Acessibilidade / Reportar erro

Effect of green propolis on the productivity, nutrient utilisation, and intestinal morphology of Japanese laying quail

ABSTRACT

In this study, we evaluated the effects of dietary inclusion of ethanolic extract of green propolis (EEGP) on productivity, egg quality, nutrient utilization, and duodenal morphology of 120 Japanese laying quail. The quail were randomly distributed into five treatment groups: one group with no EEGP in the diet (control diet) and four groups with increasing EEGP levels (500, 1000, 1500, and 2000 mg EEGP/kg diet) in the diets. Excreta and diet samples were collected on day 40 and were analyzed for dry matter (DM), crude protein (CP), ether extract (EE), ash, gross energy (GE), calcium, and phosphorus to evaluate the nutrient and energy use. At the end of the study period, productive performance, egg quality, and duodenum morphology were evaluated. Duodenal sections were obtained from four birds per treatment and were processed for optical microscopy. The EEGP did not affect DM, GE utilization, apparent metabolizable energy, ash retention, feed intake, feed conversion, egg mass, egg quality, crypt depth, or villus height:crypt depth ratio in the duodenum. However, EEGP did increase laying rate, CP, EE, calcium, and phosphorus utilization, as well as villus height and absorption surface area in the duodenum when provided to birds at 1500 and 2000 mg/kg in the diet. Thus, the inclusion of EEGP at 1500 ppm in the diet of Japanese laying quail improves productivity, egg quality, nutrient utilization ability, and duodenal morphology.

Keywords:
animal production; egg laying; quail nutrition

Introduction

The use of antibiotic growth promoters in animal feed has been banned by the European Union since 2006 ( Tufan and Bolacali, 2017Tufan, T. and Bolacali, M. 2017. Effects of dietary addition of symbiotic on the performance, carcass traits, and serum parameters of Japanese quails. Revista Brasileira de Zootecnia 46:805-813. https://doi.org/10.1590/s1806-92902017001000003
https://doi.org/10.1590/s1806-9290201700...
) due to rising consumer demand for sustainable feed-to-food chain and increasing food safety concerns. Therefore, many researchers have started to explore natural alternatives to these antibiotics as feed additives for poultry ( Cimrin et al., 2019Cimrin, T.; Avsaroglu, M. D.; Tunca, R. I.; Kandir, S. and Ayasan, T. 2019. Effects of the dietary supplementation of layer diets with natural and synthetic antioxidant additives on yolk lipid peroxidation and fatty acid composition of eggs stored at different temperatures and duration. Brazilian Journal of Poultry Science 21:eRBCA-2019-0991. https://doi.org/10.1590/1806-9061-2018-0991
https://doi.org/10.1590/1806-9061-2018-0...
; Senay et al., 2019Senay, S.; Islim, P. and Tugay, A. 2019. Supplementation of natural antioxidants to reduced crude protein diets for Japanese quails exposed to heat stress. Brazilian Journal of Poultry Science 21:eRBCA-2019-0694. https://doi.org/10.1590/1806-9061-2017-0694
https://doi.org/10.1590/1806-9061-2017-0...
), with propolis being one such example.

Green propolis is produced by honeybees from Baccharis dracunculifolia DC, commonly known as field rosemary, and contains 3.1-3.3% minerals, 9.8-10.6% crude protein (CP), 45.7-48.7% lipids, and 15.9-20.9% fiber ( Machado et al., 2016Machado, B. A. S.; Silva, R. P. D.; Barreto, G. A.; Costa, S. S.; Silva, D. F.; Brandão, H. N.; Rocha, J. L. C.; Dellagostin, A. O.; Henriques, J. A. P.; Umsza-Guez, M. A. and Padilha, F. F. 2016. Chemical composition and biological activity of extracts obtained by supercritical extraction an ethanolic extraction of brown, green and red propolis derived from different geographic regions in Brazil. PLoS ONE 11:e0145954. https://doi.org/10.1371/journal.pone.0145954
https://doi.org/10.1371/journal.pone.014...
). It is mainly composed of 3,5-diprenyl-4-hydroxycinnamic acid ( Guimarães et al., 2012Guimarães, N. S. S.; Mello, J. C.; Paiva, J. S.; Bueno, P. C. P.; Berretta, A. A.; Torquato, R. J.; Nates, I. L. and Rodrigues, T. 2012. Baccharis dracunculifolia , the main source of green propolis, exhibits potent antioxidant activity and prevents oxidative mitochondrial damage. Food and Chemical Toxicology 50:1091-1097. https://doi.org/10.1016/j.fct.2011.11.014
https://doi.org/10.1016/j.fct.2011.11.01...
), which possesses antioxidant ( Woźniak et al., 2019Woźniak, M.; Mrówczyńska, L.; Waśkiewicz, A.; Rogoziński, T. and Ratajczak, I. 2019. The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. Revista Brasileira de Farmacognosia 29:301-308. https://doi.org/10.1016/j.bjp.2019.02.002
https://doi.org/10.1016/j.bjp.2019.02.00...
), antibacterial ( Pereira et al., 2016Pereira, C. A.; Costa, A. C. B. P.; Liporoni, P. C. S.; Rego, M. A. and Jorge, A. O. C. 2016. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans . Journal of Infection and Public Health 9:324-330. https://doi.org/10.1016/j.jiph.2015.10.012
https://doi.org/10.1016/j.jiph.2015.10.0...
), antifungal, antiviral ( Babińska et al., 2012Babińska, I.; Kleczek, K.; Szarek, J. and Makowski, W. 2012. Modulating effect of propolis and bee pollen on chicken breeding parameters and pathomorphology of liver and kidneys in the course of natural infection with Salmonella enteritidis. Bulletin of the Veterinary Institute in Pulawy 56:3-8. https://doi.org/10.2478/v10213-012-0001-9
https://doi.org/10.2478/v10213-012-0001-...
), anti-inflammatory ( Khorasgani et al., 2010Khorasgani, E. M.; Karimi, A. H. and Nazem, M. R. 2010. A comparison of healing effects of propolis and silver sulfadiazine on full thickness skin wounds in rats. Pakistan Veterinary Journal 30:72-74. ), antigenotoxic, and antimutagenic ( Roberto et al., 2016Roberto, M. M.; Matsumoto, S. T.; Jamal, C. M.; Malaspina, O. and Marin-Morales, M. A. 2016. Evaluation of the genotoxicity/mutagenicity and antigenotoxicity/antimutagenicity induced by propolis and Baccharis dracunculifolia , by in vitro study with HTC cells. Toxicology in Vitro 33:9-15. https://doi.org/10.1016/j.tiv.2016.02.005
https://doi.org/10.1016/j.tiv.2016.02.00...
) activities.

These properties of propolis could have positive effects on poultry health and performance. According to Hascik et al. (2014Hascik, P.; Krocko, M.; Garlik, J.; Elimam, I.; Kacaniová, M.; Bobko, M.; Arpásová, H.; Vavrisinová, K. and Bucko, O. 2014. The effect of propolis extract in the diet of chickens Ross 308 on their performance. Journal of Central European Agriculture 15:133-146. https://doi.org/10.5513/JCEA01/15.4.1521
https://doi.org/10.5513/JCEA01/15.4.1521...
; 2015Hascik, P.; Elimam, I. O.; Krocko, M.; Bobko, M.; Kacániová, M.; Garlík, J.; Simko, M. and Saleh, A. A. 2015. The influence of propolis as supplement diet on broiler meat growth performance, carcass body weight, chemical composition and lipid oxidation stability. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 63:411-418. https://doi.org/10.11118/actaun201563020411
https://doi.org/10.11118/actaun201563020...
) and Shreif and El-Saadany (2016)Shreif, E. Y. and El-Saadany, A. S. 2016. The effect of supplementing diet with propolis on Bandarah laying hens’ performance. Egyptian Poultry Science Journal 36:481-499. Avaliable at: <https://epsj.journals.ekb.eg/article_57050_9f74f280fb6545bdfcdaa7a27fa141ff.pdf>. Accessed on: Jul. 14, 2019.
https://epsj.journals.ekb.eg/article_570...
, the use of propolis improves feed intake, feed conversion rate, and daily weight gain in broilers and laying hens ( Belloni et al., 2015Belloni, M.; Almeida Paz, I. C. L.; Nääs, I. A.; Alves, M. C. F.; Garcia, R. G.; Caldara, F. R. and Seno, L. O. 2015. Productive, qualitative, and physiological aspects of layer hens fed with propolis. Brazilian Journal of Poultry Science 17:467-472. https://doi.org/10.1590/1516-635x1704467-472
https://doi.org/10.1590/1516-635x1704467...
; Abdel-Kareem and El-Sheikh, 2017Abdel-Kareem, A. A. A. and El-Sheikh, T. M. 2017. Impact of supplementing diets with propolis on productive performance, egg quality traits and some haematological variables of laying hens. Journal of Animal Physiology and Animal Nutrition 101:441-448. https://doi.org/10.1111/jpn.12407
https://doi.org/10.1111/jpn.12407...
). The use of propolis in the diets of Japanese quail improved feed intake, egg production, egg weight, and feed conversion rate; with this diet, the onset of egg laying started earlier ( Mehaisen et al., 2019Mehaisen, G. M. K.; Desoky, A. A.; Sakr, O. G.; Sallam, W. and Abass, A. O. 2019. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS ONE 14:e0214839. https://doi.org/10.1371/journal.pone.0214839
https://doi.org/10.1371/journal.pone.021...
). Quail chicks under heat stress showed better productive performance when propolis was added to their diets, as reported by Mehaisen et al. (2017)Mehaisen, G. M. K.; Ibrahim, R. M.; Desoky, A. A.; Safaa, H. M.; El-Sayed, O. A. and Abass, A. O. 2017. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS ONE 12:e0186907. https://doi.org/10.1371/journal.pone.0186907
https://doi.org/10.1371/journal.pone.018...
.

Related to the egg quality, diets containing propolis may result in better shell weight, Haugh unit (HU), albumen height, yolk index ( Abdel-Kareem and El-Sheikh, 2017Abdel-Kareem, A. A. A. and El-Sheikh, T. M. 2017. Impact of supplementing diets with propolis on productive performance, egg quality traits and some haematological variables of laying hens. Journal of Animal Physiology and Animal Nutrition 101:441-448. https://doi.org/10.1111/jpn.12407
https://doi.org/10.1111/jpn.12407...
), egg weight, and shell thickness ( Mehaisen et al., 2019Mehaisen, G. M. K.; Desoky, A. A.; Sakr, O. G.; Sallam, W. and Abass, A. O. 2019. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS ONE 14:e0214839. https://doi.org/10.1371/journal.pone.0214839
https://doi.org/10.1371/journal.pone.021...
) than diets without propolis (control group). Soltani et al. (2019)Soltani, Z.; Torki, M. and Mohammadi, H. 2019. Single or combined effects of dietary supplemental vitamin C and etanol extracts of propolis on productive traits, egg quality and some blood biochemical parameters of laying hens. Journal of Applied Animal Research 47:243-249. https://doi.org/10.1080/09712119.2019.1620242
https://doi.org/10.1080/09712119.2019.16...
did not observe any improvement in egg quality when diets of laying hens were supplemented with propolis at 150 or 300 ppm, except for the eggshell thickness, which increased owing to the propolis supplementation.

Seven (2008)Seven, P. T. 2008. The effects of dietary Turkish propolis and vitamin C on performance, digestibility, egg production and egg quality in laying hens under different environmental temperatures. Asian-Australasian Journal of Animal Sciences 21:1164-1170. https://doi.org/10.5713/ajas.2008.70605
https://doi.org/10.5713/ajas.2008.70605...
observed that digestibility of dry matter (DM), organic matter, CP, and ether extract (EE) were improved with dietary propolis supplementation at 2000 and 5000 mg/kg in laying hens subjected to heat stress. Seven et al. (2011)Seven, I.; Seven, P. T. and Silici, S. 2011. Effects of dietary Turkish propolis as alternative to antibiotic on growth and laying performances, nutrient digestibility and egg quality in laying hens under heat stress. Revue de Médecine Vétérinaire 162:186-191. Available at: <https://www.revmedvet.com/2011/RMV162_186_191.pdf>. Accessed on: Jul. 20, 2019.
https://www.revmedvet.com/2011/RMV162_18...
also found an improvement in the DM and CP digestibility of laying hens under heat stress when fed dietary propolis at 3 ppm. Daneshmand et al. (2012)Daneshmand, A.; Sadeghi, G. H. and Karimi, A. 2012. The effects of a combination of garlic, oyster mushroom and propolis extract in comparison to antibiotic on growth performance, some blood parameters and nutrients digestibility of male broilers. Brazilian Journal of Poultry Science 14:141-147. https://doi.org/10.1590/S1516-635X2012000200009
https://doi.org/10.1590/S1516-635X201200...
also demonstrated improved DM digestibility when they added a mixture of propolis, garlic, and mushroom to broiler diet.

Most nutrient transport occurs through the small intestine. Propolis may reduce bacterial translocation and protect the integrity of the intestinal wall ( Sabuncuoglu et al., 2007Sabuncuoglu, M. Z.; Kismet, K.; Kilicoglu, S. S.; Kilicoglu, B.; Erel, S.; Muratoglu, S.; Sunay, A. E.; Erdemli, E. and Akkus, M. A. 2007. Propolis reduces bacterial translocation and intestinal villus atrophy in experimental obstructive jaundice. World Journal of Gastroenterology 13:5226-5231. ) because of its polyphenolic constituents ( Wang et al., 2016Wang, K.; Jin, X.; Chen, Y.; Song, Z.; Jiang, X.; Hu, F.; Conlon, M. A. and Topping, D. L. 2016. Polyphenol-rich propolis extracts strengthen intestinal barrier function by activating AMPK and ERK signaling. Nutrients 8:272. https://doi.org/10.3390/nu8050272
https://doi.org/10.3390/nu8050272...
). Mahmoud et al. (2017)Mahmoud, U. T.; Amen, A. O.; Applegate, T. J. and Cheng, H. W. 2017. Brazilian propolis effects on growth, productivity performance, gut characteristics and physiological changes in broiler chickens. International Journal of Poultry Science 16:169-179. https://doi.org/10.3923/ijps.2017.169.179
https://doi.org/10.3923/ijps.2017.169.17...
and Prakatur et al. (2019)Prakatur, I.; Miskulin, M.; Pavic, M.; Marjanovic, K.; Blazicevic, V.; Miskulin, I. and Domacinovic, M. 2019. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals 9:301. https://doi.org/10.3390/ani9060301
https://doi.org/10.3390/ani9060301...
demonstrated a beneficial effect of propolis on the intestinal mucosa; they observed increased villus height (VH) and absorption surface area (ASA) in broilers fed propolis.

Studies on effects of ethanolic extract of green propolis (EEGP) in quail production are scarce. Therefore, in this study, we evaluated the effects of EEGP on productive performance, egg quality, nutrient digestibility, and duodenal morphology of Japanese laying quail.

Material and Methods

The research was conducted in Rio Verde, GO, Brazil (17°47'53" S and 50°55'41" W, 715 m), after being approved by the institutional committee on animal use (case number 04/18, approved on May 15, 2018).

A total of 120 Japanese laying quail (45 days old, and initial body weight of 133.7±3.5 g) were used in this study, which lasted for 84 days. Birds were randomly divided into five treatment groups with six birds per group, and there were four replicates per group. All quail in group 1 (control) were fed a basal diet ( Table 1 ), while those in groups 2 to 5 were fed the same basal diet supplemented with 500, 1000, 1500, or 2000 mg EEGP/kg diet, respectively. The EEGP, composed of 30% green propolis resin and 70% cereal alcohol, was purchased from Apiary MelBee, São José dos Campos, SP, Brazil. The EEGP used had a pH of 4.04 and contained 8.8% dry residue, 0.14% ash, 4% lipid, 0.7% nitrogen, and 1.19 mg EQ/g total flavonoids. The dry residue analysis of EEGP was performed according to the method described by Soares et al. (2017)Soares, A. L. F.; Bilezikdjian, P. J.; Elias, P. C.; Medeiros, P. C. M. and Souza, L. A. 2017. Identidade e qualidade de diferentes extratos de propolis. Revista Gestão em Foco 9:255-275. Available at: <http://portal.unisepe.com.br/unifia/wp-content/uploads/sites/10001/2018/06/034_identidade_qualidade.pdf>. Accessed on: Dec 8, 2019.
http://portal.unisepe.com.br/unifia/wp-c...
, ash and nitrogen were determined according to Silva and Queiroz (2002)Silva, D. J. and Queiroz, A. C. 2002. Análise de alimentos: métodos químicos e biológicos. 3.ed. UFV, Viçosa, MG. , lipids according to Bligh and Dyer (1959)Bligh, E. G. and Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemical and Physiology 37:911-917. https://doi.org/10.1139/y59-099
https://doi.org/10.1139/y59-099...
, and total flavonoids according to Devequi-Nunes et al. (2018)Devequi-Nunes, D.; Machado, B. A. S.; Barreto, G. A.; Silva, J. R.; Silva, D. F.; Rocha, J. L. C.; Brandão, H. N.; Borges, V. M. and Umsza-Guez, M. A. 2018. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 13:e0207676. https://doi.org/10.1371/journal.pone.0207676
https://doi.org/10.1371/journal.pone.020...
. Total flavonoids were expressed in equivalents of quercetin (EQ), and the obtained equation was y=0.1402x+0.1332 , R2=0.99 .

Table 1
Composition and chemical analysis of the basal diet offered to laying Japanese quail

Birds were housed in galvanized wire cages (25 L × 15 H × 33 W, cm) equipped with gutter-type feeders and drinkers and had free access to feed and water. Birds were maintained under 15-h light for the first seven days, and light duration was gradually increased by 30 min every seven days until it reached 17 h, which was maintained until the end of the study period.

The excreta produced by the 85-90-day-old birds were collected twice a day to evaluate digestibility. The rations were weighed at the beginning and end of the total excreta collection period to calculate average feed intake. Cages were lined with trays coated with properly identified plastics, which were removed and replaced after each collection (12-h interval), and the collected excreta were stored in freezers. Excreta were subsequently thawed, homogenized, weighed, dried in a forced-ventilation oven for 72 h at 55 °C, and ground for further analyses. The excreta and feed samples were analyzed for DM, CP, EE, gross energy (GE), ash, calcium, and phosphorus contents, as described by Silva and Queiroz (2002)Silva, D. J. and Queiroz, A. C. 2002. Análise de alimentos: métodos químicos e biológicos. 3.ed. UFV, Viçosa, MG. to estimate the metabolic coefficients of the nutrients and energy present in the diet. Apparent metabolizable energy corrected for nitrogen balance was also calculated (AMEn) as follows: AMEn(kcal/kg)=[GEingestedGEexcreted+8.22×NB]/DM intake, in which NB is the nitrogen balance (ingested nitrogen − excreted nitrogen).

The evaluated productive parameters were feed intake (g/d), feed conversion (kg/kg eggs and kg/dozen eggs), laying rate (%), and egg mass (g/bird/d). The number and weights of eggs were recorded daily during the study period, and egg mass was calculated by multiplying the number of laid eggs by their weight.

Two hundred normal eggs were randomly selected from the eggs laid during the final three days of the study (five groups × four replicates per group × 10 eggs per replicate) to assess the following qualitative traits: weight (g), specific gravity (g/cm3), pH, and HU of egg, yolk and albumen weight (g), percentage (%), and index; and eggshell weight (g), percentage (%), and thickness (mm). The specific gravity of eggs was determined by immersing them in saline solutions of different densities (1.05-1.10 g/cm3). Haugh unit was calculated using the following formula: HU=100×log(H1.7×W0.37+7.6) , in which H is albumen height (mm) and W is egg weight (g).

Albumen weight (g) was calculated as the difference between the weight of the entire egg and the combined weight of the yolk and eggshell (g). Percentages of yolk, albumen, and eggshell were determined by the following formula: yolk(%)=[yolk weight(g)/egg weight(g)]×100 . Albumen and eggshell weights were substituted in the formula as necessary. Yolk and albumen indices were determined by dividing their heights (mm) by their respective diameters (mm), with height and diameter being measured using a digital caliper.

After the egg content was removed, eggshells were dried and weighed, and shell thickness (mm) was obtained by calculating the mean of three thickness measurements taken at three different points with a digital caliper (accuracy of 0.01 mm): at the two poles and in the lateral region of the egg.

Twelve hours before the end of the study period, food was removed from all cages and four quail from each treatment were randomly selected and euthanized; sections (5 cm in length) were excised from the duodenal handle region of their duodena. These sections were flushed with saline solution and immediately placed in 10% formalin. After 24 h the sections were transferred to 70% ethanol solution. The samples were then embedded in paraffin and processed for optical microscopy. Villus height (VH, µm), villus weight (VW, µm), and crypt depth (CD, µm) were measured, and the VH:CD ratio was calculated. Absorption surface area (ASA, µm2) was calculated using the following formula: ASA(μm2)=VH(μm)×width at 50% VH(μm) .

Data were subjected to an analysis of variance followed by SNK tests at a 5% probability level using SISVAR computer package version 5.6 ( Ferreira, 2011Ferreira, D. F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35:1039-1042. https://doi.org/10.1590/S1413-70542011000600001
https://doi.org/10.1590/S1413-7054201100...
).

Results

The digestibility coefficients of DM, metabolization coefficient of GE, and AMEn were not affected (P>0.05) by EEGP inclusion; however, the digestibility coefficients of CP (P<0.001) and EE (P<0.005), as well as the retention coefficients of calcium (P<0.008) and phosphorus (P<0.013) were improved in birds fed diet supplemented with 1500 mg/kg propolis ( Table 2 ) compared with birds in the control group and in the group fed diet supplemented with 500 mg/kg EEGP.

Table 2
Nutrient and energy utilization in Japanese quail fed ethanolic extract of green propolis (EEGP)-supplemented diet

The inclusion of 1000, 1500, and 2000 mg/kg EEGP in the diet of Japanese laying quail significantly increased egg-laying rate (P<0.001, Table 3 ).

Table 3
Productive performance of Japanese quail fed ethanolic extract of green propolis (EEGP)-supplemented diet

Green propolis extract inclusion in the diet did not influence quail egg quality in (P>0.05); however, it did reduce eggshell thickness (P<0.007, Table 4 ).

Table 4
Egg quality of Japanese quail fed ethanolic extract of green propolis (EEGP)-supplemented diet

Villus height (P<0.001) and ASA (P<0.02) were significantly greater in quail fed 1500 and 2000 mg/kg of EEGP compared with the control group and the group fed the diet containing 500 mg/kg propolis ( Table 5 ).

Table 5
Duodenal morphology of Japanese quail fed ethanolic extract of green propolis (EEGP)-supplemented diet

Discussion

The digestibility coefficients of CP and EE, and the retention coefficients of calcium and phosphorus were improved in birds fed diets supplemented with propolis. Propolis contains phenolic acids, mainly represented by benzoic acid and its derivatives ( Kurek-Górecka et al., 2014Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M. and Swierczek-Zieba, G. 2014. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 19:78-101. https://doi.org/10.3390/molecules19010078
https://doi.org/10.3390/molecules1901007...
). Benzoic acid increases the digestibility of nutrients, mainly minerals, as shown by Papadomichelakis et al. (2011)Papadomichelakis, G.; Mountzouris, K. C.; Zoidis, E. and Fegeros, K. 2011. Influence of dietary benzoic acid addition on nutrient digestibility and selected biochemical parameters in fattening rabbits. Animal Feed Science and Technology 163:207-213. https://doi.org/10.1016/j.anifeedsci.2010.11.011
https://doi.org/10.1016/j.anifeedsci.201...
with rabbits, and by Diao et al. (2016)Diao, H.; Gao, Z.; Yu, B.; Zheng, P.; He, J.; Yu, J.; Huang, Z.; Chen, D. and Mao, X. 2016. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. Journal of Animal Science and Biotechnology 7:32. https://doi.org/10.1186/s40104-016-0091-y
https://doi.org/10.1186/s40104-016-0091-...
with pigs, owing to its antioxidant properties and because it decreases the pH of the digesta and increases the activities of trypsin, lipase, and amylase in the gut ( Diao et al., 2016Diao, H.; Gao, Z.; Yu, B.; Zheng, P.; He, J.; Yu, J.; Huang, Z.; Chen, D. and Mao, X. 2016. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. Journal of Animal Science and Biotechnology 7:32. https://doi.org/10.1186/s40104-016-0091-y
https://doi.org/10.1186/s40104-016-0091-...
). Propolis also contains enzymes, such as glucosidase ( Saeed et al., 2017Saeed, M.; Arain, M. A.; Kamboh, A. A.; Memon, S. A.; Umar, M.; Rashid, M.; Babazadeh, D.; Abd El-Hack, M. E. and Alagawany, M. 2017. Raw propolis as a promising feed additive in poultry nutrition: trends and advances. Journal of Animal Health and Production 5:132-142. https://doi.org/10.17582/journal.jahp/2017/5.4.132.142
https://doi.org/10.17582/journal.jahp/20...
), α-amylase, β-amylase, α-lactamase, β-lactamase, maltase, esterase, and transhydrogenase, as well as large amounts of essential and aromatic oils ( Kurek-Górecka et al., 2014Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M. and Swierczek-Zieba, G. 2014. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 19:78-101. https://doi.org/10.3390/molecules19010078
https://doi.org/10.3390/molecules1901007...
). Because of its antibacterial and antioxidant properties, propolis can improve the mucosa of the small intestine ( Abdel-Mohsein et al., 2014Abdel-Mohsein, H. S.; Mahmoud, M. A. M. and Mahmoud, U. T. 2014. Influence of propolis on intestinal microflora of Ross broilers exposed to hot environment. Advances in Animal and Veterinary Sciences 2:204-211. https://doi.org/10.14737/journal.aavs/2014/2.4.204.211
https://doi.org/10.14737/journal.aavs/20...
; Prakatur et al., 2019Prakatur, I.; Miskulin, M.; Pavic, M.; Marjanovic, K.; Blazicevic, V.; Miskulin, I. and Domacinovic, M. 2019. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals 9:301. https://doi.org/10.3390/ani9060301
https://doi.org/10.3390/ani9060301...
; Xue et al., 2019Xue, M.; Liu, Y.; Xu, H.; Zhou, Z.; Ma, Y.; Sun, T.; Liu, M.; Zhang, H. and Liang, H. 2019. Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats. Biomedicine & Phamacotherapy 118:109393. https://doi.org/10.1016/j.biopha.2019.109393
https://doi.org/10.1016/j.biopha.2019.10...
) and, consequently, improve the digestion and absorption of nutrients. Similar results were reported by Seven (2008)Seven, P. T. 2008. The effects of dietary Turkish propolis and vitamin C on performance, digestibility, egg production and egg quality in laying hens under different environmental temperatures. Asian-Australasian Journal of Animal Sciences 21:1164-1170. https://doi.org/10.5713/ajas.2008.70605
https://doi.org/10.5713/ajas.2008.70605...
and Seven et al. (2011)Seven, I.; Seven, P. T. and Silici, S. 2011. Effects of dietary Turkish propolis as alternative to antibiotic on growth and laying performances, nutrient digestibility and egg quality in laying hens under heat stress. Revue de Médecine Vétérinaire 162:186-191. Available at: <https://www.revmedvet.com/2011/RMV162_186_191.pdf>. Accessed on: Jul. 20, 2019.
https://www.revmedvet.com/2011/RMV162_18...
, working with laying hens.

The inclusion of EEGP in the diet of quail did not improve their feed intake, egg weight, feed conversion, and egg mass, similarly to the findings of Tayeb and Sulaiman (2014)Tayeb, I. T. and Sulaiman, B. F. 2014. Effect of propolis supplementation on productive performance in local quail. Iranian Journal of Applied Animal Science 4:621-627. with quail and Soltani et al. (2019)Soltani, Z.; Torki, M. and Mohammadi, H. 2019. Single or combined effects of dietary supplemental vitamin C and etanol extracts of propolis on productive traits, egg quality and some blood biochemical parameters of laying hens. Journal of Applied Animal Research 47:243-249. https://doi.org/10.1080/09712119.2019.1620242
https://doi.org/10.1080/09712119.2019.16...
with laying hens. However, Belloni et al. (2015)Belloni, M.; Almeida Paz, I. C. L.; Nääs, I. A.; Alves, M. C. F.; Garcia, R. G.; Caldara, F. R. and Seno, L. O. 2015. Productive, qualitative, and physiological aspects of layer hens fed with propolis. Brazilian Journal of Poultry Science 17:467-472. https://doi.org/10.1590/1516-635x1704467-472
https://doi.org/10.1590/1516-635x1704467...
reported that 2 and 3% dietary propolis reduced the feed intake of layers due the astringent flavor of propolis. This effect was not observed in the present study, probably due the lower levels of propolis used.

The inclusion of 1000-2000 mg/kg EEGP in the diet of Japanese laying quail increased their egg-laying rate compared with the control group and quail fed diet supplemented with 500 mg/kg EEGP. Egg production requires large amounts of energy to increase the triglyceride synthesis needed for the formation of the yolk; thus, the improvement in laying rate may be due to the increased utilization of proteins and lipids from the diet caused by EEGP supplementation. This result is corroborated by Shreif and El-Saadany (2016)Shreif, E. Y. and El-Saadany, A. S. 2016. The effect of supplementing diet with propolis on Bandarah laying hens’ performance. Egyptian Poultry Science Journal 36:481-499. Avaliable at: <https://epsj.journals.ekb.eg/article_57050_9f74f280fb6545bdfcdaa7a27fa141ff.pdf>. Accessed on: Jul. 14, 2019.
https://epsj.journals.ekb.eg/article_570...
and Abdel-Kareem and El Sheikh (2017) and differs from the results obtained by Zeweil et al. (2016)Zeweil, H. S.; Zahran, S. M.; Abd El-Rahman, M. H.; Dosoky, W. M.; Abu Hafsa, S. H. and Moktar, A. A. 2016. Effect of using bee propolis as natural supplement on productive and physiological performance of Japanese quail. Egyptian Poultry Science Journal 36:161-175. https://doi.org/10.21608/epsj.2016.33248
https://doi.org/10.21608/epsj.2016.33248...
and Soltani et al. (2019)Soltani, Z.; Torki, M. and Mohammadi, H. 2019. Single or combined effects of dietary supplemental vitamin C and etanol extracts of propolis on productive traits, egg quality and some blood biochemical parameters of laying hens. Journal of Applied Animal Research 47:243-249. https://doi.org/10.1080/09712119.2019.1620242
https://doi.org/10.1080/09712119.2019.16...
, who did not observe any propolis-induced differences in egg production of Japanese laying quail (250 and 500 mg/kg propolis) and laying hens (150 and 300 mg/kg), respectively. However, Belloni et al. (2015)Belloni, M.; Almeida Paz, I. C. L.; Nääs, I. A.; Alves, M. C. F.; Garcia, R. G.; Caldara, F. R. and Seno, L. O. 2015. Productive, qualitative, and physiological aspects of layer hens fed with propolis. Brazilian Journal of Poultry Science 17:467-472. https://doi.org/10.1590/1516-635x1704467-472
https://doi.org/10.1590/1516-635x1704467...
reported a reduction in feed intake and egg laying rate caused by the inclusion of propolis in laying hen diets at 3% of the total diet, which is higher than the levels used in the present study.

In terms of egg quality, EEGP supplementation reduced only eggshell thickness. Mean eggshell thickness ranges from 0.17 to 0.30 mm for quail eggs ( Ergun and Yamak, 2017Ergun, O. F. and Yamak, U. S. 2017. The effect of eggshell thickness on hatchability of quail eggs. Veterinary World 10:1114-1117. https://doi.org/10.14202/vetworld.2017.1114-1117
https://doi.org/10.14202/vetworld.2017.1...
); therefore, the results of this study were within the normal values for quail eggs and did not influence eggshell quality, since specific weight and eggshell weight were not affected. Specific weight is an indirect measure of eggshell quality and is strongly positively correlated with eggshell thickness ( Kibala et al., 2018Kibala, L.; Rozempolska-Rucinska, I.; Kasperek, K.; Zieba, G. and Lukaszewicz, M. 2018. Eggshell qualities as indicative of eggshell strength for layer selection. Brazilian Journal of Poultry Science 20:99-102. https://doi.org/10.1590/1806-9061-2017-0590
https://doi.org/10.1590/1806-9061-2017-0...
). In agreement with the results of the current study, Belloni et al. (2015)Belloni, M.; Almeida Paz, I. C. L.; Nääs, I. A.; Alves, M. C. F.; Garcia, R. G.; Caldara, F. R. and Seno, L. O. 2015. Productive, qualitative, and physiological aspects of layer hens fed with propolis. Brazilian Journal of Poultry Science 17:467-472. https://doi.org/10.1590/1516-635x1704467-472
https://doi.org/10.1590/1516-635x1704467...
, Zeweil et al. (2016)Zeweil, H. S.; Zahran, S. M.; Abd El-Rahman, M. H.; Dosoky, W. M.; Abu Hafsa, S. H. and Moktar, A. A. 2016. Effect of using bee propolis as natural supplement on productive and physiological performance of Japanese quail. Egyptian Poultry Science Journal 36:161-175. https://doi.org/10.21608/epsj.2016.33248
https://doi.org/10.21608/epsj.2016.33248...
, and Soltani et al. (2019)Soltani, Z.; Torki, M. and Mohammadi, H. 2019. Single or combined effects of dietary supplemental vitamin C and etanol extracts of propolis on productive traits, egg quality and some blood biochemical parameters of laying hens. Journal of Applied Animal Research 47:243-249. https://doi.org/10.1080/09712119.2019.1620242
https://doi.org/10.1080/09712119.2019.16...
reported that propolis had no effect on egg quality (egg weight, specific weight, shell weight, Haugh unit, and yolk and albumen indices). The mechanism underlying the reduction in eggshell thickness, despite high calcium retention, remains unclear. Recent studies have shown that propolis has estrogenic and anti-osteoclastic activities ( Darmadi and Mustamsir, 2016Darmadi, D. and Mustamsir, E. 2016. The effect of propolis on increasing the number of osteoblasts and chondrocytes, and decreasing the number of osteoclasts in Wistar rats ( Rattus novergicu s) with femoral bone fracture. Journal of Dental and Medical Sciences 15:90-95. ; Zingue et al., 2017Zingue, S.; Nde C. B. M.; Michel, T.; Ndinteh, D. T.; Tchatchou, J.; Adamou, M.; Fernandez, X.; Fohouo, F. T.; Clyne, C. and Njamen, D. 2017. Ethanol-extracted Cameroonian propolis exerts estrogenic effects and alleviates hot flushes in ovariectomized Wistar rats. BMC Complementary and Alternative Medicine 17:65. https://doi.org/10.1186/s12906-017-1568-8
https://doi.org/10.1186/s12906-017-1568-...
; Zhang et al., 2018Zhang, W.; Yang, G. I.; Wu, S. X.; Li, D. Q.; Xu, Y. B.; Ma, C. H.; Wang, J. L. and Chen, W. W. 2018. The guiding role of bone metabolism test in osteoporosis treatment. American Journal of Clinical and Experimental Immunology 7:40-49. ) and stimulates bone formation ( Al-Molla et al., 2014Al-Molla, B. H.; Al-Ghaban, N. and Taher, A. 2014. Immunohistochemical evaluation: the effects of propolis on osseointegration of dental implants in rabbit's tibia. Journal of Dental Research and Review 1:123-131. Available at: <http://www.jdrr.org/text.asp?2014/1/3/123/146490>. Accessed on: Dec 15, 2019.
http://www.jdrr.org/text.asp?2014/1/3/12...
; Okamoto et al., 2015Okamoto, Y.; Tobe, T.; Ueda, K.; Takada, T. and Kojima, N. 2015. Oral administration of Brazilian propolis exerts estrogenic effect in ovariectomized rats. The Journal of Toxicological Sciences 40:235-242. https://doi.org/10.2131/jts.40.235
https://doi.org/10.2131/jts.40.235...
; Pereira et al., 2018Pereira, Y. C. L.; Issa, J. P. M.; Watanabe, E.; Nascimento, G. C.; Iyomasa, M. M.; Del Ciampo, J. O. and Ervolino, E. 2018. The therapeutic use of propolis extract in alveolar bone contaminated with bacterial endotoxin. Dentistry 8:473. https://doi.org/10.4172/2161-1122.1000473
https://doi.org/10.4172/2161-1122.100047...
). It is possible that the absorbed calcium is directed to the bones of the bird ( Bansal et al., 2013Bansal, N.; Katz, R.; de Boer, I. H.; Kestenbaum, B.; Siscovick, D. S.; Hoofnagle, A. N.; Tracy, R.; Laughlin, G. A.; Criqui, M. H.; Budoff, M. J.; Li, D. and Ix, J. H. 2013. Influence of estrogen therapy on calcium, phosphorus, and other regulatory hormones in postmenopausal women: the MESA study. Journal of Clinical Endocrinology & Metabolism 98:4890-4898. https://doi.org/10.1210/jc.2013-2286
https://doi.org/10.1210/jc.2013-2286...
) instead of the eggshells, because there are negative correlations between weight and percentage of ash in the tibia and eggshell thickness ( Kim et al., 2005Kim, W. K.; Donalson, L. M.; Herrera, P.; Kubena, L. F.; Nisbet, D. J. and Ricke, S. C. 2005. Comparisons of molting diets on skeletal quality and eggshell parameters in hens at the end of the second egg-laying cycle. Poultry Science 84:522-527. https://doi.org/10.1093/ps/84.4.522
https://doi.org/10.1093/ps/84.4.522...
) and between bone medullary density and eggshell percentage ( Saki et al., 2011Saki, A. A.; Rahmati, M. M. H.; Eskandarlou, A.; Zamani, P. and Hosseini Siyar, S. A. 2011. Assessing bone mineral density, eggshell characteristics and their relationship at peak egg production of laying hens in response to various levels of vitamin C. Brazilian Journal of Poultry Science 13:203-206. https://doi.org/10.1590/S1516-635X2011000300007
https://doi.org/10.1590/S1516-635X201100...
) in laying birds.

On the other hand, Ozkok et al. (2013)Ozkok, D.; Iscan, K. M. and Silici, S. 2013. Effects of dietary propolis supplementation on performance and egg quality in laying hens. Journal of Animal and Veterinary Advances 12:269-275. and Zeweil et al. (2016)Zeweil, H. S.; Zahran, S. M.; Abd El-Rahman, M. H.; Dosoky, W. M.; Abu Hafsa, S. H. and Moktar, A. A. 2016. Effect of using bee propolis as natural supplement on productive and physiological performance of Japanese quail. Egyptian Poultry Science Journal 36:161-175. https://doi.org/10.21608/epsj.2016.33248
https://doi.org/10.21608/epsj.2016.33248...
showed that propolis had no effect on eggshell thickness, while Seven et al. (2016)Seven, P. T.; Arslan, A. S.; Özçelik, M.; Simsek, Ü. G. and Seven, I. 2016. Effects of propolis and royal jelly dietary supplementation on performance, egg characteristics, lipid peroxidation, antioxidant enzyme activity and mineral levels in Japanese quail. European Poultry Science 80:138. https://doi.org/10.1399/eps.2016.138
https://doi.org/10.1399/eps.2016.138...
and Soltani et al. (2019)Soltani, Z.; Torki, M. and Mohammadi, H. 2019. Single or combined effects of dietary supplemental vitamin C and etanol extracts of propolis on productive traits, egg quality and some blood biochemical parameters of laying hens. Journal of Applied Animal Research 47:243-249. https://doi.org/10.1080/09712119.2019.1620242
https://doi.org/10.1080/09712119.2019.16...
reported an improvement in the eggshell thickness caused by propolis supplementation in the diets of Japanese laying quail (4000 mg/kg dietary propolis) and hens (150 mg/kg dietary propolis), respectively.

The inclusion of EEGP improve villus height and ASA in the duodenum. Longer and wider villi are associated with higher intestinal surface area and greater absorptive capacity ( Laudadio et al., 2012Laudadio, V.; Passantino, L.; Perillo, A.; Lopresti, G.; Passantino, A.; Khan, R. U. and Tufarelli, V. 2012. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science 91:265-270. https://doi.org/10.3382/ps.2011-01675
https://doi.org/10.3382/ps.2011-01675...
). The increase in the ASA of the duodenum may have contributed to higher digestibility coefficients for CP and EE, as the duodenum is the main site for the digestion and absorption of fats and proteins ( Kiela and Ghishan, 2016Kiela, P. R. and Ghishan, F. K. 2016. Physiology of intestinal absorption and secretion. Best Practice & Research Clinical Gastroenterology 30:145-159. https://doi.org/10.1016/j.bpg.2016.02.007
https://doi.org/10.1016/j.bpg.2016.02.00...
).

This result is consistent with that of Belloni et al. (2015)Belloni, M.; Almeida Paz, I. C. L.; Nääs, I. A.; Alves, M. C. F.; Garcia, R. G.; Caldara, F. R. and Seno, L. O. 2015. Productive, qualitative, and physiological aspects of layer hens fed with propolis. Brazilian Journal of Poultry Science 17:467-472. https://doi.org/10.1590/1516-635x1704467-472
https://doi.org/10.1590/1516-635x1704467...
, who showed that villus height was greater in the duodena and ilea of laying hens fed diet supplemented with propolis compared with the control group, increasing the area of contact for digesta and mucosa. Chegini et al. (2019)Chegini, S.; Kiani, A.; Kavan, B. P. and Rokni, H. 2019. Effects of propolis and stocking density on growth performance, nutrient digestibility, and immune system of heat-stressed broilers. Italian Journal of Animal Science 18:868-876. https://doi.org/10.1080/1828051X.2018.1483750
https://doi.org/10.1080/1828051X.2018.14...
and Prakatur et al. (2019)Prakatur, I.; Miskulin, M.; Pavic, M.; Marjanovic, K.; Blazicevic, V.; Miskulin, I. and Domacinovic, M. 2019. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals 9:301. https://doi.org/10.3390/ani9060301
https://doi.org/10.3390/ani9060301...
also reported that propolis supplementation improved villus height in the jejuna and duodena of broilers, respectively.

The results of the present study can be attributed to the beneficial effects of the biologically active components of propolis that participate in controlling pathogenic bacteria and reducing bacterial translocation due to its antioxidant and antimicrobial properties ( Abdel-Mohsein et al., 2014Abdel-Mohsein, H. S.; Mahmoud, M. A. M. and Mahmoud, U. T. 2014. Influence of propolis on intestinal microflora of Ross broilers exposed to hot environment. Advances in Animal and Veterinary Sciences 2:204-211. https://doi.org/10.14737/journal.aavs/2014/2.4.204.211
https://doi.org/10.14737/journal.aavs/20...
; Al-Ani et al., 2018Al-Ani, I.; Zimmermann, S.; Reichling, J. and Wink, M. 2018. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 5:2. https://doi.org/10.3390/medicines5010002
https://doi.org/10.3390/medicines5010002...
), avoiding damage to the intestinal mucosa, which could lead to reductions in the morphometric variables of the intestinal villi.

Conclusions

The inclusion of ethanolic extract of green propolis at 1500 ppm in the diet of Japanese laying quail is thus recommended, because it improves protein and fat utilization, calcium and phosphorus retention, and egg production, and increases the duodenal absorption surface.

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Universidade de Rio Verde (UniRV) for granting the scholarships.

References

  • Abdel-Kareem, A. A. A. and El-Sheikh, T. M. 2017. Impact of supplementing diets with propolis on productive performance, egg quality traits and some haematological variables of laying hens. Journal of Animal Physiology and Animal Nutrition 101:441-448. https://doi.org/10.1111/jpn.12407
    » https://doi.org/10.1111/jpn.12407
  • Abdel-Mohsein, H. S.; Mahmoud, M. A. M. and Mahmoud, U. T. 2014. Influence of propolis on intestinal microflora of Ross broilers exposed to hot environment. Advances in Animal and Veterinary Sciences 2:204-211. https://doi.org/10.14737/journal.aavs/2014/2.4.204.211
    » https://doi.org/10.14737/journal.aavs/2014/2.4.204.211
  • Al-Ani, I.; Zimmermann, S.; Reichling, J. and Wink, M. 2018. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 5:2. https://doi.org/10.3390/medicines5010002
    » https://doi.org/10.3390/medicines5010002
  • Al-Molla, B. H.; Al-Ghaban, N. and Taher, A. 2014. Immunohistochemical evaluation: the effects of propolis on osseointegration of dental implants in rabbit's tibia. Journal of Dental Research and Review 1:123-131. Available at: <http://www.jdrr.org/text.asp?2014/1/3/123/146490>. Accessed on: Dec 15, 2019.
    » http://www.jdrr.org/text.asp?2014/1/3/123/146490
  • Babińska, I.; Kleczek, K.; Szarek, J. and Makowski, W. 2012. Modulating effect of propolis and bee pollen on chicken breeding parameters and pathomorphology of liver and kidneys in the course of natural infection with Salmonella enteritidis. Bulletin of the Veterinary Institute in Pulawy 56:3-8. https://doi.org/10.2478/v10213-012-0001-9
    » https://doi.org/10.2478/v10213-012-0001-9
  • Bansal, N.; Katz, R.; de Boer, I. H.; Kestenbaum, B.; Siscovick, D. S.; Hoofnagle, A. N.; Tracy, R.; Laughlin, G. A.; Criqui, M. H.; Budoff, M. J.; Li, D. and Ix, J. H. 2013. Influence of estrogen therapy on calcium, phosphorus, and other regulatory hormones in postmenopausal women: the MESA study. Journal of Clinical Endocrinology & Metabolism 98:4890-4898. https://doi.org/10.1210/jc.2013-2286
    » https://doi.org/10.1210/jc.2013-2286
  • Belloni, M.; Almeida Paz, I. C. L.; Nääs, I. A.; Alves, M. C. F.; Garcia, R. G.; Caldara, F. R. and Seno, L. O. 2015. Productive, qualitative, and physiological aspects of layer hens fed with propolis. Brazilian Journal of Poultry Science 17:467-472. https://doi.org/10.1590/1516-635x1704467-472
    » https://doi.org/10.1590/1516-635x1704467-472
  • Bligh, E. G. and Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemical and Physiology 37:911-917. https://doi.org/10.1139/y59-099
    » https://doi.org/10.1139/y59-099
  • Chegini, S.; Kiani, A.; Kavan, B. P. and Rokni, H. 2019. Effects of propolis and stocking density on growth performance, nutrient digestibility, and immune system of heat-stressed broilers. Italian Journal of Animal Science 18:868-876. https://doi.org/10.1080/1828051X.2018.1483750
    » https://doi.org/10.1080/1828051X.2018.1483750
  • Cimrin, T.; Avsaroglu, M. D.; Tunca, R. I.; Kandir, S. and Ayasan, T. 2019. Effects of the dietary supplementation of layer diets with natural and synthetic antioxidant additives on yolk lipid peroxidation and fatty acid composition of eggs stored at different temperatures and duration. Brazilian Journal of Poultry Science 21:eRBCA-2019-0991. https://doi.org/10.1590/1806-9061-2018-0991
    » https://doi.org/10.1590/1806-9061-2018-0991
  • Daneshmand, A.; Sadeghi, G. H. and Karimi, A. 2012. The effects of a combination of garlic, oyster mushroom and propolis extract in comparison to antibiotic on growth performance, some blood parameters and nutrients digestibility of male broilers. Brazilian Journal of Poultry Science 14:141-147. https://doi.org/10.1590/S1516-635X2012000200009
    » https://doi.org/10.1590/S1516-635X2012000200009
  • Darmadi, D. and Mustamsir, E. 2016. The effect of propolis on increasing the number of osteoblasts and chondrocytes, and decreasing the number of osteoclasts in Wistar rats ( Rattus novergicu s) with femoral bone fracture. Journal of Dental and Medical Sciences 15:90-95.
  • Devequi-Nunes, D.; Machado, B. A. S.; Barreto, G. A.; Silva, J. R.; Silva, D. F.; Rocha, J. L. C.; Brandão, H. N.; Borges, V. M. and Umsza-Guez, M. A. 2018. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 13:e0207676. https://doi.org/10.1371/journal.pone.0207676
    » https://doi.org/10.1371/journal.pone.0207676
  • Diao, H.; Gao, Z.; Yu, B.; Zheng, P.; He, J.; Yu, J.; Huang, Z.; Chen, D. and Mao, X. 2016. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. Journal of Animal Science and Biotechnology 7:32. https://doi.org/10.1186/s40104-016-0091-y
    » https://doi.org/10.1186/s40104-016-0091-y
  • Ergun, O. F. and Yamak, U. S. 2017. The effect of eggshell thickness on hatchability of quail eggs. Veterinary World 10:1114-1117. https://doi.org/10.14202/vetworld.2017.1114-1117
    » https://doi.org/10.14202/vetworld.2017.1114-1117
  • Ferreira, D. F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35:1039-1042. https://doi.org/10.1590/S1413-70542011000600001
    » https://doi.org/10.1590/S1413-70542011000600001
  • Guimarães, N. S. S.; Mello, J. C.; Paiva, J. S.; Bueno, P. C. P.; Berretta, A. A.; Torquato, R. J.; Nates, I. L. and Rodrigues, T. 2012. Baccharis dracunculifolia , the main source of green propolis, exhibits potent antioxidant activity and prevents oxidative mitochondrial damage. Food and Chemical Toxicology 50:1091-1097. https://doi.org/10.1016/j.fct.2011.11.014
    » https://doi.org/10.1016/j.fct.2011.11.014
  • Hascik, P.; Elimam, I. O.; Krocko, M.; Bobko, M.; Kacániová, M.; Garlík, J.; Simko, M. and Saleh, A. A. 2015. The influence of propolis as supplement diet on broiler meat growth performance, carcass body weight, chemical composition and lipid oxidation stability. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 63:411-418. https://doi.org/10.11118/actaun201563020411
    » https://doi.org/10.11118/actaun201563020411
  • Hascik, P.; Krocko, M.; Garlik, J.; Elimam, I.; Kacaniová, M.; Bobko, M.; Arpásová, H.; Vavrisinová, K. and Bucko, O. 2014. The effect of propolis extract in the diet of chickens Ross 308 on their performance. Journal of Central European Agriculture 15:133-146. https://doi.org/10.5513/JCEA01/15.4.1521
    » https://doi.org/10.5513/JCEA01/15.4.1521
  • Khorasgani, E. M.; Karimi, A. H. and Nazem, M. R. 2010. A comparison of healing effects of propolis and silver sulfadiazine on full thickness skin wounds in rats. Pakistan Veterinary Journal 30:72-74.
  • Kibala, L.; Rozempolska-Rucinska, I.; Kasperek, K.; Zieba, G. and Lukaszewicz, M. 2018. Eggshell qualities as indicative of eggshell strength for layer selection. Brazilian Journal of Poultry Science 20:99-102. https://doi.org/10.1590/1806-9061-2017-0590
    » https://doi.org/10.1590/1806-9061-2017-0590
  • Kiela, P. R. and Ghishan, F. K. 2016. Physiology of intestinal absorption and secretion. Best Practice & Research Clinical Gastroenterology 30:145-159. https://doi.org/10.1016/j.bpg.2016.02.007
    » https://doi.org/10.1016/j.bpg.2016.02.007
  • Kim, W. K.; Donalson, L. M.; Herrera, P.; Kubena, L. F.; Nisbet, D. J. and Ricke, S. C. 2005. Comparisons of molting diets on skeletal quality and eggshell parameters in hens at the end of the second egg-laying cycle. Poultry Science 84:522-527. https://doi.org/10.1093/ps/84.4.522
    » https://doi.org/10.1093/ps/84.4.522
  • Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M. and Swierczek-Zieba, G. 2014. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 19:78-101. https://doi.org/10.3390/molecules19010078
    » https://doi.org/10.3390/molecules19010078
  • Laudadio, V.; Passantino, L.; Perillo, A.; Lopresti, G.; Passantino, A.; Khan, R. U. and Tufarelli, V. 2012. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science 91:265-270. https://doi.org/10.3382/ps.2011-01675
    » https://doi.org/10.3382/ps.2011-01675
  • Machado, B. A. S.; Silva, R. P. D.; Barreto, G. A.; Costa, S. S.; Silva, D. F.; Brandão, H. N.; Rocha, J. L. C.; Dellagostin, A. O.; Henriques, J. A. P.; Umsza-Guez, M. A. and Padilha, F. F. 2016. Chemical composition and biological activity of extracts obtained by supercritical extraction an ethanolic extraction of brown, green and red propolis derived from different geographic regions in Brazil. PLoS ONE 11:e0145954. https://doi.org/10.1371/journal.pone.0145954
    » https://doi.org/10.1371/journal.pone.0145954
  • Mahmoud, U. T.; Amen, A. O.; Applegate, T. J. and Cheng, H. W. 2017. Brazilian propolis effects on growth, productivity performance, gut characteristics and physiological changes in broiler chickens. International Journal of Poultry Science 16:169-179. https://doi.org/10.3923/ijps.2017.169.179
    » https://doi.org/10.3923/ijps.2017.169.179
  • Mehaisen, G. M. K.; Ibrahim, R. M.; Desoky, A. A.; Safaa, H. M.; El-Sayed, O. A. and Abass, A. O. 2017. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS ONE 12:e0186907. https://doi.org/10.1371/journal.pone.0186907
    » https://doi.org/10.1371/journal.pone.0186907
  • Mehaisen, G. M. K.; Desoky, A. A.; Sakr, O. G.; Sallam, W. and Abass, A. O. 2019. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS ONE 14:e0214839. https://doi.org/10.1371/journal.pone.0214839
    » https://doi.org/10.1371/journal.pone.0214839
  • Okamoto, Y.; Tobe, T.; Ueda, K.; Takada, T. and Kojima, N. 2015. Oral administration of Brazilian propolis exerts estrogenic effect in ovariectomized rats. The Journal of Toxicological Sciences 40:235-242. https://doi.org/10.2131/jts.40.235
    » https://doi.org/10.2131/jts.40.235
  • Ozkok, D.; Iscan, K. M. and Silici, S. 2013. Effects of dietary propolis supplementation on performance and egg quality in laying hens. Journal of Animal and Veterinary Advances 12:269-275.
  • Papadomichelakis, G.; Mountzouris, K. C.; Zoidis, E. and Fegeros, K. 2011. Influence of dietary benzoic acid addition on nutrient digestibility and selected biochemical parameters in fattening rabbits. Animal Feed Science and Technology 163:207-213. https://doi.org/10.1016/j.anifeedsci.2010.11.011
    » https://doi.org/10.1016/j.anifeedsci.2010.11.011
  • Pereira, C. A.; Costa, A. C. B. P.; Liporoni, P. C. S.; Rego, M. A. and Jorge, A. O. C. 2016. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans . Journal of Infection and Public Health 9:324-330. https://doi.org/10.1016/j.jiph.2015.10.012
    » https://doi.org/10.1016/j.jiph.2015.10.012
  • Pereira, Y. C. L.; Issa, J. P. M.; Watanabe, E.; Nascimento, G. C.; Iyomasa, M. M.; Del Ciampo, J. O. and Ervolino, E. 2018. The therapeutic use of propolis extract in alveolar bone contaminated with bacterial endotoxin. Dentistry 8:473. https://doi.org/10.4172/2161-1122.1000473
    » https://doi.org/10.4172/2161-1122.1000473
  • Prakatur, I.; Miskulin, M.; Pavic, M.; Marjanovic, K.; Blazicevic, V.; Miskulin, I. and Domacinovic, M. 2019. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals 9:301. https://doi.org/10.3390/ani9060301
    » https://doi.org/10.3390/ani9060301
  • Roberto, M. M.; Matsumoto, S. T.; Jamal, C. M.; Malaspina, O. and Marin-Morales, M. A. 2016. Evaluation of the genotoxicity/mutagenicity and antigenotoxicity/antimutagenicity induced by propolis and Baccharis dracunculifolia , by in vitro study with HTC cells. Toxicology in Vitro 33:9-15. https://doi.org/10.1016/j.tiv.2016.02.005
    » https://doi.org/10.1016/j.tiv.2016.02.005
  • Rostagno, H. S.; Albino, L. F. T.; Hannas, M. I.; Donzele, J. L.; Sakomura, N. K.; Perazzo, F. G.; Saraiva, A.; Abreu, M. L. T.; Rodrigues, P. B.; Oliveira, R. F.; Barreto, S. L. T. and Brito, C. O. 2017. Tabelas brasileiras para aves e suínos. 4.ed. UFV, Viçosa, MG.
  • Saeed, M.; Arain, M. A.; Kamboh, A. A.; Memon, S. A.; Umar, M.; Rashid, M.; Babazadeh, D.; Abd El-Hack, M. E. and Alagawany, M. 2017. Raw propolis as a promising feed additive in poultry nutrition: trends and advances. Journal of Animal Health and Production 5:132-142. https://doi.org/10.17582/journal.jahp/2017/5.4.132.142
    » https://doi.org/10.17582/journal.jahp/2017/5.4.132.142
  • Saki, A. A.; Rahmati, M. M. H.; Eskandarlou, A.; Zamani, P. and Hosseini Siyar, S. A. 2011. Assessing bone mineral density, eggshell characteristics and their relationship at peak egg production of laying hens in response to various levels of vitamin C. Brazilian Journal of Poultry Science 13:203-206. https://doi.org/10.1590/S1516-635X2011000300007
    » https://doi.org/10.1590/S1516-635X2011000300007
  • Sabuncuoglu, M. Z.; Kismet, K.; Kilicoglu, S. S.; Kilicoglu, B.; Erel, S.; Muratoglu, S.; Sunay, A. E.; Erdemli, E. and Akkus, M. A. 2007. Propolis reduces bacterial translocation and intestinal villus atrophy in experimental obstructive jaundice. World Journal of Gastroenterology 13:5226-5231.
  • Senay, S.; Islim, P. and Tugay, A. 2019. Supplementation of natural antioxidants to reduced crude protein diets for Japanese quails exposed to heat stress. Brazilian Journal of Poultry Science 21:eRBCA-2019-0694. https://doi.org/10.1590/1806-9061-2017-0694
    » https://doi.org/10.1590/1806-9061-2017-0694
  • Seven, I.; Seven, P. T. and Silici, S. 2011. Effects of dietary Turkish propolis as alternative to antibiotic on growth and laying performances, nutrient digestibility and egg quality in laying hens under heat stress. Revue de Médecine Vétérinaire 162:186-191. Available at: <https://www.revmedvet.com/2011/RMV162_186_191.pdf>. Accessed on: Jul. 20, 2019.
    » https://www.revmedvet.com/2011/RMV162_186_191.pdf
  • Seven, P. T. 2008. The effects of dietary Turkish propolis and vitamin C on performance, digestibility, egg production and egg quality in laying hens under different environmental temperatures. Asian-Australasian Journal of Animal Sciences 21:1164-1170. https://doi.org/10.5713/ajas.2008.70605
    » https://doi.org/10.5713/ajas.2008.70605
  • Seven, P. T.; Arslan, A. S.; Özçelik, M.; Simsek, Ü. G. and Seven, I. 2016. Effects of propolis and royal jelly dietary supplementation on performance, egg characteristics, lipid peroxidation, antioxidant enzyme activity and mineral levels in Japanese quail. European Poultry Science 80:138. https://doi.org/10.1399/eps.2016.138
    » https://doi.org/10.1399/eps.2016.138
  • Shreif, E. Y. and El-Saadany, A. S. 2016. The effect of supplementing diet with propolis on Bandarah laying hens’ performance. Egyptian Poultry Science Journal 36:481-499. Avaliable at: <https://epsj.journals.ekb.eg/article_57050_9f74f280fb6545bdfcdaa7a27fa141ff.pdf>. Accessed on: Jul. 14, 2019.
    » https://epsj.journals.ekb.eg/article_57050_9f74f280fb6545bdfcdaa7a27fa141ff.pdf
  • Silva, D. J. and Queiroz, A. C. 2002. Análise de alimentos: métodos químicos e biológicos. 3.ed. UFV, Viçosa, MG.
  • Soares, A. L. F.; Bilezikdjian, P. J.; Elias, P. C.; Medeiros, P. C. M. and Souza, L. A. 2017. Identidade e qualidade de diferentes extratos de propolis. Revista Gestão em Foco 9:255-275. Available at: <http://portal.unisepe.com.br/unifia/wp-content/uploads/sites/10001/2018/06/034_identidade_qualidade.pdf>. Accessed on: Dec 8, 2019.
    » http://portal.unisepe.com.br/unifia/wp-content/uploads/sites/10001/2018/06/034_identidade_qualidade.pdf
  • Soltani, Z.; Torki, M. and Mohammadi, H. 2019. Single or combined effects of dietary supplemental vitamin C and etanol extracts of propolis on productive traits, egg quality and some blood biochemical parameters of laying hens. Journal of Applied Animal Research 47:243-249. https://doi.org/10.1080/09712119.2019.1620242
    » https://doi.org/10.1080/09712119.2019.1620242
  • Tayeb, I. T. and Sulaiman, B. F. 2014. Effect of propolis supplementation on productive performance in local quail. Iranian Journal of Applied Animal Science 4:621-627.
  • Tufan, T. and Bolacali, M. 2017. Effects of dietary addition of symbiotic on the performance, carcass traits, and serum parameters of Japanese quails. Revista Brasileira de Zootecnia 46:805-813. https://doi.org/10.1590/s1806-92902017001000003
    » https://doi.org/10.1590/s1806-92902017001000003
  • Wang, K.; Jin, X.; Chen, Y.; Song, Z.; Jiang, X.; Hu, F.; Conlon, M. A. and Topping, D. L. 2016. Polyphenol-rich propolis extracts strengthen intestinal barrier function by activating AMPK and ERK signaling. Nutrients 8:272. https://doi.org/10.3390/nu8050272
    » https://doi.org/10.3390/nu8050272
  • Woźniak, M.; Mrówczyńska, L.; Waśkiewicz, A.; Rogoziński, T. and Ratajczak, I. 2019. The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. Revista Brasileira de Farmacognosia 29:301-308. https://doi.org/10.1016/j.bjp.2019.02.002
    » https://doi.org/10.1016/j.bjp.2019.02.002
  • Xue, M.; Liu, Y.; Xu, H.; Zhou, Z.; Ma, Y.; Sun, T.; Liu, M.; Zhang, H. and Liang, H. 2019. Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats. Biomedicine & Phamacotherapy 118:109393. https://doi.org/10.1016/j.biopha.2019.109393
    » https://doi.org/10.1016/j.biopha.2019.109393
  • Zeweil, H. S.; Zahran, S. M.; Abd El-Rahman, M. H.; Dosoky, W. M.; Abu Hafsa, S. H. and Moktar, A. A. 2016. Effect of using bee propolis as natural supplement on productive and physiological performance of Japanese quail. Egyptian Poultry Science Journal 36:161-175. https://doi.org/10.21608/epsj.2016.33248
    » https://doi.org/10.21608/epsj.2016.33248
  • Zhang, W.; Yang, G. I.; Wu, S. X.; Li, D. Q.; Xu, Y. B.; Ma, C. H.; Wang, J. L. and Chen, W. W. 2018. The guiding role of bone metabolism test in osteoporosis treatment. American Journal of Clinical and Experimental Immunology 7:40-49.
  • Zingue, S.; Nde C. B. M.; Michel, T.; Ndinteh, D. T.; Tchatchou, J.; Adamou, M.; Fernandez, X.; Fohouo, F. T.; Clyne, C. and Njamen, D. 2017. Ethanol-extracted Cameroonian propolis exerts estrogenic effects and alleviates hot flushes in ovariectomized Wistar rats. BMC Complementary and Alternative Medicine 17:65. https://doi.org/10.1186/s12906-017-1568-8
    » https://doi.org/10.1186/s12906-017-1568-8

Publication Dates

  • Publication in this collection
    19 June 2020
  • Date of issue
    2020

History

  • Received
    26 Sept 2019
  • Accepted
    31 Mar 2020
Sociedade Brasileira de Zootecnia Universidade Federal de Viçosa / Departamento de Zootecnia, 36570-900 Viçosa MG Brazil, Tel.: +55 31 3612-4602, +55 31 3612-4612 - Viçosa - MG - Brazil
E-mail: rbz@sbz.org.br