Critical thermal maxima and minima of the platyfish Xiphophorus maculatus Günther (Poecillidae, Cyprinodontiformes): a tropical species of ornamental freshwater fish

Abstract

Temperature as an environmental factor has been a frequent subject of study, since it affects either directly or indirectly all living organisms. The determination of thermal limits (critical thermal minima - CTmin and maxima - CTmax) for the tropical ornamental freshwater teleost Xiphophorus maculatus Günther, 1866 (platyfish) was performed after their acclimation to the following temperatures: 15, 20, 25, and 30ºC, for seven days. After this period, the water temperature was elevated or reduced at a rate of 0.125ºC/min until CTmax and CTmin could be determined as the temperature at which 50% of the animals had lost equilibrium. Mean values for CTmax and CTmin for the acclimation temperatures of 15, 20, 25, and 30ºC were respectively: 39.8,39.8,40.4,41.5ºC (CTmax), and 9.6, 12.8, 13.1, 16.0ºC (CTmin). CTmax and CTmin for X. maculatus were thus affected by acclimation temperature. This tropical species is more heat- than cold- tolerant and would not resist the typical low winter temperatures of southern Brazil. Platyfish can adapt to natural environments in regions of mean annual temperatures around 20-25ºC or be kept in aquaria with other ornamental species that accordingly prefer this temperature range.

Xiphophorus maculatus; temperature; critical thermal maxima and minima; acclimation; platyfish


Critical thermal maxima and minima of the platyfish Xiphophorus maculatus Günther (Poecillidae, Cyprinodontiformes) - a tropical species of ornamental freshwater fish

Viviane Prodocimo; Carolina Arruda Freire

Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná. Centro Politécnico, 81531-990 Curitiba, Paraná, Brasil

ABSTRACT

Temperature as an environmental factor has been a frequent subject of study, since it affects either directly or indirectly all living organisms. The determination of thermal limits (critical thermal minima - CTmin and maxima - CTmax) for the tropical ornamental freshwater teleost Xiphophorus maculatus Günther, 1866 (platyfish) was performed after their acclimation to the following temperatures: 15, 20, 25, and 30ºC, for seven days. After this period, the water temperature was elevated or reduced at a rate of 0.125ºC/min until CTmax and CTmin could be determined as the temperature at which 50% of the animals had lost equilibrium. Mean values for CTmax and CTmin for the acclimation temperatures of 15, 20, 25, and 30ºC were respectively: 39.8,39.8,40.4,41.5ºC (CTmax), and 9.6, 12.8, 13.1, 16.0ºC (CTmin). CTmax and CTmin for X. maculatus were thus affected by acclimation temperature. This tropical species is more heat- than cold- tolerant and would not resist the typical low winter temperatures of southern Brazil. Platyfish can adapt to natural environments in regions of mean annual temperatures around 20-25ºC or be kept in aquaria with other ornamental species that accordingly prefer this temperature range.

Key words:Xiphophorus maculatus, temperature, critical thermal maxima and minima, acclimation, platyfish

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

ACKNOWLEDGMENTS. The authors wish to thank Mr. Luiz Fernando Peraceta, electronic technician of the Setor de Ciências Biológicas (UFPR), for the assembly of the acclimation chamber, and the Post-Graduation course in Physiology of the Departamento de Fisiologia (UFPR) for financial support.

REFERENCES

Baker, S.C. & R.C. Heidinger. 1996. Upper lethal temperature tolerance of fingerling black crappie. Jour. Fish Biol. 48:1123-1129.

Barrionuevo, W.R. & M.N. Fernandes. 1995. Critical thermal maxima and minima for curimbatá, Prochilodus scrofa Steindachner, of two different sizes. Aquac. Res. 26:447-450.

Benfey, T.J.; L.E. McCabe & P. Pepin. 1997. Critical thermal maxima of diploid and triploid brook charr, Salvelinus fontinalis. Environ. Biol. Fishes 49:259-264.

Bennett, W.A.; R.J. Currie; P.F. Wagner & T.L. Beitinger. 1997. Cold tolerance and potential overwintering of the red-bellied piranha Pygocentrus nattereri in the United States. Trans. Amer. Fish. Soc. 126:841-849.

Brett, J.R. 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol. 31(2):75-87.

Brown, J.H. & C.R. Feldmeth. 1971. Evolution in constant and flutuating environments: thermal tolerance of desert pupfish (Cyprinodon). Evolution 25:390-398.

Chung, K.S. & K. Strawn. 1994. What factors influence the thermal tolerance of estuarine animals? Interpretation of multiple regression analyses. Rev. Biol. Trop. 42(1-2):365-370.

Cowles, R.B. & C.M. Bogert. 1944. A preliminary study of thermal requirements of desert reptiles. Bull. Amer. Mus. Nat. Hist. 83:265-296.

Currie, R.J.; W.A. Bennett & T.L. Beitinger. 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environ. Biol. Fishes. 51:187-200.

Doudoroff, P. 1942. The resistance and acclimatization of marine fishes to temperature changes. I Experiments with Girella nigricans (Ayres). Biol. Bull. 83:219-244.

Elliott, J.M. & J.A. Elliott. 1995. The effect of the rate of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. Jour. Fish Biol. 47:917-919.

Elliott, J.M.; J.A. Elliott & J.D. Allonby. 1994. The critical thermal limits for the stone loach, Noemacheilus barbatulus, from three populations in north-west England. Freshwater Biol. 32:593-601.

Evans, D.H. 1993. The Physiology of Fishes. Boca Raton: CRS Series in Marine Science, 592p.

Fernandes, M.N. & F.T. Rantin. 1986a. Lethal temperatures of Oreochromis niloticus (Pisces, Cichlidae). Rev. Brasil. Biol. 46(3):589-595.

Fernandes, M.N. & F.T. Rantin. 1986b. Thermal acclimation of teleost Oreochromis niloticus (Pisces, Cichlidae). Rev. Hydrobiol. Trop. 19(3-4):163-168.

Gerking, S.D.; T. Ratcliff & R.G. Otto. 1975. Laboratory and field tests of temperature tolerance on Gambusia affinis, the western mosquito-fish. Verh. Intern. Verein. Limnol. 19:2498-2503.

Gohm, D. 1972. Tropical Fish. London, Hamlyn Publ. Group, 3rd ed., 143p.

Hutchison, V.H. 1961. Critical thermal maxima in salamanders. Physiol. Zool. 34:92-125.

Jordan, D.S. 1963. The Genera of Fishes and a Classification of Fishes. Stanford, Stanford Univ. Press, 800p.

Kelsch, S.W. 1996. Temperature selection and performance by bluegills: evidence for selection in response to available power. Trans. Amer. Fish. Soc. 125:948-955.

Kita, J.; S. Tsuchida & T. Setoguma. 1996. Temperature preference and tolerance, and oxygen consumption of the marbled rockfish, Sebastiscus marmoratus. Mar. Biol. 125:467-471.

Lowe, C.H. & W.G. Heat. 1969. Behavioural and physiological responses to temperature in desert pupfish Cyprinodon macularius. Physiol. Zool. 42:53-59.

Lutterschmidt, W.I. & V.H. Hutchison. 1997a. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can. Jour. Zool. 75:1553-1560.

______. 1997b. The critical thermal maximum: history and critique. Can. Jour. Zool. 75:1561-1574.

Lyytikãinen, T.; J. Koskela & I. Rissanen. 1997. Thermal resistance and upper lethal temperatures of underyearling Lake Inari Arctic charr. Jour. Fish. Biol. 51:515-525.

Nelson, J.S. 1994. Fishes of the World. New York, John Wiley & Sons, 3rd ed., 600p. Otto, R.G. & S.D. Gerking. 1973. Heat tolerance of the death valley pupfish (genus Cyprinodon). Physiol. Zool. 46:43-49.

Pough, F.H; J.B. Heiser & W.N. McFarland. 1996. Vertebrate Life. Upper Saddle River, Prentice Hall, 4th ed., 798p.

Rantin, F.T. 1980. Temperaturas letais do acará Geophagus brasiliensis (Quoy & Gaimard, 1824 - Pisces, Cichlidae). Bol. Fisiol. Animal 4:9-33.

Rietzler, A.C.; F.T. Rantin & F. Glens. 1980. Studies on the critical thermal maximum of the guppy Phalloceros caudimaculatus (Hensel, 1826) (Pisces, Poecillidae). Bol. Fisiol. Animal 5:19-27.

Schmidt-Nielsen, K. 1997. Animal Physiology: Adaptation and Environment. Cambridge, Cambridge Univ. Press, 5th ed., 607p.

Stauffer Jr., J.R.; C.H. Hocutt & W.F. Goodfellow. 1985. Effects of sex and maturity on preferred temperatures: A proximate factor for increased survival of young Poecilia latipinna? Arch. Hydrobiol. 103(1):129-132.

Young, P.S. & J.J. Cech 1996. Environmental tolerances and requirements of splittail. Trans. Amer. Fish. Soc. 125:664-678.

Recebido em 18.V.2000; aceito em 19.VI.2001.

  • Baker, S.C. & R.C. Heidinger. 1996. Upper lethal temperature tolerance of fingerling black crappie. Jour. Fish Biol. 48:1123-1129.
  • Barrionuevo, W.R. & M.N. Fernandes. 1995. Critical thermal maxima and minima for curimbatá, Prochilodus scrofa Steindachner, of two different sizes. Aquac. Res. 26:447-450.
  • Benfey, T.J.; L.E. McCabe & P. Pepin. 1997. Critical thermal maxima of diploid and triploid brook charr, Salvelinus fontinalis. Environ. Biol. Fishes 49:259-264.
  • Bennett, W.A.; R.J. Currie; P.F. Wagner & T.L. Beitinger. 1997. Cold tolerance and potential overwintering of the red-bellied piranha Pygocentrus nattereri in the United States. Trans. Amer. Fish. Soc. 126:841-849.
  • Brett, J.R. 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol. 31(2):75-87.
  • Brown, J.H. & C.R. Feldmeth. 1971. Evolution in constant and flutuating environments: thermal tolerance of desert pupfish (Cyprinodon). Evolution 25:390-398.
  • Chung, K.S. & K. Strawn. 1994. What factors influence the thermal tolerance of estuarine animals? Interpretation of multiple regression analyses. Rev. Biol. Trop. 42(1-2):365-370.
  • Cowles, R.B. & C.M. Bogert. 1944. A preliminary study of thermal requirements of desert reptiles. Bull. Amer. Mus. Nat. Hist. 83:265-296.
  • Currie, R.J.; W.A. Bennett & T.L. Beitinger. 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environ. Biol. Fishes. 51:187-200.
  • Doudoroff, P. 1942. The resistance and acclimatization of marine fishes to temperature changes. I Experiments with Girella nigricans (Ayres). Biol. Bull. 83:219-244.
  • Elliott, J.M. & J.A. Elliott. 1995. The effect of the rate of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. Jour. Fish Biol. 47:917-919.
  • Elliott, J.M.; J.A. Elliott & J.D. Allonby. 1994. The critical thermal limits for the stone loach, Noemacheilus barbatulus, from three populations in north-west England. Freshwater Biol. 32:593-601.
  • Evans, D.H. 1993. The Physiology of Fishes. Boca Raton: CRS Series in Marine Science, 592p.
  • Fernandes, M.N. & F.T. Rantin. 1986a. Lethal temperatures of Oreochromis niloticus (Pisces, Cichlidae). Rev. Brasil. Biol. 46(3):589-595.
  • Fernandes, M.N. & F.T. Rantin. 1986b. Thermal acclimation of teleost Oreochromis niloticus (Pisces, Cichlidae). Rev. Hydrobiol. Trop. 19(3-4):163-168.
  • Gerking, S.D.; T. Ratcliff & R.G. Otto. 1975. Laboratory and field tests of temperature tolerance on Gambusia affinis, the western mosquito-fish. Verh. Intern. Verein. Limnol. 19:2498-2503.
  • Gohm, D. 1972. Tropical Fish. London, Hamlyn Publ. Group, 3rd ed., 143p.
  • Hutchison, V.H. 1961. Critical thermal maxima in salamanders. Physiol. Zool. 34:92-125.
  • Jordan, D.S. 1963. The Genera of Fishes and a Classification of Fishes. Stanford, Stanford Univ. Press, 800p.
  • Kelsch, S.W. 1996. Temperature selection and performance by bluegills: evidence for selection in response to available power. Trans. Amer. Fish. Soc. 125:948-955.
  • Kita, J.; S. Tsuchida & T. Setoguma. 1996. Temperature preference and tolerance, and oxygen consumption of the marbled rockfish, Sebastiscus marmoratus. Mar. Biol. 125:467-471.
  • Lowe, C.H. & W.G. Heat. 1969. Behavioural and physiological responses to temperature in desert pupfish Cyprinodon macularius. Physiol. Zool. 42:53-59.
  • Lutterschmidt, W.I. & V.H. Hutchison. 1997a. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can. Jour. Zool. 75:1553-1560.
  • ______. 1997b. The critical thermal maximum: history and critique. Can. Jour. Zool. 75:1561-1574.
  • Lyytikãinen, T.; J. Koskela & I. Rissanen. 1997. Thermal resistance and upper lethal temperatures of underyearling Lake Inari Arctic charr. Jour. Fish. Biol. 51:515-525.
  • Nelson, J.S. 1994. Fishes of the World. New York, John Wiley & Sons, 3rd ed., 600p.
  • Otto, R.G. & S.D. Gerking. 1973. Heat tolerance of the death valley pupfish (genus Cyprinodon). Physiol. Zool. 46:43-49.
  • Pough, F.H; J.B. Heiser & W.N. McFarland. 1996. Vertebrate Life. Upper Saddle River, Prentice Hall, 4th ed., 798p.
  • Rantin, F.T. 1980. Temperaturas letais do acará Geophagus brasiliensis (Quoy & Gaimard, 1824 - Pisces, Cichlidae). Bol. Fisiol. Animal 4:9-33.
  • Rietzler, A.C.; F.T. Rantin & F. Glens. 1980. Studies on the critical thermal maximum of the guppy Phalloceros caudimaculatus (Hensel, 1826) (Pisces, Poecillidae). Bol. Fisiol. Animal 5:19-27.
  • Schmidt-Nielsen, K. 1997. Animal Physiology: Adaptation and Environment. Cambridge, Cambridge Univ. Press, 5th ed., 607p.
  • Stauffer Jr., J.R.; C.H. Hocutt & W.F. Goodfellow. 1985. Effects of sex and maturity on preferred temperatures: A proximate factor for increased survival of young Poecilia latipinna? Arch. Hydrobiol. 103(1):129-132.
  • Young, P.S. & J.J. Cech 1996. Environmental tolerances and requirements of splittail. Trans. Amer. Fish. Soc. 125:664-678.

Publication Dates

  • Publication in this collection
    30 Apr 2009
  • Date of issue
    July 2001

History

  • Accepted
    19 June 2001
  • Received
    18 May 2000
Sociedade Brasileira de Zoologia Caixa Postal 19020, 81531-980 Curitiba PR Brasil, Tel./Fax: +55 41 3266-6823, - Curitiba - PR - Brazil
E-mail: sbz@bio.ufpr.br