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Geostatistics or machine learning for mapping soil attributes
and agricultural practices

Applying the upcoming technologies in agriculture has been a major economic, environmental and social challenge
for scientists and farmers. In order to overcome such challenge, this study evaluated the advantages and limitations of
using geostatistics and machine learning for soil mapping in agricultural practices and soil surveys. The study occurred
in Tocantins State, Brazil, and consisted into seven areas with a total extension of 17.24 km2, 222 meters regular gridded
resulting in one-point sampling per 0.0493 km2 of five randomly sampled cores within a 1 m circle radius. It was collected
332 georeferenced soil samples at 0-20 cm depth using an auger and then, soil laboratory analyses performed. Afterward,
liming rate maps were originated from the predicted soil attributes clay, cation exchange capacity and base saturation
comparing four methods: ordinary kriging, random forest, cubist, support vector machine and the best model results of
each soil attribute. Evaluating the methods, the Pearson’s index presented strong results for soil attributes predicted by
random forest and ordinary kriging. Machine learning methods can be successfully applied for soil mapping in agricultural
practices and soil surveys using less soil samples rather than geostatistical framework.
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INTRODUCTION

Applying the upcoming technologies in agriculture has
been an enjoyable challenge for scientists and agricultural
entrepreneurs. However, the challenge is to reach
economic, environmental and social sustainability by
using these technologies in the field of agricultural
practices. Techniques such as geostatistics and machine
learning have been performed in land management
(Rodrigo-Comino et al., 2018), crop yield prediction
(Adamchuk et al., 2017), soil type mapping (Demattê et al.,
2015) and zone management (Castro-Franco et al., 2018).
The geostatistics began in the field of geology by Krige
(1951). Since then, these application of random theory
functions are extremely used for spatialisation of
georeferenced data and as it has been performed for
agricultural purposes (Dowd, 1991; Shannon et al., 2018;
Wackernagel, 2014). The machine learning approach
estimates soil spatial arrangements using ancillary

variables such as digital elevation models (DEM) and its
covariates, and remote sensing data such as satellite images
from Landsat 5 Thematic Mapper (McBratney et al., 2003;
Fongaro et al., 2018; Gallo et al., 2018; Castro-Franco et
al., 2018).

The foremost difference between the geostatistical and
machine learning methods is how each one deals with
spatial statistics and sampling data. The sampling density
for geostatistics has to be spatially dependent, otherwise
it is classical statistics and no prediction can be performed
by using this method. Meanwhile, machine learning relies
on georeferenced sampling data only. Both methods
depend on georeferenced dataset; however, there is no
need of spatial dependency on machine learning. Ordinary
kriging is a stationary random function of geostatistics,
which means to calculate an average of the radium of each
point (Wackernagel, 2014). Other three random spatially
functions are Random Forest (Flaxman et al., 2011) and
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Cubist (Quinlan & Ross, 1993), which are a decision tree
normally used in regressions and classifications. The third
one is the Support Vector Machine that uses a kernel
function to generalise non-linear models (Vapnik, 2000).
The three methods are classified as machine learning.

Each method has advantages and limitations when
applied to agriculture. The main farmers’ complain about
geostatistics are the sampling density because the ideal
grid for predicting chemical and physical soil attributes is
less than one point per hectare (Cherubin et al., 2015; Nanni
et al., 2011) and one point per 7.2 hectares, respectively
(Nanni et al., 2011). Thus, the geostatistical method can
be non-economic sustainable. In order to solve this issue,
this study evaluates the advantages and limitations of using
geostatistics or machine learning for soil mapping in
agricultural practices and soil surveys. We create a liming
rate map originated from the predicted soil attributes cation
exchange capacity and base saturation comparing four
methods: ordinary kriging, random forest, cubist, support
vector machine and the best model results of each soil
attribute.

MATERIAL AND METHODS

Study area and sampling data

The study area is located in the municipality of Barra
do Ouro, State of Tocantins, Brazil (Figure 1). The site

was subdivided into seven areas with total extension of
17.24 km2 (1,724 hectares), 222 meters regular gridded (222
x 222 m) resulting in one-point sampling per 0.0493 km2

(4.93 ha) of five randomly sampled cores within a 1 m
circle radius. It was collected 332 georeferenced soil
samples at 0-20 cm depth using an auger. The soil samples
were dried (45 ºC for 24 h), grounded and sieved (2-mm
mesh). Afterward, the soil chemical and physical analyses
were performed as described in Donagemma et al. (2011)
and Camargo et al. (2009).

Prediction of soil attributes

The ordinary kriging (OrdKrig), support vector machine
(SVM), cubist (Cub) and random forest (RF) methods were
applied to predict the soil attributes: clay (g kg-1), cation
exchange capacity (CEC, cmol

c
 dm-3) and base saturation

(V%). We only predicted these three attributes because
they are required in the liming rate calculation. The ancillary
variables used in the machine learning process were (i) the
Digital Elevation Model (DEM) retrieved from the Earth
Resource Observation and Science Center that distributes
the Shuttle Radar Topography Mission data (SRTM v.3,
30 m), and (ii) the Synthetic Soil Image (SYSI) generated
from 27-year time-series (1985-2011) of Landsat 5 TM by
the methodology described in Demattê et al. (2018). The
SYSI represents bare soil pixels along time. The
characterisation of the parameters used in the study area

Figure 1: Study area retrieved using the Bing aerial map as background.
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is summarized in the Table 1. The methods were performed
using the software R (R Development Core Team, 2019) by
specific packages as it follows: OrdKrig from “automap”
package (Hiemstra et al., 2009), SVM from “e1071” package
(Dimitriadou et al., 2011), Cub and RF from “caret” package
(Kuhn, 2008). The fitted semivariogram was generated for
the three soil properties before of interpolating them using
OrdKrig. For machine learning methods (SVM, Cub and
RF), the data were initially analysed and no value fields
excluded. Then, the 307 sampling points left were randomly
divided into 80% for training (247 samples) and 20% for
validation purposes (60 samples). Finally, the 80% training
data were cross-validated (3 fold, repeated 3 times) for
each model (Heung et al., 2014).

Model evaluation

The ordinary kriging method was evaluated by its
standard deviation and variance results (Mueller et al.,
2004). The machine learning algorithms were evaluated
analysing the predicted and observed values of each soil
attribute by accessing the Root Mean Squared Error
(RMSE), the Pearson correlation coefficient (r) and the
Index Of Agreement (IOA) (Willmott et al., 2012).

Liming rate calculation

The liming rate calculation is based on the following
classical formula: LR = [(V%

2
 - V%

1
) * CEC]/TNP (Molin

et al., 2015; Raij, 1983). LR is the Liming Requirement in
ton per hectare; V%

2
 is the base saturation that is

considered between 60-80% for most crops; V%
1
 is the

base saturation obtained in laboratory and predicted map;
CEC is the cation exchange capacity in cmol dm-3 from
laboratory and predicted map; and TNP is the total
neutralizing power in %. For the LR calculation, we adopted
base saturation of 80% for crop and TNP of 100%. We
used the raster calculation of QGIS (QGIS Development
Team, 2018) to achieve the LR. Basically, this tool retrieved
from the V% and CEC maps the value of each pixel at the
same location and then, the formula of liming rate was
calculated generating the final map with a pixel resolution
of  30 m.

RESULTS AND DISCUSSION

The Pearson’s correlation coefficient (r) of the dataset
presented moderate linearity between the soil attributes
and the satellite bands of the SYSI, which represents the
bare soil pixels (Figure 2). However, the DEM had low r
values for all attributes (Figure 1). The linearity among
them is a fundamental principle to identify the normal
distribution needed before of mapping the soil attributes,
and the evaluation of the kriging process in geostatistics
is analysing its variance and standard variation.Ta
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The variance and standard deviation increases as the
spatial dependency decreases (Figure 3). Thus, whether
the distance among the collected samples are higher than
one sample per hectare, the soil chemical attributes have
no fair prediction. For example, the recommended grid size

for phosphorus and potassium prediction in Oxisol is less
or equal to 1 sample per 100x100 m (Cherubin et al., 2015).
Soil grids larger than 100x100 m display high variance and
to some degree no spatial dependency, which reallocate
them in the conventional statistics. For physical attributes,

Figure 2: Pearson’s correlation coefficient (p < 0.01) for all attributes used to map the area. SYSI is the Synthetic Soil Image and the
numbers are the satellite’s bands; DEM is the digital elevation model; V% is the base saturation; and CEC is the cation exchange
capacity. Checkbox values no significant.

Figure 3: Maps of variance resulted from the ordinary kriging for clay (a) and cation exchange capacity (b). Red arrow indicates
increasing variance.
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it is acceptable grids up to one sample per 7.2 hectares
(Nanni et al., 2011). These authors found moderate
correlation for clay prediction (R2 > 0.53).

The machine learning methods are evaluated by other
meanings, which are the RMSE, r and IOA. The Index Of
Agreement (IOA) and r values close to one means that the
model prediction fitted well (Table 2). Taking this into
account, the RF was the best algorithm to predict clay
(IOA = 0.689 and r = 0.83) (Beguin et al., 2017; Fongaro et
al., 2018; Vasava et al., 2019) and had close correlation to
SVM predicting CEC. For mapping base saturation, the
cubist model had better performance rather than the other

two methods (Nussbaum et al., 2017). We basically
performed the three methods in order to predict the soil
attributes. Subsequently, we calculate the liming rate based
on the results from RF, Cub, SVM, and the best predicted
attribute independent of the method. This last one named
Best Model (BM). The ordinary kriging was kept a part
from the machine learning methods because our intention
is to prove that machine learning methods can be a
reasonable framework economically, socially and
environmentally sustainable for agriculture. Furthermore,
it was calculated the liming rate for an extent of the study
area showing the practicability of machine learning

Table 2: Evaluation of the machine learning methods performed for three soil attributes

Models

RMSE r 1IOA

Random Forest

Clay 73.66 0.52 0.59
CEC 1.33 0.69 0.34
V% 9.57 0.83 0.68

Cubist

Clay 82.15 0.39 0.55
CEC 1.31 0.64 0.37
V% 8.56 0.86 0.72

Support Vector Machine

Clay 76.35 0.49 0.57
CEC 1.27 0.68 0.38
V% 10.54 0.76 0.68
1IOA – Index of Agreement (Willmott et al., 2012).

Soil attributes

Figure 4: Pearson’s correlation coefficient (p < 0.01) for liming rate predicted by Ordinary Kriging (LR_OrdKrig), Support Vector
Machine (LR_SVM), Random Forest (LR_RF), the best model (LR_BM), the extent of the study area (LR_Extent), and cubist
(LR_Cubist) methods compared with the calculation from soil laboratory analyses (LR_Lab).
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methods because they can spatialize attributes or response
variables without needs of grid size dependency. Checking
the reliability of the calculation of all methods, the Pearson’s
index presented strong results for soil attributes predicted
by RF and OrdKrig. These methods had better performance
among others (Figure 4). The advantage of using machine

CONCLUSIONS

Machine learning methods can be successfully applied
for soil mapping in agricultural practices and soil surveys
using less samples rather than the geostatistical
approaches. This conclusion is a key point to farmers that
want to apply optimized methods in their agricultural day
life. The machine learning frameworks, mainly Random
Forest, proved to be economically and environmentally
sustainable for agriculture.
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learning methods to achieve agricultural field application
relies on the absence of spatial dependency among soil
sample observations, which is a requirement in
geostatistical framework. Another advantage, it is to map
large areas (Figure 5) with close performance to
geostatistical approaches (r = 0.7).

Figure 5: Liming rate maps generated using soil attributes predicted from Ordinary Kriging (a), Random Forest (b), Best Model (c),
Support Vector Machine (d), Cubist (e), and Extent area (f). The Bing aerial map is used as background.
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