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ABSTRACT - The productive traits of beef cattle are orchestrated by their genetics, post-
natal environmental conditions, and also by the intrauterine background. Both under- or
overnutrition, as specific dietary components, are able to promote persistent effects on
the offspring. This occurs because dietary factors act not only affecting the availability of
substrates for fetal anabolism and oxidative metabolism, but also as signals that regulate
several events toward fetal development. Therefore, this study aimed to summarize the
gestational nutrition effects on the offspring performance and meat quality in a long
term. Overall, studies have shown that many of these alterations are under the control
of epigenetic mechanisms, as DNA methylation, histones modification, and non-coding
RNA. The current knowledge has indicated that the fetal programming responses
are dependent on the window of fetal development in which the dietary treatment is
applied, the intensity of maternal nutritional stimuli, and the treatment application
length. Collectively, studies demonstrated that muscle cell hyperplasia is impaired when
maternal requirements were not achieved in the second third of gestation, which limits
the formation of a greater number of muscle fibers and the offspring growth potential
in a long term. Changes in muscle fibers metabolism and in collagen content were also
reported as consequence of a dietary perturbation during pregnancy. In contrast, a
maternal overnutrition during the late pregnancy has been associated with beneficial
responses on meat quality. In summary, ensuring an adequate maternal environment
during the fetal development is crucial to enhance the productive responses in beef
cattle operations.

Keywords: adipogenesis, bovine, fibrogenesis, maternal nutrition, myogenesis,
progenitor cells

1. Introduction

Fetal programming is the response of an organism to an environmental challenge during a critical
period of intrauterine development, which leads to persistent changes (Nathanielsz et al., 2007).
Both maternal under- and overnutrition can trigger changes in the development, metabolism, and
physiology of the offspring (Nissen et al.,, 2003; Greenwood and Cafe, 2007; Duarte et al., 2014;
Gionbelli et al., 2018; Costa et al., 2021a). Such modifications are under the control of epigenetics,
which actas amemory of the environment exposure (Wu etal., 2006; Sinclair etal., 2016; Paradis etal,,

2017; Batistel et al.,, 2019).
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Dietetic manipulations over pregnancy are an opportunity to improve the offspring performance
and meat quality, but at the same time, is a way to compromise these characteristics irreversibly. The
basic structure of skeletal muscle tissue is composed by muscle fibers, adipocytes, and connective
tissue, all derived from the mesenchymal stem cells of mesoderm (Du et al., 2013) (Figure 1). In this
sense, maternal nutrition acts to control the fate steam cell in the different lineages, regulating the
balance between myogenesis, adipogenesis, and fibrogenesis (Du et al., 2013; Blair et al,, 2021).

Overall, studies have shown that inadequate maternal diets in beef cattle have negative consequences
such as a lower population of muscle fibers (Marquez et al., 2017; Costa et al., 2021a), due to changes
in the mRNA abundance of myogenic regulatory factors (Jennings et al., 2016) involved with cell
determination, proliferation, and differentiation. Those changes lead to a lower muscle growth
potential (Costa et al., 2021b), which affects the whole-body energy expenditure in the post-natal life,
once skeletal muscle is the major glucose utilization site (Mohammadabadi et al., 2021). Less muscle
fiber hyperplasia can be replaced by intramuscular collagen deposits (Costa et al., 2021a), which
may contribute to increase meat toughness (Fontes et al., 2021). Moreover, prenatal nutritional
insults can also cause changes in muscle fiber metabolism regulated by transcription factors
(Ramirez-Zamudio et al., 2022) known as skeletal muscle metabolic plasticity (Aragdo et al., 2014),
which can negatively affect marbling deposition (Marquez et al.,, 2017). Therefore, monitoring the
gestational environment is crucial to enhance the efficiency of meat production.

This comprehensive review aimed to highlight the effects of maternal nutrition on the offspring
performance and meat quality, once the identification of these responses plays a central role in the
global beef satisfying demand. Here, we first discuss the maternal and placental metabolism changes
in response to the availability of nutrients over gestation, as well as the underlying mechanisms

Diagram based on studies from Picard et al. (2002), Bonnet et al. (2010), Du etal. (2015), and Wang et al. (2016). Summary of the main processes
involved in skeletal muscle cell differentiation during the embryonic and fetal stages and postnatal life according to the days post conception
(dpc). Mesenchymal progenitor cells differentiate into myogenic and fibro-adipogenic cells during the embryonic stage in beef cattle. Primary
myogenesis occurs in the embryonic stage, followed by secondary myogenesis that occurs in the fetal stage up to 180 dpc, approximately,
with subsequent secondary myofibers maturing into types I, IIA, and IIX. Hypertrophy of muscle fibers begins around 170 dpc and extends to
postnatal life. The determination of fibroadipogenic cells begins in the fetal phase, with the formation of preadipocytes in different fat deposits,
including visceral, subcutaneous, intermuscular, and intramuscular. Fibrogenesis begins around 180 dpc, with the formation of fibroblasts
followed by collagen synthesis that begins around 260 dpc and extends to postnatal life.

Figure 1 - Mesenchymal progenitor cells differentiate into myogenic and fibroadipogenic cells during fetal
muscle development in beef cattle.
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involved with phenotypic alterations observed in a long term. Then, we summarized the main effects
of maternal nutrition on productive traits of beef cattle.

2. Changes in maternal and placental metabolism in response to nutritional
challenges during gestation

During gestation, females from all species undergo homeorhesis, in which several physiological
changes occur to ensure the continuous supply of essential metabolites to support fetal growth
and development (Redmer et al, 2004). Thus, when fetal development is critical, due to nutrient
deficiency, the mother tends to favor the fetal system, with coordinated changes in her own
tissue metabolism that regulate the nutrient partitioning needed to supply the fetus (Bauman and
Currie, 1980).

In addition to the utilization of propionate for glucose production during periods of low availability
or high demand for glucose, energy reserves may also be mobilized and used as a gluconeogenic
precursor (Funston et al., 2010a). Under conditions of nutrient deficiency, the amino acids provided
by the mobilization of maternal skeletal muscle are used to improve fetal access to amino acids
(Bell et al.,, 2005) or may also be used in maternal gluconeogenesis. The utilization of long-chain fatty
acids, non-esterified fatty acids (NEFA), or ketoacids by the fetuses is limited due to the low placental
ability to transport these substrates (Bell et al., 2005). However, although NEFA seem to be not utilized
by the fetus as a carbon source for energy production, this substrate supplies the pregnant dam with
substrates for their own maintenance, and thus it indirectly contributes to spare glucose and amino
acids to supply fetal requirements (Bell and Ehrhardt, 2000).

Maternal tissue mobilization or deposition occurs as a function of dietary substrate supplies
(McNeill et al., 1997). Thus, nutritional adjustments for pregnant cows undergoing nutritional
restrictions have been the subject of studies (Lopes et al., 2020), which, in general, aimed to establish
nutritional management that minimizes lean tissue catabolism and the negative effects on the fetus.
For instance, Lopes et al. (2020) showed the importance of supplementation for undernourished
beef cows and reported a tendency toward greater mRNA expression of skeletal muscle synthesis
markers in cows that received protein supplementation during late gestation. Such results likely
demonstrate that a consequence of protein supplementation during gestation is a reduction in the
intensity of lean tissue mobilization.

Under conditions of low nutrient availability causing intrauterine growth restriction, an additional
compensatory mechanism involving the placenta may occur (Redmer et al., 2004). Borowicz et al.
(2007) reported that when metabolizable protein is reduced to 60% of requirements in sheep, uterine
blood flow increased, indicating an adaptation of placental vasculature. Therefore, it is possible that
nutrient deprivation due to inadequate placenta size and function affects fetuses from well-nourished
dams. Additionally, fetuses from undernourished dams may not have difficulty meeting their nutrient
requirements due to compensatory mechanisms in the placental system (Redmer et al., 2004). For
instance, Vonnahme et al. (2007) showed that nutrient restriction from 30 to 125 days of gestation in
bovine increased placental mRNA concentrations of placental growth factor, improving fetal weight
due to a greater transfer of nutrients through the placenta. Under a moderate nutritional restriction,
the placenta may contribute to an increase in the abundance of Glucose transporter 3 (GLUT-3)
as an attempt to increase its ability to glucose transfer (Bell and Ehrhardt, 2000). However, under
severe and prolonged nutrient restriction, the placenta may reduce glucose uptake and use glucose
for its own demands (Bell and Ehrhardt, 2000). McCrabb et al. (1992) showed that pregnant sheep
subjected to nutrient restriction in mid-gestation presented a decrease in placenta size without
changing the number of individual placentomes or the fetal weight and dimensions. In contrast,
Zhang et al. (2016) observed that undernourished animals presented lower concentrations of serum
total polyamines in the uterine artery, fetal umbilical vein, and amniotic and allantoic fluids, which
are crucial mediators of placental growth and angiogenesis, of fetal cellular function and synthesis of
DNA and protein (Zhang et al., 2016).
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Therefore, the compensatory mechanisms related to placental functioning may occur under conditions
of nutritional restriction by the pregnant dam during gestation in attempt to mitigate the effects on
fetal development, which may buffer the negative effects on the development of fetuses.

3. Maternal nutrition effects on epigenetic mechanisms underlying the skeletal
muscle development

It is well established that among omics extracts (transcripts, proteins, and metabolites), a set of
regulations and interactions generates a specific response according to the environment. These
modulations may be explored through epigenetic analysis and systems biology approaches. Epigenetics
explains how gene expression might be altered without affecting the nucleotide sequence (Feil, 2006).
Moreover, this set of mechanisms is transferred between cell generations, constituting epigenetic
memory. Of the epigenetic modifications, DNA methylation, chromatin remodeling, and noncoding
RNA are relevant mechanisms for maternal nutrition and fetal programming.

DNA methylation is related to gene silencing, since the inclusion of a methyl group at the 5’ position
of the cytosine residues located in the CpG islands in the promoter region of a gene inhibits the
interaction between the transcriptional machinery complex and the target gene (Osorio et al.,, 2017).
This process is widely influenced by dietary precursors, which are responsible for donating chemical
groups to positively or negatively regulate DNA methylation (Osorio et al., 2017). The methyl donor
S-adenosylmethionine (SAM), synthesized in the methionine cycle, is transferred to DNA through DNA
methyltransferases (DNMT) (Triantaphyllopoulos et al., 2016). Demethylation and, consequently,
the reversion of gene silencing are catalyzed by the a-ketoglutarate (a-KG)-dependent ten-eleven
translocation (TET) family of proteins (Ito et al., 2010). At the transcriptional level, energy restriction
during late gestation has been found to alter the skeletal muscle and blood transcriptome of calves;
specifically, genes related to energy metabolism and muscle development are downregulated in
muscle cells, accompanied by a decrease in the expression of genes associated with the immune
response (Sanglard et al., 2018). While evaluating the DNA methylation level of some important gene
inducers of cell differentiation, Paradis et al. (2017) observed hypermethylation in the promoter
region of IGF2 in fetal skeletal muscle of offspring born from cows that were nutrient-restricted
during mid- to late gestation, emphasizing the interaction between the nutritional plan and changes
in gene expression.

Chromatin remodeling is mediated by histone post-translational modification (PTM), which involves
the inclusion of a set of chemical or protein groups (e.g., methyl, acetyl, phosphate, and ubiquitin) to the
histone tails (Triantaphyllopoulos et al,, 2016). The combination of different PTM in a specific histone
is called the histone code (Jenuwein and Allis, 2001). Depending on the histone code, chromatin may
assume the structure of heterochromatin (compacted) or euchromatin (relaxed), which are associated
with the repression or activation of gene expression, respectively (Jenuwein and Allis, 2001). As an
example, a decrease in the histone code H3K27me3 (histone 3 lysine 27 trimethylation) marker of gene
silencing promoted an increase in overall adipogenesis in fetal mice from obese mothers (Yang et al.,
2013). In contrast, the increase in the histone codes H3K9Ac (histone 3 lysine 9 acetylation) and
H3K4me3 (histone 3 lysine 4 trimethylation) markers of gene activation, in the promoter region of
myostatin, resulted in the reduction in muscle mass of piglets born from sows fed low-protein diets
during pregnancy and lactation (Jia et al,, 2016).

When the effects of maternal feed restriction during different stages of gestation on the newborn goat
skeletal muscle transcriptome (Costa et al., 2021c) and proteome (Costa et al.,, 2022) were evaluated,
it was observed that proteins exclusively expressed in each treatment (feed restriction in the first
vs. last half of gestation) were present in both treatments at the transcriptional level. This suggested
possible posttranscriptional regulation that repressed a set of genes in one of the treatments. The
mechanism of post-transcriptional regulation may be mediated by noncoding RNA, called microRNA
(miRNA). The inhibitory role of miRNA involves base-pairing with the target mRNA, which promotes
repression (Wang et al,, 2013). Imperfect base-pairing with the target mRNA inhibits translations
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and, consequently, protein synthesis, while perfect complementation causes the degradation of the
target mRNA (Wang et al., 2013).

Therefore, maternal nutrition directly affects fetal metabolism through the pool of available nutrients,
which mediate epigenetic mechanisms. The integration of omics data using a systems biology approach,
combined with epigenetic analysis, may contribute valuable information on the effects of maternal nutrition
on offspring skeletal muscle development and metabolism at the cellular level, which is reflected in the
skeletal muscle growth and development and may cause changes in the quality traits of meat.

4. The impact of maternal nutrition on the performance, carcass, and meat quality
traits of the offspring

In tropical and subtropical regions, forages are the main components of the diet in most cow-calf herds
(Bell and Greenwood, 2013). Such a scenario promotes variation in pasture availability and quality
throughout the year, which is insufficient to meet the nutritional requirements of pregnant cows,
mainly during mid- to late gestation (Lemos et al., 2012). Therefore, maternal restriction during critical
periods of fetal skeletal muscle and adipose tissue development may compromise the performance
and meat quality of the offspring (Figure 2).

During the dry season, pastures are deficient in proteins; thus, the restriction of energy and other
nutrients in pregnant cows is also observed. In fact, the reduction of protein intake affects ruminal
microorganism growth, which is responsible for the degradation of dietary fibers, causing a limitation
of energy and dry matter intake (DMI) by cows (Sampaio et al., 2010). Therefore, the use of nutritional
strategies that increase the protein intake of pregnant cows improves the digestibility of low-quality
fibers and, consequently, enhances maternal-fetal nutrient flow (Marquez et al., 2017). However,
studies examining the effects of maternal nutritional strategies on offspring performance and carcass
characteristics have had variable results (Tables 1a and 1b).

Nutritional restriction in cows
during mid- to late gestation due to
seasonality in pasture production
and quality in tropical and
subtropical regions.

Negative impact of maternal
nutrition on fetal skeletal muscle
development and consequently

on the postnatal performance of
the offspring.

Delz_iyed growth Lower weight gain and

during the o
backfat deposition

background phase of offspring from

in the offspring of pring

. malnourished dams.
malnourished dams.

Carcasses of offspring from
dams with nutritional restriction
during gestation may have a
lower backfat thickness, which
leads to an accelerated drop

in pH and temperature

(cold shortening).

Maternal nutritional restriction
during gestation reduces the
deposition of intramuscular fat
and increases the collagen content,
producing tougher and darker
meat in the offspring.

Figure 2 - The impact of maternal nutrition on the performance and carcass characteristics of the offspring.
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Underwood et al. (2010) showed that cows fed improved pasture for 30 days at mid-gestation
exhibited an increase of 10% in the offspring weaning and feedlot weight compared with the
offspring resulting from cows fed native range pasture (~6% crude protein). In addition, an increase
of approximately 19 kg carcass and 13.6% subcutaneous fat was observed in the resulting offspring
(Underwood et al.,, 2010). These results may suggest that outcomes of fetal programming through
maternal nutrition may have an indirect effect on meat quality traits. The increased subcutaneous
fat thickness in the carcass of offspring born from dams in better nutritional conditions likely
help to prevent the rapid decline in temperature during the transformation process of muscle to
meat, avoiding cold-shortening, which contributes to meat toughness (Ockerman and Basu, 2014).
Moreover, the heaviest carcasses in progeny born from dams that received adequate nutrition during
gestation may result from greater muscle fiber development during the fetal stage. Costa etal. (2021a)
showed that maternal protein restriction during mid-gestation reduces the number of muscle fibers
in offspring.

In general, progeny from dams that receive an adequate nutritional plan shows better performance
during the initial stages of life (Stalker et al, 2006; Stalker et al., 2007; Funston et al., 2010a;
Funston et al, 2010b; Rodrigues et al.,, 2020), while few studies have reported significant gains
throughout the production cycle (Stalker et al., 2007; Underwood et al., 2010). In contrast, other
studies have failed to find an effect of adequate nutrition during mid- to late gestation on offspring
performance throughout the production cycle or on carcass characteristics (Larson et al., 2009;
Mulliniks et al., 2012; Mulliniks et al., 2013). Such variations in the phenotypic responses of progeny
affected by maternal nutrition depend on multiple factors, such as herd management during the
production phases, genetic composition, maternal nutritional history, and adaptability to the
environment (Broadhead et al., 2019).

Maternal nutritional status during gestation may impact the qualitative properties of the meat from
offspring (Alvarenga et al., 2016; Maresca et al., 2019; Webb et al,, 2019). For instance, the meat of
steers born from dams raised under improved pastures for 30 days at mid-gestation was more tender
than that of steers born from dams fed native pasture (~6% crude protein) (Underwood et al., 2010).
In addition to tenderness, the pH, color, water-holding capacity, and marbling of the meat may be
affected by maternal nutrition due to alterations in the metabolic characteristics of muscle fibers
(Fahey et al., 2005; Picard and Gagaoua, 2020), as well as the proportion of muscle, adipose, and
connective tissue formed during the prenatal phase (Duarte et al,, 2014; Du et al,, 2015). For example,
a 50% nutrient restriction in sheep during the first 30 days of gestation enhanced the proportion
of muscle fibers with the characteristics of slow contraction and oxidative metabolism in offspring
(Fahey et al., 2005). Muscles with a greater proportion of slow-twitch fibers and oxidative metabolism
show a low rate of postmortem pH decline due to low glycogen storage, resulting in an elevated final pH
of the meat (Kim et al,, 2016). When the pH is higher than 5.6, there is a change in the negative charge
and structures of the muscular matrix, which results in greater intracellular water retention, negatively
affecting meat color (Ramanathan et al,, 2020). Moreover, changes in the final pH interfere with the
activity of proteolytic enzymes, which are responsible for tenderness (Matarneh et al.,, 2017).

However, some changes may occur at the molecular level (Table 2) without resulting in phenotypic
changes. Jennings et al. (2016), evaluated the effects of energy levels [72, 87, or 146% of net energy for
maintenance (NEm) requirements] during early to mid-gestation and did not find effects of maternal
nutrition on muscle histology characteristics (fiber area, diameter, and number), despite the effects on
mRNA expression in skeletal muscle. In this study, myogenin was upregulated in the skeletal muscle
of fetuses from cows fed at 72% NEm compared with those from cows fed at 87% NEm, indicating a
potential reduction in myoblast differentiation, followed by an earlier fusion of these cells in fetuses
exposed to undernutrition.

Rodrigues et al. (2020) investigated the effects of protein supplementation during mid- to late
gestation in grazing beef cows with moderate nutritional restriction on performance and molecular
markers in offspring (Table 2). Protein supplementation of the dams did not affect the expression of
myogenic genes. However, a downregulation of C/EBPA and FABP4 was observed in 11-day-old calves
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from supplemented dams. These findings indicate that offspring from non-supplemented cows showed
early adipogenic differentiation, which may impair the proliferation of intramuscular adipocytes.
In summary, maternal restriction during critical periods of fetal skeletal muscle and adipose tissue
development may compromise the performance and meat quality of the offspring; however, the
use of maternal nutritional strategies shows better performance and carcass characteristics
on offspring.

5. Summary and future perspectives

Maternal nutrition affects the skeletal muscle development of the fetus, exerting long-term effects on
offspring performance and growth. Maternal undernutrition during fetal development reduces the
number of muscle fibers, alters muscle fiber composition, and impacts fetal adipogenesis. However,
adequate supplementation with nutrients improves skeletal muscle development and adipogenesis,
increasing marbling in offspring. Thus, understanding the effects of maternal supplementation during
different gestational periods on the performance and final carcass composition of the progeny may
help improve meat production and carcass and meat quality traits.
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