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Transcriptional response 
of immune-related genes in 
Litopenaeus vannamei cultured in 
recirculating aquaculture systems 
with elevated CO2

ABSTRACT - This short-term study evaluated the effect of non-lethal high CO2 
concentration on the transcriptional response of immune-related genes of Pacific white 
shrimp (Litopenaeus vannamei) cultured in recirculating aquaculture systems (RAS). 
Two experimental groups were created: high CO2 (47.67±2.04 mg L−1) and low CO2 
(2.0±1.93 mg L−1). Shrimp of 8.85±1.20 g were placed randomly at a density equivalent 
to 100 individuals m−3 and were monitored at 6, 12, 18, and 24 h. The transcriptional 
response of immune-related genes was analyzed by qPCR. Gene expression of 
hemocyanin, prophenoloxidase, and heat shock protein 60 was downregulated at 
24 h, suggesting affectations on oxygen transportation, melanization, and protein 
functioning of L. vannamei under high CO2 concentrations. Also, gene up-regulation of 
lipopolysaccharide- and β-glucan-binding protein and cytosolic manganese superoxide 
dismutase can impair the bacterial recognition and antioxidant defense of shrimp 
exposed to high CO2 concentrations. These results suggest that concentration at about 
47 mg L−1 of CO2 can significantly influence the transcriptional response modulation of 
immune-related genes.
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1. Introduction

Worldwide, crustacean farming reached a production of 9,386,500 tons in 2018; Pacific white shrimp 
(Litopenaeus vannamei) is the most representative and widely cultivated species, contributing 53% 
of total shrimp production (FAO, 2020). Due to aquaculture exponential growth and the adaptability 
of L. vannamei to intensive farming, recirculating aquaculture systems (RAS) has become an 
eco-sustainable alternative to traditional systems used for shrimp farming (Chen et al., 2019). Higher  
stocking densities in RAS require high feeding rates, thus increasing organic matter decomposition and 
CO2 concentrations (Good et al., 2010). Therefore, high carbon dioxide (CO2) levels are a characteristic 
of these culture systems (Khan et al., 2018).
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High CO2 concentrations contribute to the system acidification (Skov, 2019), which can negatively 
affect growth, physiology, energy metabolism, and immunity of fish (Dennis III et al., 2015; Good et al., 
2018; Khan et al., 2018; Almroth et al., 2019; Hermann et al., 2019; Mota et al., 2019; Machado et al., 
2020; Pan et al., 2020; Mota et al., 2020), crustaceans (Fehsenfeld et al., 2011; Rathburn et al., 2013; 
Johnson et al., 2015; Zheng et al., 2015; Chang et al., 2016; Meseck et al., 2016), and mollusks (Bibby et al., 
2008; Wang et al., 2016; Clements et al., 2021). High non-lethal (23.8 mg L−1), lethal (59.12 mg L−1), and 
safe (5.9 mg L−1) CO2 levels for L. vannamei production in RAS systems were determined (Furtado et al., 
2017), but concentration above 20 mg L−1 reduces tissue oxygenation and increases the ventilation 
rate (Furtado et al., 2016). Consequently, high CO2 concentrations in RAS cause blood acidosis during 
hypercapnia and could impair oxygen transport and general metabolic processes of L. vannamei 
(Johnson et al., 2015; Summerfelt et al., 2015; Chen et al., 2019). However, information on the effects 
of high non-lethal CO2 concentration on the physiology, behavior, and production performance of 
shrimp farmed in RAS remains limited. Therefore, the objective of the present short-term study 
was to determine the effect of non-lethal high CO2 concentration on the transcriptional response of 
immune-related genes of Pacific white shrimp cultivated in RAS.

2. Material and Methods

The research was conducted in Ciudad Obregon, Sonora, Mexico (27°29'03.6" N, 109°56'4.2" W),  
and animal use was conducted with ethical standards and approved by the institutional Ethics and 
Biosafety Committee (2020-04).

For the present study, two RAS with six circular tanks (0.9 × 1.10 m) each and with a capacity of 
700 L were used. One RAS with six tanks was used to receive the additional CO2 through a diffuser 
from a pressurized CO2-gas bottle until achieving dissolved concentrations of 47.67±2.04 mg L−1 for 
the high treatment. The remaining six tanks did not receive CO2 (control treatment), so the levels 
were 2.0±1.93 mg L−1 CO2. One hundred and eighty shrimp (8.85±1.20 g) were randomly distributed 
in the 12 tanks at a density of 15 individuals per tank with a working volume of 150 L, equivalent to 
100 shrimp m−3 density. The RAS remained with aeration, without water changes, and feeding was 
suspended during the test time (24 h). Afterwards, one shrimp per replicate (six per treatment) was 
collected at different times (6, 12, 18, and 24 h) to obtain 400 µL of shrimp hemolymph according 
to that described by Martinez-Porchas et al. (2020). The hemolymph was centrifuged at 3,500 rpm 
for 10 min at 4 ℃, the plasma was discarded, and the cell pellet was resuspended in TRIzol for RNA 
extraction and frozen at −70 ℃ until analysis.

The physicochemical parameters were measured during the sampling points. Dissolved oxygen (DO) 
and temperature were measured with an oximeter (YSI 55, Yellow Springs), salinity with a refractometer 
(Hanna RB80, Hanna Instruments), and pH with a portable submersible potentiometer (Hanna HI 
98127, Hanna Instruments). 

Total RNA was extracted with the TRIzol reagent. Concentration and purity of RNA were analyzed 
using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), and an A260: A280 ratio 
between 1.8 and 2.2 was ensured. Total RNA was treated with RNA-free DNase (Promega®). The cDNA 
was synthesized using the ImProm-II™ Reverse Transcription System (Promega®) with oligo d(T)20 
(T4OLIGO), using 500 ng of total RNA. The cDNA was diluted with 80 μL of ultrapure water, and 5 μL 
were used as template for the quantitative real time PCR (qPCR) reaction.

Transcriptional response was analyzed based on five immune-related genes and β-actin as reference 
gene (Table 1) (Zhang et al., 2013). The qPCR amplifications were performed in final reaction volumes 
of 15 μL following the instructions of MyTaq DNA polymerase (Bioline™) with 0.2 μM of each primer 
(T4OLIGO), 0.0125 μM of EvaGreen® 20X (Biotium), and 5 μL of cDNA. The qPCR was performed 
on a StepOne Real Time PCR System (Thermo Fisher Scientific). Conditions for qPCR were initial 
denaturation for at 95 °C for 10 min, followed by 40 denaturation cycles at 95 °C for 15 s, and annealing/
extension at 60 °C for 1 min. An analysis of the dissociation curve (60–95 °C at a temperature transition 
rate of 0.5 °C s−1) was performed for each pair of primers. The levels of gene-relative expressions 
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were calculated according to the 2−ΔΔCT equation (Livak and Schmittgen, 2001). Data from relative 
gene expression were transformed with Log10 + 1 to achieve normal distribution according to that  
described by Rodriguez-Anaya et al. (2020).

All data are presented as mean±SE. Data collected at 6, 12, 18, and 24 h were evaluated by one-way 
analysis of variance. If any significance was observed, Tukey’s test was performed for a comparison of 
the means. Statistical analysis was performed with Statgraphics Centurion XVI. Significance was set at 
95% probability levels. 

Variables were analyzed according to the following mathematical model:

Yij = μ + βi + εij,

in which Yij = observed variable, μ = overall mean, βi = effect of CO2 level, and εij = random error associated 
to each observation.

3. Results

Carbon dioxide treatments did not affect (P>0.05) salinity, temperature, and dissolved oxygen, while 
pH was affected by high CO2 level (Table 2). 

The transcriptional response of immune-related genes of white shrimp exposed to high CO2 was 
determined in comparison with the shrimp response subjected to low CO2. Hemocyanin (Hc) 
gene expression was up-regulated (P<0.05) at 6 h but down-regulated (P<0.05) at 24 h (Figure 1). 
Prophenoloxidase (proPO) gene expression was upregulated (P <0.05) at 6 and 12 h but downregulated 
(P<0.05) at 24 h (Figure 2). Lipopolysaccharide- and β-glucan-binding protein (LGBP) gene expression 
was upregulated (P<0.05) at 6, 12, 18, and 24 h (Figure 3). Cytosolic manganese superoxide dismutase 
(cytMnSOD) gene expression was downregulated (P<0.05) at 12 and 18 h but upregulated (P<0.05) 
at 24 h (Figure 4). Heat shock protein 60 (HSP60) gene expression was downregulated (P<0.05) at 12, 
18, and 24 h (Figure 5).

Table 1 - Specific primers used for qPCR amplifications of immune-related genes of Pacific white shrimp, 
Litopenaeus vannamei

Gene Primer name Forward/reverse sequence Amplicon 
length

GenBank 
accession 
number

β-Actin β-ActinF
β-ActinR

5´-CCACGAGACCACCTACAAC-3´
5´- AGCGAGGGCAGTGATTTC-3´ 125 AF300705

Hemocyanin (Hc) HcF
HcR

5´-GTCTTAGTGGTTCTTGGGCTTGTC-3´
5´-GGTCTCCGTCCTGAATGTCTCC-3´ 123 X82502

Prophenoloxidase (proPO) pPOF
pPOR

5´-CGGTGACAAAGTTCCTCTTC-3´
5´-GCAGGTCGCCGTAGTAAG-3´ 121 AY723296

Lipopolysaccharide- and  
β-glucan-binding protein (LGBP)

LGBPF
LGBPR

5´-CCATGTCCGGCGGTGGAA-3´
5´-GTCATCGCCCTTCCAGTTG-3´ 120 EU102286

Cytosolic manganese superoxide 
dismutase (cytMnSOD)

MnSODF
MnSODR

5´-TGTTGCACAAGCCATTGACGA-3´
5´-CCAGCCAGAGCCTTTCACTCC-3´ 97 DQ005531

Heat shock protein 60 (HSP60) HSP60F
HSP60R

5´-ATTGTCCGCAAGGCTATC-3´
5´-ATCTCCAGACGCTTCCAT-3´ 101 FJ710169

Table 2 - Water quality parameters measured during a 24 h test with different concentrations of carbon dioxide (CO2)
CO2 treatment Salinity (g L−1) Temperature (°C) Dissolved oxygen (mg L−1) pH

Low 43.29±2.54a 30.43±1.24a 4.68±0.25a 7.71±0.04a

High 42.98±2.29a 30.45±1.23a 4.81±0.20a 6.63±0.64b

Different letters in the same column indicate statistical difference (P<0.05) according to Tukey’s HSD test.
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Data are presented as mean±SE, n = 6 each group. 
Low CO2 treatment is represented by black bar and high CO2 is represented by white bar. 
Significant differences compared with low CO2 treatment: *P<0.05.

Figure 1 - Transcriptional response of hemocyanin (Hc) in L. vannamei under high CO2 level. 
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Data are presented as mean±SE, n = 6 each group. 
Low CO2 treatment is represented by black bar and high CO2 is represented by white bar. 
Significant differences compared with low CO2 treatment: *P<0.05.

Figure 2 - Transcriptional response of prophenoloxidase (proPO) in L. vannamei under high CO2 level. 
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Data are presented as mean±SE, n = 6 each group. 
Low CO2 treatment is represented by black bar and high CO2 is represented by white bar. 
Significant differences compared with low CO2 treatment: *P<0.05, **P<0.01.

Figure 3 - Transcriptional response of lipopolysaccharide- and β-glucan-binding protein (LGBP) in L. vannamei 
under high CO2 level. 
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4. Discussion

In RAS, the optimal CO2 range is 5 to 10 mg L−1, but high densities can produce concentrations above 
20 mg L−1 (Furtado et al., 2017). Although CO2 concentrations between 20 and 60 mg L−1 are not 
lethal, the pH hemolymph decreases, causing negative effects on shrimp metabolism (Furtado et al., 
2016; Furtado et al., 2017), including transcriptional response of genes related to shrimp immunity 
(Zhou et al., 2010; Johnson et al., 2015). During this study, a significant decrease in water pH was 
observed in the high CO2 treatment compared with the control treatment. Therefore, we hypothesized 
that a high CO2 concentration between non-lethal levels could influence expression of genes related 
to oxygen transportation and hemolytic activity, melanization, pathogen recognition, antioxidant  
defense, and stress response of L. vannamei cultured in RAS.

Data are presented as mean±SE, n = 6 each group.
Low CO2 treatment is represented by black bar and high CO2 is represented by white bar. 
Significant differences compared with low CO2 treatment: *P<0.05, **P<0.01.

Figure 4 - Transcriptional response of cytosolic manganese superoxide dismutase (cytMnSOD) in L. vannamei 
under high CO2 level. 
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Data are presented as mean±SE, n = 6 each group. 
Low CO2 treatment is represented by black bar and high CO2 is represented by white bar. 
Significant differences compared with low CO2 treatment: *P<0.05.

Figure 5 - Transcriptional response of heat shock protein 60 (HSP60) in L. vannamei under high CO2 level. 
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Shrimp, as all organisms, regulate their physiological activity by modulating the transcriptional 
response of their genes for homeostasis maintenance (Fierro-Coronado et al., 2019). The hemocyanin 
function is related to oxygen transportation and non-specific innate immune defense (Zhang et al., 2009; 
Li et al., 2017). A 24-h short-term study with shrimp under hypercapnic hypoxia reported a decrease in 
hemocyanin gene expression due to a global reduction in shrimp protein synthesis (Johnson et al., 2015). 
Our results showed an upregulation of Hc gene expression at 6 h, but the gene expression significantly 
decreased over time suggesting an effect on oxygen transportation. Prophenoloxidase participates in 
melanization, and its activation promotes phagocytosis, encapsulation, and nodule formation for the 
protection against invading pathogenic microorganisms (Vazquez et al., 2009). Two long-term studies 
(1 to 14 days) with brine shrimp (Artemia sinica) evidenced an increase in proPO gene expression 
during the seventh day post water acidification (Zheng et al., 2015; Chang et al., 2016). Although ours 
was a short-time study, in which proPO gene expression increased at 6 and 12 h but decreased at 24 h, 
we agree that non-lethal high CO2 can affect pathogen recognition via proPO-activating system. 

The specific defense mechanisms against bacteria, fungi, and viruses are activated by pattern  
recognition proteins such as lipopolysaccharide- and β-glucan-binding protein, which help in bacterial 
agglutination and removal by phagocytosis (Aguirre-Guzman et al., 2009). Gene expression of 
Gram-negative bacteria-binding protein, a pattern recognition protein similar to LGBP, was enhanced 
when brine shrimp was exposed to high CO2 concentration (Zheng et al., 2015). In this study, the 
transcriptional response of LGBP gene significantly increased during the trial. 

These results suggest that genes encoding for pattern recognition proteins are biologically responsive 
to water acidification; therefore, the bacterial recognition and removal could be affected by 
acidification stress. 

Superoxide dismutase (SOD) is the main antioxidant defense pathway in response to oxidative stress 
caused by reactive oxygen species (ROS) (Campa-Córdova et al., 2002). Pacific oyster (Crassostrea gigas) 
under high CO2 showed varied SOD gene expression, down- and up-regulation (Wang et al., 2016). 
Our data indicated that cytMnSOD gene expression decreased at 12 and 18 h but increased at 24 h, 
suggesting that water acidification can impair ROS metabolism, causing damage to proteins, lipids,  
and DNA by oxidative stress. 

Heat shock proteins (HSP) play an important role in protecting organisms from almost any sudden 
change in the cellular environment that induces protein damage (Li, 2017), and their expression can 
take more time (>4 h) to reach the high expression levels under stress factors (Dennis III et al., 2015). 
Green crab (Carcinus maenas) under high CO2 concentrations during more than seven days altered 
its HSP gene expression (Fehsenfeld et al., 2011). The transcriptional response data of the HSP60 
gene indicated a downregulation during this study, but the bioassay duration could be a factor for not 
reaching the maximum expression levels. However, the protein function can be detrimental under high 
CO2 concentration.

Our study demonstrated how non-lethal high CO2 level influenced the transcriptional response of 
immune-related genes of L. vannamei. The gene expression modulation by water acidification promotes 
metabolic suppression, reduced protein synthesis and respiratory stress, and reduced metabolic 
scope, causing pathogen invasion, disease transmission, and host susceptibility (Chang et al., 2016; 
Wang et al., 2016). On the other hand, the energy destined to transcriptional response modulation 
can reduce shrimp muscular growth and productive performance (Silveira et al., 2018). Therefore, 
further long-term studies are necessary to determine how non-lethal high CO2 concentrations influence 
growth, tissue histology, nutrient absorption, and physiologic response of shrimp cultured in RAS.

5. Conclusions

The transcriptional response of immune-related genes of L. vannamei cultured in recirculating 
aquaculture systems was affected by high CO2. 
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