally, the partial correlogram constructed for the mean 
values ​​of  ta  (graph 02.d) indicates that the use of  coefficient 1φ  
equal to 0.75 guarantees the elimination of  serial correlation with 
respect to the previous time step.

Since the residuals met most of  the hypotheses that compose 
the error model, and the generalized log-likelihood function was 
adequate to explain them, it was possible to carry out the posterior 
parametric uncertainty inference. Figure 3 shows the histograms 
of  the hydrodynamic model parameters and latent variables based 
on 10,000 samples for each one.

The graphs show that, in most cases, there was a significant 
reduction of  the prior uncertainty stipulated, so that the Y  data 
used added information to the previously estimated uncertainties 
of  a 1D hydrodynamic model using a Bayesian scheme, under the 
assumption of  a likelihood function appropriate to the residuals. 
Some statistical descriptors of  the parameters of  the vectors θ 
and eη  are summarized in Table 3.

The posterior mean value for the Manning’s coefficient in 
the main channel was 0.039, with a standard deviation of  0.009, 
indicating a more accurate identification when compared to that 
presented by the roughness in the floodplains. In this case, the 
standard deviation was 0.052, 6 times higher than in the main 
channel, with a posterior mean of  0.076.

The posterior mode, in turn, was 0.026, close to the 
lower bound initially established for this parameter. Inspection 
of  log-likelihood values ​​(results not shown here) reveals that 
their global maximum occurs at pn  = 0.032, with local maxima 
encountered for the entire prior range. Based on these results, it is 
hypothesized that the flood used was not of  sufficient magnitude 
to cause floodplain inundation to the extent of  better identifying 
the roughness in this region. In fact, the return period for the 1992 
event is around 10 years. There are records of  larger floods, such 
as in 1979, but their use would add complexity to the boundary 

Figure 2. Behavior of  the hydrodynamic modeling residuals under the hypotheses of  serial correlation, heteroscedasticity, skewness 
and kurtosis.
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conditions considered in the model and could eventually result 
in additional uncertainties.

Similarly to cn , latent variables also had their limits 
significantly narrowed as compared to the prior condition. 
It is indeed noticeable that parameter 1σ , with a mean close to 0, 
cannot be disregarded since its posterior values, when multiplied 
by the downstream discharges and summed to 0σ , provide mean 
standard deviations between 140 and 270 m3/s, for the highest 
flow rates of  the observed hydrograph, and between 120 m3/s 
and 230 m3/s for the lowest flows. Some tests were performed 
considering the variance constant over time, and it was observed 
that the 0σ  posterior PDF compensates for the absence of  1σ . In 
addition, evaluations conducted for residuals provide evidence that 
the hypothesis of  heteroscedasticity seems more correct in the 
present case, although the results indicate the need for a longer 

flood event to better identify tσ . Furthermore, graph 02.b, where the 
variance becomes constant after heteroscedasticity removal, with 
the exception of  a few points, may indicate that different variance 
models, other than linear, should be tested for the hydrodynamic 
modeling. In such a case, larger modeling errors can occur for 
discharges that cause small water depths in the floodplain, just 
after the overflow of  river banks, for example.

β̂ , in turn, corroborates the adherence of  the residuals ta  
to a Laplace distribution, with its mean tending to unity, according 
to the SEP standardization shown in Schoups and Vrugt (2010). 
Finally, the posterior PDF of  ξ  represented, in part, the actual 
skewness of  the i.i.d. residuals. Obviously, other distributive 
models for residuals after removal of  serial dependence and 
heteroscedasticity can be adjusted as long as they adapt to the 
existing kurtosis and skewness in the posterior series obtained.

Table 3. Posterior statistical descriptors of  the hydrodynamic model parameters and the generalized log-likelihood parameters.

Parameter Mean Standard 
deviation Mode Median Skewness 

Coefficient
2.5% 

Percentile
97.5% 

Percentile
nc 0.039 0.009 0.030 0.037 1.913 0.027 0.061
np 0.076 0.052 0.026 0.058 0.792 0.021 0.190
σ0 164 30.2 225 164 0.173 107 227
σ1 0.009 0.008 0.000 0.007 1.636 0.000 0.030
β 0.865 0.118 0.935 0.896 -1.189 0.562 0.996
ξ 1.064 0.133 0.955 1.054 1.149 0.855 1.367

Figure 3. Posterior distributions of  the hydrodynamic model parameters and the generalized likelihood parameters.
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Figure 4. Scatter plots for posterior values of  the hydrodynamic model parameters and latent variables.

Figure 5. Credibility intervals at a level of  95% for the 1992 flood 
outflow hydrograph in the studied fluvial reach, representing the 
total predictive uncertainty.

The dependence relationship between hydrodynamic model 
parameters and latent variables subject to Bayesian inference can 
be seen in the scatter plots in Figure 4.

It is observed that cn  values ​​greater than 0.050 necessarily 
correspond to smaller pn  values ​​(below 0.100), although these also occur 
for the entire posterior amplitude of  the main channel roughness. 
This may explain the posterior linear correlation coefficient equal 
to -0.50 between these two parameters. In turn, 0σ  and 1σ  show a 
clear negative linear correlation (with a coefficient of  -0.55, the 
largest of  all), which might be expected due to the prescription of  
the error model (Equation 11) and to the values ​​of  tσ  compared 
to the discharge magnitude at Y . In other combinations between 
parameters of  θ and eη , there is no important linear dependence, 
so that the respective linear correlation coefficients vary between 
-0.41 and 0.14. Schoups and Vrugt (2010) point out values ​​for 
this coefficient whose modulus should be equal to or greater than 
0.70 as an indicator of  possible overestimation of  the number of  
parameters subject to calibration, with the possibility of  setting 
as constant the values of  some of  them.

Subsequently, sets of  parameters and latent variables were 
drawn from the 10,000 posterior joint samples for the predictive 
uncertainty composition associated with the 1992 flood and events 
similar in magnitude. Regarding the prediction of  the outflow 
hydrograph at the downstream end of  the river reach, measured 
at Pirapora-Barreiro river gauge (Figure 5), it is verified the 95% 
credibility interval amplitude attains between 730 m3/s (at the 
beginning of  the hydrograph, with observed discharges around 
1,000 m3/s) and 2,500 m3/s (near the peak flow, around 5,100 
m3/s), considering all sources of  uncertainty. In absolute terms, 
larger uncertainties (amplitudes) occur along with the highest 
flow rates observed, as well as in the 2nd half  of  the rising limb of  
the hydrograph. However, in relative terms (amplitude/observed 
flow), the largest uncertainties occur in the descending part of  
the hydrograph, due to the persistence of  a high amplitude and 
to the discharge reduction. These results may have arisen from 
the use of  an autoregressive model for the residuals ( )te θ  and 
from using Equation 10 to obtain ( )eE η , with a high value for 
the coefficient 1φ , so that the residuals in the falling limb present 

high values, with magnitude similar to those near the peak flow. 
Heteroscedasticity has indeed less influence than 1φ  on error 
composition in the present study. Moreover, even though the value 
of  this parameter has been set at 0.75, the last 6 discharge values 
at the lower limit of  the 95% credibility interval, corresponding 
to 2.5% percentiles, are negative, reaching -341 m3/s. However, 
lower values ​​for 1φ  would certainly lead to partial removal of  the 
1st order serial correlation between the residuals, interfering with 
the posterior uncertainty estimation of  the other latent variables 
and the roughness coefficients. One possible way to overcome 
this limitation of  the method with effects on the composition 
of  predictive uncertainty consists in applying the autoregressive 
model to the standardized residuals obtained after serial correlation 
removal, instead of  doing so to the raw heteroscedastic residuals, 
as proposed by Evin et al. (2013).

In addition, it is observed that the posterior parametric 
uncertainty has a much smaller effect on total predictive uncertainty 
compared to other sources of  uncertainty, expressed by the 
vector eη . In this case, the amplitude over the total uncertainty 
credibility interval varies around 10.0 m3/s and 370 m3/s, with 
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higher absolute values ​​corresponding to the regions of  the 
observed hydrograph with greater slope, either on the rise, or in the 
recession. It is also noted the difficulty of  the model to reproduce 
the observed flow rates in the hydrograph rising limb, even varying 
the Manning’s coefficients within their respective posterior ranges. 
On the contrary, the flood recession is reproduced properly, with 
observed discharges within the parametric predictive uncertainty 
range for the most part of  it. This phenomenon probably has 
occurred due to the absence of  lateral inflows from ungauged 
tributaries, which may have been important in shaping the 1992 
flood hydrograph at Pirapora-Barreiro cross section. In fact, this 
was a flood caused by widespread and long-duration rainfall on the 
Upper São Francisco river basin. Incremental basins, of  significantly 
smaller magnitude than that of  the upstream basin, and without 

the propagation effect induced by the Três Marias reservoir, may 
have contributed to significant volumes and peaks in the flood 
hydrograph rise, particularly from the dam releases, causing the 
difference between observed and simulated discharges. This is 
also likely to be the cause of  the high values ​​of  1φ  calculated for 
the ( )E θ  series. It is expected that the accounting of  the lateral 
flows into the modeling would certainly reduce the values of  1φ , 
thus leading to smaller total predictive uncertainty bands.

Future tests, complementary to this work, should evaluate 
the impact of  the insertion of  such inflows on the uncertainty 
calibration by means of  a Bayesian scheme, in particular on the 
modeling residuals behavior. This is expected to reduce the final 
predictive uncertainty associated with the 1992 flood.

Figures 6 and 7 depict, respectively, the probabilistic water 
surface profiles, and the probabilistic flood inundation area in the 
face of  total predictive uncertainty, in both cases corresponding to 
the peak discharge in the downstream river gauge. In the second 
case, emphasis was given to the urban region of  Pirapora that 
borders the focused river reach. The portion downstream the 
rapids has not been studied because it has relevant interference 
from the backwater effect caused by the Velhas river.

It can be seen from Figure 7, as a result of  the shape of  
the river valley in the mapped area and of  the wide variation of  
peak discharges induced by the wide credibility interval, that the 
flood inundation extent varies significantly between the lower 
and upper discharge limits, under the adoption of  median values ​​
for the Manning’s roughness coefficients in the main channel 
and the floodplains. It is worth remembering that these results 
are approximate, as they rely on the hypothesis of  steady flow 
regime, on the one hand, and on the statistical structure of  the 
residuals associated with the outflow hydrograph, on the other. 
Further complementary simulations should be performed in order 

Figure 6. Credibility intervals at a level of  95% for the water 
surface profiles along the studied fluvial reach, considering the 
total predictive uncertainty.

Figure 7. 1992 flood probabilistic inundation map in the upstream portion of  Pirapora.
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to investigate the impact of  using other variables as Y  paradigms 
on parametric uncertainties calibration, as well as those arisen 
from other sources of  modeling errors.

Another aspect shown in Figure  7 refers to the small 
difference between the inundation area reached by the peak 
discharges 50% and 97.5% percentiles that make up the 95% 
credibility range. This may be due in part to the river valley 
morphology and to the stage-discharge relationship in its upper 
branch in the downstream end of  the reach. Added to this there 
is a certain limitation of  the available topobathymetric survey and 
the MDT used, whose information was not sufficient to depict 
the entire floodplain at some sections.

CONCLUSIONS AND RECOMMENDATIONS

This study showed how it is possible to estimate the 
uncertainties associated with hydrodynamic modeling through 
a Bayesian scheme in which prior knowledge about roughness 
variability is updated with observed information from some 
descriptive variable of  the phenomenon in question, in this case, 
the flow rates gauged at the downstream end of  the studied river 
reach, located in the upper São Francisco river.

It is recommended to verify the methodology for a flood with 
similar magnitude to the one used for the uncertainty calibration 
process by sampling roughness coefficients from their posterior 
PDFs and performing thousands of  simulations to construct the 
credibility intervals for the outflow hydrograph. To obtain the 
total predictive uncertainty, synthetic residuals should be added 
modeled by the error distribution considered.

The applied methodology shows the relevance of  systematic 
monitoring of  variables such as stage, discharge, and even velocities, 
with potential use for calibration of  hydrodynamic model parameters, 
either from their point estimators or their uncertainties.

Even two-dimensional models, powered by more accurate 
digital terrain models, can have their uncertainties considerably 
increased if  there is not enough data to calibrate them.

Another aspect emanating from the results refers to the 
relevance of  considering lateral inflows to the hydrodynamic 
simulations in the present case, although these flows need to be 
estimated by indirect methods, such as regionalization or spatial 
transfer of  hydrometric information.

Future checks on the sensitivity of  the parameter uncertainties 
of  both the hydrodynamic model and the error model to the 
observed variable used in the calibration process, as well as the 
amount of  observed data, n, are also provided in the context of  
the continuity of  the research reported in this paper.
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