A new approach about the digestion of fibers by ruminants

Uma nova abordagem sobre a digestão de fibras por ruminantes


The decisive role of metallic cations in the formation of supramolecular clusters involving lignin, cellulose, and hemi-cellulose and its relationship to energy losses in ruminants associated with fibrous feed resources is still not well understood. Indeed, interactions between lignin, cellulose and metallic cations generate highly stable clusters that significantly decrease the capability of cellulase to break bonds between sugar units in order to facilitate the absorption of a great quantity of cellulose, which is ingested by ruminants as forage. Furthermore, several metallic cations cannot be absorbed as a consequence of the formation of coordinated ligations with the oxygen atoms of the lignocellulosic cluster. The loss of lignocellulose-metal clusters by ruminants is responsible for a substantial waste of nutrients, which is a significant problem in animal science. Moreover, the chemical structure of these relevant supramolecular systems is poorly understood. In the present review, we discussed this topic in detail in reference to relevant literature from the chemical and animal sciences in order to analyze the perspectives associated with the improvement of nutritional absorption from feed resources by ruminants.

cellulose; clusters; feed resources; lignin; metallic cations; ruminant

O papel decisivo de cátions metálicos na formação de cluster supramoleculares envolvendo lignina, celulose e hemi-celulose and sua relação a perdas energéticas em ruminantes associadas com fontes de alimentação fibrosas não é ainda bem compreendida. De fato, interações entre lignina, celulose e cátions metálicos geram clusters altamente estáveis diminuem significativamente a capacidade da celulase quebrar ligações entre unidades sacarídicas com o objetivo de facilitar a absorção de uma grande quantidade de celulose, a qual é ingerida por ruminantes na forma de forragem. Além disso, diversos cátions metálicos não podem ser absorvidos como uma conseqüência da formação de ligações coordenadas com os átomos de oxigênio do cluster lignocelulósico. A perda de clusters lignocelulósico-metálicos por ruminantes é responsável por um substancial desperdício de nutrientes, o que é um problema significativo em zootecnia. Ademais, a estrutura química destes relevantes sistemas supramoleculares é pobremente compreendida. No presente artigo, nós discutimos esse tópico em detalhes, em concordância com relevante literatura química e zootécnica, objetivando analisar as perspectivas relacionadas com a melhoria com a absorção nutricional a partir de fontes alimentares por ruminantes.

celulose; clusters; fontes nutricionais; lignina; cátions metálicos; ruminante

  • AHMED, S.A. Batch and fixed-bed column techniques for removal of Cu(II) and Fe(III) using carbohydrate natural polymer modified complexing agents. Carbohydrate Polymers, v.83, p.1470–1478, 2011.
  • AMAN, P. Composition and Structure of Cell Wall Polysaccharides in forages. In:JUNG, H.G.; BUXTON, D.R.; HATTIELD, R.D.; RALPH, J. (Eds.). Forage Cell Wall Structure and Digestibility Madison: ASA/CSSA, 1993. p.183-199.
  • BASTA, A.H.; El-SAIED, H. New approach for utilization of cellulose derivatives metal complexes in preparation of durable and permanent colored papers. Carbohydrate Polymers, v.74, p.301-308, 2008.
  • BLOUNT, D.H. Production of compounds, modified lignin, lignin-cellulose resinous compounds, carbon dioxide, carbohydrates and ethanol from biomass involves heating aqueous solution of alkali metal hydroxide and then heating biomass United States patent US 2004121436-A1, US6908995-B2, 5 Jan. 2001, 21 June. 2004.
  • BOUDET, A.M. A new view of lignifications. Trends in plant science, v.3, p.67-71, 1998.
  • CHAPPLE, C; CARPITA, N. Plant cell walls as targets for biotechnology. Current Opinion in Plant Biotechnology, v.1, p.179-185, 1998.
  • FLOGEAC, K.; GUILLON, E.; APLINCOURT, M. Adsorption of several metal ions onto a model soil sample: Equilibrium and EPR studies. Journal of Colloid and Interface Science, v.286, p.596–601, 2005.
  • HUYNH, V. Blomimetlc Oxidation of lignin model compounds by simple inorganic complexes. Biochemical And Biophysical Research Communications, v.139, p.1104-1110, 1986.
  • KASUYA, N.; WADA, I.; SHIMADA, M.; KAWAI, H.; ITABASHI, H. Effect of presence of rumen protozoa on degradation of cell wall constituents in gastrointestinal tract of cattle, Animal Science Journal, v.78, p.275-280, 2007.
  • Le NGOC HUYEN, T.; QUENEUDEC T'KINT, M.; REMOND, C.; CHABBERT, B.; DHEILLY, R.M. Saccharification of Miscanthus x giganteus, incorporation of lignocellulosic by-product in cementitious matrix, Comptes Rendus - Biologies v.334, p.837.e1-837.e11, 2011.
  • MARTINS, G.F.; PEREIRA, A.A.; STRACÇALANO, B.A.; ANTUNES, P.A.; PASQUINI, D.; CURVELO, A.A.S.;  FERREIRA, M.;  RIUL JUNIOR, A; CONSTATINO, C.J.L. Ultrathin films of lignins as a potential transducer in sensing applications involving heavy metal ions. Sensors and Actuators B, v.129, p.525–530, 2008.
  • NATIONAL RESEARCH COUNCIL - NRC. Mineral tolerance of animals 2.ed Washington, DC.: The National Academies Press, 2005.
  • NORMAN, N.; EARNSHAW, A. Chemistry of the Elements, 2thed. Butterworth-Heinemann, Oxford, 1997.
  • PEREIRA, A.A.; MARTINS, G.F.; ANTUNES, P.A.; CONRRADO, R.; PASQUINI, D.; JOB, A.E.; CURVELO, A.A.S ; FERREIRA, M.; RIUL JUNIOR, A.; CONSTANTINO, C.J.L. Lignin from sugarcCane bagasse: extraction, fabrication of nanostructured films, and application. Langmuir, v.23, p.6652-6659, 2007.
  • POKROVSKI, G.S.; SCHOTT, J.; FARGES, F.; HAZEMANN, J-L. Iron (III)-silica interactions in aqueous solution: insights from X-rtay absorption fine structure spectroscopy. Geochimica and Cosmochimica Acta, v.67, p.3559-3573, 2003.
  • RALPH, J.; HATFIELD, R.D.; SEDEROFF, R.R.; MACKAY, J.J. Variations in lignin: what do recent studies on lignin-biosynthetic-pathway mutants and transgenics reveal about lignification Madison, WI: US Dairy Forage Research Center, 1998. p.34-38.
  • SIPPOLA, V.O.; KRAUSE, A.O.I. Oxidation activity and stability of homogeneous cobalt sulphosalen catalyst Studies with a phenolic and a non-phenolic lignin model compound in aqueous alkaline medium. Journal of Molecular Catalysis A: Chemical, v.194, p.89–97, 2003.
  • UMEDA, J.; KONDOH, K. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Industrial Crops and Products, v.32, p.539–544, 2010.
  • VAN SOEST, P.J.; ROBERTSON, J.B.; LEWIS, B.A. Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, v.74, n.10, p.3583-3597, 1991.
  • WANG, A.; GAO, L.; REN, N.; XU, J.; LIU, C. Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnology Letters, v.31, p.1321-1326, 2009.
  • ZANETTI, M.A. Suplementação mineral para bovines de corte. In: SIMPÓSIO GOIANO SOBRE MANEJO E NUTRIÇÃO DE BOVINOS, 3., Goiânia. Anais... Goiânia: Congresso Brasileiro de Nutrição Animal, 2001. p.223-242.

Publication Dates

  • Publication in this collection
    16 Aug 2013
  • Date of issue
    June 2013


  • Received
    15 May 2013
  • Accepted
    27 June 2013
UFBA - Universidade Federal da Bahia Avenida Adhemar de Barros nº 500 - Ondina , CEP 41170-110 Salvador-BA Brasil, Tel. 55 71 32836725, Fax. 55 71 32836718 - Salvador - BA - Brazil
E-mail: rbspa@ufba.br