
Revista Brasileira de Zootecnia
Brazilian Journal of Animal Science
© 2018  Sociedade Brasileira de Zootecnia
ISSN 1806-9290 
www.sbz.org.br

Full-length research article

R. Bras. Zootec., 47:e20170226, 2018
https://doi.org/10.1590/rbz4720170226

Introduction

Single nucleotide polymorphisms (SNP) are used 
to predict genomic estimated breeding values (GEBV). 
Genomic prediction holds great potential for beef 
cattle (Garrick, 2011; Meuwissen, et al., 2001) and has 
revolutionized dairy cattle breeding (Barkema, et al., 2015; 
Boichard, et al., 2016). The uptake of GEBV in beef cattle 
has been relatively slow. The multi-breed nature of the beef 
industry is a challenge for GEBV (Garrick, 2011; Rolf, 
et al., 2014). 

Causative mutations could improve GEBV across 
breeds (Saatchi et al., 2014). However, causality is difficult 
to prove, and so, we turn our attention to “functional 
mutations”, such as non-synonymous SNP that alter the 
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ABSTRACT - In this study, we aimed to provide a wet laboratory validation for a set of single nucleotide polymorphisms 
(SNP), which had been identified as candidate functional variants in silico. Genotyping for candidate SNP was performed in 
Brahman and Tropical Composite cattle. After quality control, 29 SNP were first investigated individually for their association 
with female reproductive traits and then used as a panel for genomic predictions. The reproductive traits studied were age at 
first corpus luteum (AGECL; days), post-partum anoestrus interval (PPAI; days), and a binary trait that described if the cow had 
ovulated before weaning the first calf or not (PW, 0-1). Single nucleotide polymorphisms in six genes (FOXA2, TRAF4, IRF2, 
IRF1, BPTF, and CPEB1) were found to be significantly associated with reproduction traits . The genomic prediction method used 
was BayesR, to accommodate the 29 new SNP and compare their performance with predictions based on 50K genotypes (Illumina 
SNP chip). When new SNP and PLAG1 mutation rs109231213 were included in the genomic predictions for female reproductive 
traits their accuracies improved. The best predictions were obtained by combining the new SNP and the 50K SNP using BayesR 
analysis, with a 4% improvement in accuracy. The proportion of the genetic variance explained by the new SNP together was 
0.07 for AGECL, 0.03 for PPAI, and 0.02 for PW. It would be favourable to include these new SNP in future versions of bovine 
SNP chips to target selection for female reproductive traits. These new SNP are likely to improve genomic predictions for female 
reproductive traits in tropical beef cattle breeds, with varying degrees of Bos indicus content. 
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peptide, or regulatory SNP that impact gene expression. 
Gene networks and pathways have been used to select 
functional mutations that yield more accurate GEBV than 
high-density SNP chip (Snelling et al., 2013). Selected 
SNP panels formed by functional mutations may improve 
the portability of GEBV across breeds and into crossbreds 
(Snelling et al., 2012; 2013). The use of causative mutations 
yielded an increase in accuracy of 2.5-3.7%, when using 
sequenced genomes (Meuwissen and Goddard, 2010). 
When using sequenced genomes, biological information 
regarding SNP can also improve accuracies (Perez-Enciso, 
et al., 2015). Single nucleotide polymorphisms panels 
composed of functional markers could aid across breed 
predictions and aid adoption in beef industries.

The concept of the present work was to select functional 
SNP mapped to transcription factors (TF) associated with 
female reproduction. These TF regulate the expression of 
a set of genes associated with post-partum anoestrus and 
pregnancy outcomes (Fortes et al., 2014a). Initially, 140 
SNP mapped to TF and not represented on SNP chips were 
used to predict pregnancy outcomes. Selected TF originated 
from genome-wide association studies (GWAS; Hawken 
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et al., 2012), microarray data (Fortes et al., 2014b), and 
RNA sequencing (Canovas et al., 2014). Genotypes for 
putative functional mutations (n = 140) were imputed in 
an independent crossbred population of 1,988 cows. These 
in silico genotypes were used in genomic predictions and 
accounted for 29% of additive variation in rebreeding 
outcome (Fortes et al., 2014a).  The current study sought 
to provide a validation for the in silico trial by genotyping 
selected SNP.

Nonlinear genomic prediction methods that emphasize 
the discovery and use of functional mutations increased the 
accuracy of genomic prediction for dairy cattle (Kemper 
et al., 2015). We hypothesised that combining additional 
functional mutations and nonlinear methodologies could 
result in more accurate genomic predictions.

Material and Methods

Customized TaqMan® assays were designed to genotype 
33 SNP in two populations of female cattle. TaqMan® 
genotyping was performed following manufacturer’s 
instructions. The customized design of primers and 
probes for genotyping was carried out by uploading SNP 
flanking regions to the Thermofisher appropriate online 
tool: Custom TaqMan® Assay Design Tool (https://www.
thermofisher.com/order/custom-genomic-products/tools/
gene-expression/). The selected SNP were mapped to the 
candidate genes PBX1 (chromosome 3, at 4 Mb), POU6F1 
(chromosome 5, at 28 Mb), SOX5 (chromosome 5, at 86 Mb), 
PPARA (chromosome 5, at 117 Mb), IRF1 (chromosome 
7, at 23 Mb), FOXO3 (chromosome 9, at 42 Mb), TBP 
(chromosome 9, at 106 Mb), LHX3 (chromosome 11, at 
104 Mb), FOXA2 (chromosome 13, at 41 Mb), PLXNA2 
(chromosome 16, at 77 Mb), HNF1A (chromosome 17, 
at 65 Mb), TRAF4 (chromosome 19, at 20 Mb), BPTF 
(chromosome 19, at 49 Mb), CPEB1 (chromosome 21, 
at 23 Mb), CDC5L (chromosome 23, at 17 Mb), CUX1 
(chromosome 25, at 35 Mb), and IRF2 (chromosome 27, 
at 13 Mb). These SNP were selected from the 140 SNP 
previously described by Fortes et al. (2014a), because 
examination of sequenced genomes of representative sires 
showed that they were present in our validation populations. 
Sequenced genomes from Beef CRC sires were described 
before (Camargo et al., 2015) and were submitted to the 
1000-bull genome project (Hayes et al., 2014).

The female cattle populations used in this study were 
from two breeds: Brahman and Tropical Composites. 
These populations and measured phenotypes have been 
previously described (Hawken et al., 2012; Johnston et al., 
2009; 2010; 2013). Brahman heifers are considered pure 

Bos indicus, while Tropical Composites are a Bos indicus-
Bos taurus mixture breed.

We investigated three female reproductive traits 
measured early in life: age at first corpus luteum (AGECL; 
days), post-partum anoestrous interval (PPAI; days), and 
post-partum anoestrous interval with respect to weaning 
(PW; binary). The two traits relevant for post-partum 
anoestrous interval were measured after the first breeding 
season and reflect the outcomes of the first mating season. 
These heifers were joined in multiple sire mating systems, 
as two-year olds as per normal Australian beef industry 
practices. All phenotypes were measured using ultrasound 
imaging by experienced technicians and veterinarians. 
Ultrasound was used every other week to observe the first 
corpus luteum and annotate the age of the heifer on that 
occurrence (AGECL). After the first parturition, cows were 
scanned again to observe the first corpus luteum post-partum. 
The interval in days from parturition to first ovulation post-
partum (calculated from the corpus luteum observation) 
was used to record PPAI and PW. The binary phenotype 
PW was a record of 1, if the cow ovulated prior to weaning, 
and 0, if the cow did not (it ovulated only after weaning) 
as previously described (Zhang et al., 2014). The ability 
to ovulate before weaning the calf is considered important 
because it shortens the interval between parturitions and is 
a signal that the cow has overcome lactational anoestrus. 
Lactational anoestrus is a major cause of prolonged post-
partum anoestrus in Bos indicus herds.   

A total of 1,221 Brahman cows had DNA available 
for genotyping, and all were used in this study. However, 
only 914 Brahman cows were measured for AGECL. Of 
these cows, 576 conceived in the first mating opportunity 
and, therefore, had the post-partum phenotypes PPAI and 
PW measured. A total of 895 Tropical Composite cows 
were genotyped for this project. Among the genotyped 
cows, 798 had AGECL measured, while 665 had PPAI and 
668 had PW measurements. The calculation of the “zebu 
content”, or Bos indicus genetics, for both populations has 
been previously described (Porto-Neto et al., 2014).  These 
are two independent populations that represent different 
breeds, with Brahman having much higher contents of Bos 
indicus genetics. The test of association was carried out 
one SNP at a time and separately per breed first, resulting 
in P-values and estimated SNP effects for Brahman and 
Tropical Composite cows. In a second analysis, data from 
both breeds were combined to estimate the SNP association 
across breeds. Association analyses were carried using 
the SNP & Variation Suite software from Golden HelixTM 

(v7.6.8 Win64; Golden Helix, Bozeman, MT, USA 
http://www.goldenhelix.com). We used mixed models to fit 
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fixed effects of contemporary group and random effects of 
animal, SNP, and residual effects according to the following 
equation:

y = Xβ + Zaua + s + e,

in which y is the vector of observations (AGECL, PPAI, 
or PW); β is the vector of fixed effects related to the 
observations by the incidence matrix X; ua is the vector of 
random additive genetic effects related to the observations 
by the incidence matrix Za; s represents the SNP effect; and 
e is the vector of random residual effects. Contemporary 
groups (or cohorts) were formed by animals born in the 
same year and managed as a group in one of four research 
stations. Cohort had a significant effect for all studied traits 
as previously discussed (Barwick et al., 2009; Johnston 
et al., 2009).

In this mixed model, we used a genomic relationship 
matrix (GRM) built from high-density SNP chip genotype 
data. All animals had high-density SNP genotypes 
available, either directly genotyped or imputed from 
lower density genotypes. Cows were genotyped using the 
Illumina Bovine SNP50 BeadChip version 1. All SNP chips 
were assayed following the manufacturer’s protocols, and 
repeated samples were included in the genotyping exercise 
for quality assurance. The BEAD STUDIO software 
(Illumina, Inc.) was used to determine genotype calls. 
Imputation was performed using a reference set of 917 
animals genotyped with the high-density BovineHD chip. 
The imputation was performed using BEAGLE (Browning 
and Browning, 2009). Methods, number of animals used, 
and accuracy of imputation were described by Bolormaa 
et al. (2013). 

The GRM was generated using the SNP & Variation 
Suite software from Golden HelixTM, which implements the 
methods described by VanRaden (2008). Because we used 
a GRM for all our models and not pedigree matrices, we 
refer to the estimated heritabilities as “pseudo-heritability”. 
We used 3 GRM in this study, one built for Brahman only, 
another for Tropical Composites, and a third combining the 
Brahman and Tropical Composite genotypes in one GRM 
for across-breed analyses. When combining the two breeds, 
the method described by VanRaden (2008) estimated allele 
frequencies for one base population. Fixed effects used in 
the models considered effects of contemporary group within 
breed, and when breeds were combined in one analysis, the 
fixed effect of “breed” was also fitted in the equation. For 
all analyses, an interaction among cohort, farm of origin, 
and birth month was fitted as a fixed effect in the model. 
These fixed effects were deemed significant in previous 
analyses of this data (Hawken et al., 2012).

Two genomic prediction methods were evaluated: 
BayesR (a nonlinear method) and GBLUP (genomic best 
linear unbiased prediction). These methods have been 
compared in the analyses of dairy cattle data (Erbe et al., 
2012; Kemper et al., 2015). In short, BayesR assumes 
that SNP effects are drawn from a mixture of normal 
distributions, with increasing variance, allowing moderate 
to large effects, while GBLUP assumes all SNP effects 
are derived from the same normal distribution, resulting 
in very small SNP effects for all SNP. The assumption 
of GBLUP is that all SNP have small effects, which are 
normally distributed in a classical infinitesimal model. 
The mixture of distributions allowed in BayesR accounts 
for higher variability of SNP effects, which corresponds to 
the hypothesis that some genes may have no association 
with the investigated phenotypes and other genes may 
have a moderate effect. The variance of SNP effects had 
four possible values: 0, 0.0001σg

2  , 0.001σg
2  , and 0.01σg

2  , in 
which σg

2 is the total additive genetic variance. A Gibbs 
sampling scheme was applied similar to that described 
by Erbe et al. (2012). The four possible values for SNP 
variance fit the rationale that the three reproductive traits 
under investigation are complex traits, with the majority 
of associated SNP having small effects. This genetic 
architecture was reported in an earlier GWAS (Hawken 
et al., 2012).

Accuracies of genome predictions were computed as 
a correlation between the estimated GEBV and the actual 
phenotypes divided by the square root of the heritability 
of the trait. Improvement of accuracies were considered 
significant if greater than one standard error in absolute 
terms. To calculate the accuracies of genome predictions, 
the dataset that included both breeds was randomly split 
into thirds to serve as “reference” and “validation” data. 
Then, three-fold cross validation was used to estimate the 
prediction accuracies.

Results

Four TaqMan® assays failed to produce useful 
genotypes. Example results for an efficient assay 
(Figure 1 A) and a failed assay (Figure 1 B) are provided. 
Results from the remaining 29 SNP assays were used in 
subsequent analyses.

In Brahman cows, the call rate for one SNP was very low 
(18%) and was, therefore, excluded from further analyses. 
Call rates for included SNP were 94.76% or higher. The 
lowest minor allele frequency (MAF) had a value of 0.43%, 
and only eight Brahman animals were heterozygous for this 
SNP. This near fixation of the major allele prevents the use 
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of this SNP in association and genomic prediction analyses. 
Both the SNP with the poor call rate and the SNP with the 
low MAF were excluded from further analyses in Brahman 
cows.

In Tropical Composite cows, allele frequencies were 
different from Brahman cows. For example, the MAF 
observed for a SNP mapped to CUX1 in Brahman cows 
was 11.63%, while in Tropical Composites, the same 
minor allele was even less frequent (MAF = 1.54%). For 
ten SNP, the minor allele in one breed was actually the 
major allele in the other breed; these were rs464658757 
mapped to PPARA, rs136542281 and rs136630122 mapped 
to IRF1, rs381517561 mapped to LHX3, rs208587911 
mapped to FOXA2, rs132677230 in PLXNA2, rs717464147 
and rs209560708 located in TRAF4, rs439699867 and 
rs377982205 in BPTF, and rs457608533 in CDC5L. In 
Tropical Composites, the lowest MAF was 1.54 %, and the 
lowest call rate was 83%; and so, we were able to use every 
SNP in the analyses for this breed.

In Brahman cattle, AGECL had an estimated pseudo-
heritability of 0.57 with a variance of 3.13×10−5 and a 
standard error of 5.59×10−3. The proportion of the genetic 
variance explained by fixed covariates was 0.35. Three 
SNP were associated with AGECL, two mapped to the gene 
IRF1 and one mapped to CPEB1 (P<0.05) (Table 1).

The analysis of 576 Brahman cows measured for PPAI 
resulted in an estimated pseudo-heritability of 0.43 with a 
variance of 2.40×10−5 and a standard error of 4.90×10−3. 
The proportion of the genetic variance explained by fixed 
covariates was 0.20. For PPAI in Brahman, associated SNP 
(P<0.05) were mapped to the genes IRF1, BPTF, and IRF2 
(Table 1).

Not surprisingly, the results for PW are similar to 
those obtained for PPAI, as these are correlated traits. The 
pseudo-heritability for PW was 0.56, and the variance was 
1.63, while the standard error was 1.27. The proportion of 
variance explained by fixed covariates was 0.23. Two SNP 
were significant for PW, both mapped to IRF1 (P<0.05) and 
explaining between 0.82 and 1.20% of the genetic variance 
(Table 1). In Brahman, mutations in IRF1 were associated 
with all studied traits. 

In Tropical Composite cattle, AGECL had an estimated 
pseudo-heritability of 0.37, with a variance of 1.43×10−5 
and a standard error of 3.78×10−3. The proportion of the 
variance explained by fixed covariates was 0.09. The 
number of cows with phenotype records and genotypes was 
798. In Tropical Composite cattle, 665 cows had genotypes 
and records for PPAI. The estimated pseudo-heritability for 
PPAI was 0.35 with a variance of 1.20×10−5 and a standard 
error of 3.48×10−3. The proportion of variance explained by 
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Candidate mutations used to aid the prediction of genetic merit for female reproductive traits in tropical beef cattle 5

R. Bras. Zootec., 47:e20170226, 2018

fixed covariates was 0.09. For PW, the estimated pseudo-
heritability was 0.30, with a variance of 0.75 and a standard 
error of 0.87. The proportion of the variance explained by 
fixed covariates was 0.08. In total, 668 Tropical Composite 
cows had genotypes and phenotypes for the PW analyses. 
Association results were significant for IRF1, with two 
SNP associated to PW (Table 2). Single nucleotide 
polymorphisms in BPTF and IRF2 were associated with 
AGECL; BPTF was also significant for PPAI (Table 2).

Association results for each SNP in the analyses 
that considered the two breeds together are presented 
for AGECL, PPAI, and PW (Table 3). We present SNP 
associations with P<0.10. When both breeds were analysed 
together, AGECL had an estimated pseudo-heritability of 
0.59, with a variance of 3.58×10−5 and a standard error of 
5.98×10−3. The proportion of the variance explained by 
fixed covariates was 0.38. 

In a previous study, these same cows were genotyped 
for a SNP mapped to the PLAG1 gene: rs109231213 (Fortes 
et al., 2013). This PLAG1 SNP was significantly associated 
with AGECL in the mentioned study. We included the 
PLAG1 SNP genotype in the genomic prediction analyses. 
The genomic prediction method BayesR gives better results, 
especially when the new tested mutations that were mapped 

to the 17 candidate genes targeted in this study and the 
PLAG1 SNP are included in the model. The GBLUP models 
resulted in accuracies that were lower by one standard 
deviation (data not shown). The proportion of the variance 
explained by the 29 SNP together was 0.07 for AGECL, 
0.03 for PPAI, and 0.02 for PW. The best predictions are 
from the combined new panel, with the BayesR analysis, 
with a 4% improvement in accuracy (Table 4). 

Discussion

Four TaqMan® assays failed to produce meaningful 
results. TaqMan® is a robust methodology, but it may fail 
if there are other mutations nearby and/or if the population 
only has one of the tested alleles.

In a previous study, these same cows were genotyped 
for a SNP mapped to the PLAG1 gene: rs109231213 (Fortes 
et al., 2013). The PLAG1 SNP was mapped to a QTL on 
chromosome 14 that was associated with many traits of 
economic interest for beef and dairy cattle breeding. The 
SNP in this QTL was associated with height, weight, serum 
concentration of IGF1, and age at puberty (Fortes et al., 
2013; Juma et al., 2016; Karim et al., 2011; Littlejohn 
et al., 2012; Nishimura et al., 2012; Pryce et al., 2012; 

Table 1 - Brahman results: SNP association analyses

Trait Gene (SNP) P-value Effect Effect standard error Proportion of variance 
explained (%)

AGECL PPARA (rs464658757) 0.07 −11.43 6.39 0.37
AGECL IRF1 (rs134204419) 0.04 −11.95 5.90 0.47
AGECL IRF1 (rs135724080) 0.03 −12.86 5.93 0.55
AGECL CPEB1 (rs482358416) 0.01 −18.56 7.12 0.79
PPAI SOX5 (rs42615751) 0.05 −38.37 19.47 0.74
PPAI IRF1 (rs136542281) 0.04 14.22 6.99 0.79
PPAI IRF1 (rs136630122) 0.02 16.20 6.95 1.03
PPAI BPTF (rs377982205) 0.03 13.42 6.20 0.89
PPAI IRF2 (rs109901025) 0.01 −23.06 8.67 1.34
PW IRF1 (rs136542281) 0.04 −0.07 0.03 0.82
PW IRF1 (rs136630122) 0.01 −0.08 0.03 1.20
PW IRF2 (rs109901025) 0.08 0.07 0.04 0.57

SNP - single nucleotide polymorphisms; AGECL - age at first corpus luteum; PPAI - post-partum anoestrous interval; PW - post-partum anoestrous interval with respect to weaning.

Table 2 - Tropical Composites results: SNP association analyses

Trait Gene (SNP) P-value Effect Effect standard error Proportion of variance 
explained (%)

AGECL BPTF (rs377982205) 0.02 −16.85 7.49 0.63
AGECL IRF2 (rs109901025) 0.06 12.41 6.53 0.45
PPAI PLXNA2 (rs42599164) 0.07 −12.59 7.02 0.48
PPAI BPTF (rs439699867) 0.06 14.87 7.88 0.54
PW IRF1 (rs134204419) 0.04 −0.06 0.03 0.65
PW IRF1 (rs135724080) 0.02 −0.07 0.03 0.78
PW BPTF (rs439699867) 0.02 −0.06 0.03 0.76

SNP - single nucleotide polymorphisms; AGECL - age at first corpus luteum; PPAI - post-partum anoestrous interval; PW - post-partum anoestrous interval with respect to weaning.
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Saatchi et al., 2014; Utsunomiya et al., 2013). The PLAG1 
mutation rs109231213 was included in genomic predictions 
described in this study.

Association analyses were carried in both breeds. In 
Brahman cattle, AGECL-estimated pseudo-heritability was 
in agreement with previous estimates of AGECL heritability 
in this Brahman population (Johnston et al., 2009). The 
effect predicted for associated SNP was between 11 and 19 
days, which means that heifer puberty measured as AGECL 
could occur earlier in animals carrying the favourable 
variant.

The pseudo-heritability for PPAI was slightly lower 
than previous heritability estimates for the same population, 
which were between 0.51 and 0.52 (Johnston et al., 2010; 
Zhang et al., 2014). The difference in these heritability 
estimates could be due to the use of a pedigree relationship 
matrix in previous studies, while we used a GRM. More 
animals with phenotypes and pedigree were available, but 
not all those animals were genotyped. Because of genotype 
availability, about 100 cows from the previous studies were 
not included in our genomic analyses. 

Single nucleotide polymorphisms with associations to 
PPAI were mapped to genes SOX5, IRF1, BPTF, and IRF2. 
The absolute effects of associated SNP were estimated 
between 13 and 39 days.  This means that PPAI could 
be substantially reduced by selecting for the favourable 
alleles. The results for PW are similar to those obtained for 
PPAI, which is expected since these are correlated traits; 
one measured in days and another is binary simplification 
of the phenotype to indicate the ability of cows to ovulate 
prior to weaning. A higher heritability of PW (referred to as 
PPO), as compared to PPAI, was also observed in previous 
analyses of this population in which PW heritability was 
estimated from pedigree-based relationships as 0.62 (Zhang 
et al., 2014). 

In Tropical Composite cattle, AGECL had an estimated 
pseudo-heritability of 0.37. This result is lower than that 
published before for the same population (Johnston et al., 
2009). Again, herein we used a GRM and fewer animals 
than the study by Johnston and colleagues, which could 
explain the difference in results. 

From single SNP analyses in Tropical Composites, 
genes BPTF and IRF1 presented the most significant 
associations with these early-in-life indicators of female 
fertility. Gene IRF1 emerges as a candidate for harbouring 
mutations associated to reproductive traits measured early 
in life, in both Brahman and Tropical Composite cows. 

Gene IRF1 (Interferon regulatory factor 1) is a 
transcription factor, which, in mammals, activates the 
expression of the cytokine interferon beta (Miyamoto et al., 
1988). IRF1 was subsequently shown to be a transcriptional 
activator and/or repressor of many target genes (a key 
regulator). IRF1 regulates expression of target genes by 
binding to the interferon-stimulated response element. 
Interferon activity is known to regulate reproductive 
biology, more specifically early pregnancy stages (Mathew 
et al., 2016, Wiltbank et al., 2016). IRF1 has also been shown 
to play a role in regulating post-translational modifications 
to tumour suppressor protein p53 (Dornan et al., 2004). 

Table 3 - Brahman and Tropical Composites results for SNP associations

Trait Gene (SNP) P-value Effect Effect standard error Proportion of variance 
explained (%)

AGECL IRF1 (rs134204419) 0.02 −11.41 4.72 0.37
AGECL IRF1 (rs135724080) 0.01 −11.77 4.74 0.39
AGECL IRF2 (rs109901025) 0.09 8.37 4.98 0.18
PPAI FOXA2 (rs208587911) 0.04 10.61 5.24 0.37
PPAI TRAF4 (rs208903687) 0.03 12.06 5.45 0.44
PPAI IRF2 (rs109901025) 0.03 −11.61 5.18 0.46
PW SOX5 (rs42615751) 0.07 0.05 0.03 0.30
PW FOXA2 (rs208587911) 0.06 −0.04 0.02 0.32

SNP - single nucleotide polymorphisms; AGECL - age at first corpus luteum; PPAI - post-partum anoestrous interval; PW - post-partum anoestrous interval with respect to weaning.

Table 4 - Accuracy of genomic predictions
  r(GEBV,y*)1 Accuracy2 Standard error
BAYESR 29 SNP + PLAG1
AGECL 0.16 0.21** 0.02
PPAI 0.03 0.04 0.04
PW 0.05 0.07 0.03
BAYESR 50K SNP 
AGECL 0.28 0.37 0.03
PPAI 0.24 0.36 0.03
PW 0.2 0.27 0.03
BAYESR 50K + 29 SNP 
AGECL 0.31 0.41** 0.02
PPAI 0.24 0.36 0.02
PW 0.2 0.27 0.03

SNP - single nucleotide polymorphisms; AGECL - age at first corpus luteum; PPAI -  
post-partum anoestrous interval; PW - post-partum anoestrous interval with respect 
to weaning.
1 Correlation of genomic prediction and phenotype corrected for fixed effects.
2 Accuracy of genomic prediction, calculated as r(GEBV,y*)/sqrt(h2).
** Significant improvement in the accuracy of predictions.
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IRF1 is involved in the regulation of immune response, 
apoptosis, DNA damage, and tumour suppression; its link 
to reproductive ability has also been shown (Lim et al., 
2016).

The genomic prediction method BayesR is a 
hierarchical method, which allows important DNA variants 
to be prioritised.  The proportion of the variance explained 
by the 29 SNP together was 0.07 for AGECL, 0.03 for PPAI, 
and 0.02 for PW. These variances are higher than expected, 
given the low number of SNP in the tested panel. We tested 
the accuracy of genomic predictions using the selected SNP 
alone, the 50K chip SNP alone, and then all SNP together. 
The best predictions were from the combined new panel, 
with the BayesR analysis, with a 4% improvement in 
accuracy. This improvement in accuracy is comparable to 
the results obtained when BayesR was used in dairy breeds. 
In a combined dataset of Holstein and Jersey, BayesR also 
outperformed GBLUP models, and the increase in accuracies 
ranged from 5 to 15% for different milk traits (Erbe et al., 
2012). BayesR improvement over GBLUP models is not a 
surprising result, as summarised and explained by Su et al. 
(2014). The significant improvement observed for AGECL 
might reflect the fact that a major QTL, namely the PLAG1 
region, is present for this trait. Bayesian models, such as 
BayesR, are reported to benefit more traits influenced by 
QTL of large effect (Legarra et al., 2011).

Simulation studies with full sequence data suggest that 
selecting variants that are close to (or are known) causative 
mutations can increase genomic prediction accuracies 
(Perez-Enciso et al., 2015; van den Berg et al., 2016). 
Our results agree with these simulation studies. In the 
foreseeable future, in which genomes from over a thousand 
bulls will be available (Hayes et al., 2014), understanding 
biology and prioritizing functional mutations will continue 
to be a relevant research effort.

In Australia, the current tool for female fertility 
selection is the use of GBLUP models to predict “days to 
calving”. The accuracy of predicting this female fertility 
trait might also be improved if the tested SNP were 
included in a genomic prediction framework, particularly if 
a BayesR analysis was used. Future work in this area could 
be promising, especially if additional putative functional 
SNP are discovered and incorporated in future versions of 
cattle SNP chips.

Conclusions

Mutations in five genes were found to be significantly 
associated with reproduction traits. The gene IRF1 had 
significant SNP associations in both breeds and, therefore, 

it emerges as a candidate for female reproductive traits 
measured early in life. 

The genomic prediction results support the possibility 
that the described method to prioritise gene candidates to 
be incorporated in future SNP chips is worth exploring. The 
proposed SNP panel with 29 mutations results in reasonable 
accuracies of genomic prediction for AGECL on its own. 
However, it works even better when combined with the 50k 
chip data. The accuracy is improved for all traits when the 
29 SNP are used together with 50K chip single nucleotide 
polymorphisms. The predictions were carried for Brahman 
and Tropical Composites. This approach is likely to serve 
all breeds with Bos indicus content.
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