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ABSTRACT

Applying the upcoming technologies in agriculture has been a major economic, environmental and social challenge
for scientists and farmers. In order to overcome such challenge, this study evaluated the advantages and limitations of
using geostatistics and machine learning for soil mapping in agricultural practices and soil surveys. The study occurred
in Tocantins &te, Brazil, and consisted into seven areas with a total extension of 17,22Rmeters regular gridded
resulting in one-point sampling per 0.049Zlkaffive randomly sampled cores within a 1 m circle radius. It was collected
332 georeferenced soil samples at 0-20 cm depth using an auger and then, soil laboratory analysesAdteforandd.
liming rate maps were originated from the predicted soil attributesazltign exchange capacity and base saturation
comparing four methods: ordinary kriging, random forest, cubist, support vector machine and the best model results of
each soil attribute. Evaluating the methods, the Pearguaiex presented strong results for soil attributes predicted by
random forest and ordinary kriging. Machine learning methods can be successfully applied for soil mapping in agricultural
practices and soil surveys using less soil samples rather than geostatistical framework.
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INTRODUCTION variables suclas digital elevation models (DEM) and its
Applving the upcoming technologies in aariculture hacovariates, and remote sensing data such as satellite images
PRYY g P g .g . g . ?r?m Landsat 5 Thematic Mapper (McBratreyal, 2003;
been an enjoyable challenge for scientists and agrlcultu%a
. ongarcet al, 2018; Gallcet al, 2018; Castro-Francet
entrepreneurs. Howevethe challenge is to reach 1. 2018)

economic, environmental and social sustainability by ) o
using these technologies in the field of agricultural The foremost difference between the geostatistical and

practices Techniques such as geostatistics and machifféichine learning methods is how each one deals with
learning have been performed in land manageme?@aﬂa' statistics and sampling data. The sampling density
(Rodrigo-Cominoet al, 2018), crop yield prediction for geostatistics has to be spatially dependent, otherwise
(Adamchulet al, 2017), soil type mapping (Demagtéal,  itis classical statistics and no prediction can be performed
2015) and zone management (Castro-Franed, 2018). by using this method. Meanwhile, machine learning relies
The geostatistics began in the field of geology by Krigén georeferenced sampling data orfypoth methods
(1951). Since then, these application of random theofligpend on georeferenced dataset; howetere is no
functions are extremely used for spatialisation ofieed of spatial dependency on machine learning. Ordinary
georeferenced data and as it has been performed Kkoiging is a stationary random function of geostatistics,
agricultural purposes (Dowd, 1991; Shanabal, 2018; which means to calculate an average of the radium of each
Wackernagel, 2014)The machine learning approachpoint (Wackernagel, 2014). Other three random spatially
estimates soil spatial arrangements using ancillafynctions are Rando Forest (Flaxmaet al, 2011) and
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Cubist (Quinlan & Ross, 1993), which are a decision tregas subdivided into seven areas with total extension of
normally used in regressions and classifications. The thitd.24 kni (1,724 hectares), 222 meters regular gridded (222
one is the Suppoi¥ector Machine that uses a kernelx 222 m) resulting in one-point sampling per 0.0493 km
function to generalise non-linear modelsfviik, 2000). (4.93 ha) of five randomly sampled cores within a 1 m
The three methods are classified as machine learning. circle radius. It was collected 332 georeferenced soil
Each method has advantages and limitations wheamples at 0-20 cm depth using an auger soil samples
applied to agriculture. The main farmers’ complain abowtere dried (45 °C for 24 h), grounded and sieved (2-mm
geostatistics are the sampling density because the idessh)Afterward, the soil chemical and physical analyses
grid for predicting chemical and physical soil attributes isvere performed as described in Donageretrad. (2011)
less than one point per hectare (Cherebai, 2015; Nanni  and Camarget al (2009).
et al, 2011) and one point per 7.2 hectares, respectively . . .
(Nanniet al, 2011). Thus, the geostatistical method can Prediction of soil attributes
be non-economic sustainable. In order to solve this issue, The ordinary krigag (OrdKrig), support vector machine
this study evaluates the advantages and limitations of usitf/M), cubist (Cub) and random forest (RF) methods were
geostatistics or machine learning for soil mapping iapplied to predict the soil attributes: clay (g'kgeation
agricultural practices and soil surveWe create a liming €xchange capacity (CEC, cmdhr®) and base saturation
rate map originated from the predicted soil attributes catid¥%). We only predicted these three attributes because
exchange Capacity and base saturation Comparing fdhey are required inthe IImlng rate calculation. The anCi”ary
methods: ordinary kriging, random forest, cubist, suppoY@riables used in the machine learning process were (i) the
vector machine and the best model results of each sBigital Elevation Model (DEM,) retrieved from the Earth

attribute. Resource Observation and Science Center that distributes
the Shuttle RadaFopography Mission data (S®™ v.3,
MATERIAL AND METHODS 30 m), and (ii) the Synthetic Soil Image (SYSI) generated
) from 27-year time-series (1985-2011) of Landsat 5 TM by
Study area and sampling data the methodology described in Demattél. (2018). The

The study area is located in the municipality of Barr&Y S| represents bare soil pixels along time. The
do Ouro, $ate ofTocantins, Brazil (Figure 1)he site characterisation of the parameters usethe study area
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Figure 1: Study area retrieved using the Bing aerial map as background.
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is summarized in thEable 1 The methods were performed
using the software R (R Development Cteam, 2019) by
specific packages as it follows: OrdKrig from “automap”
package (Hiemstret al, 2009), SVM from “e1071” package
(Dimitriadouet al, 2011), Cub and RF from “caret” package
(Kuhn, 2008). The fitted semivariogram was generated for
the three solil properties before of interpolating them using
OrdKrig. For machine learning methods (SVM, Cub and
RF), the data were initially analysed and no value fields
excluded. Then, the 307 sampling points left were randomly
divided into 80% for training (247 samples) and 20% for
validation purposes (60 samples). Findliyg 80% training
data were cross-validated (3 fold, repeated 3 times) for
each model (Heuref al, 2014).

Model evaluation

The ordinary kriging method was evaluated by its
standard deviation and variance results (Muedkeal,
2004). The machine learning algorithms were evaluated
analysing the predicted and observed values of each soil
attribute by accessing the Root Mean Squared Error
(RMSE), the Pearson correlation coefficient (r) and the
Index OfAgreement (IOA) (Villmott et al, 2012).

Liming rate calculation

The liming rate calculation is based on the following
classical formulatR=[(V%, - V%) * CEC//TNP(Molin
et al, 2015; Raij, 1983). LR is the Liming Requirement in
ton per hectareY%, is the base saturation that is
considered between 60-80% for most crog¥; is the
base saturation obtained in laboratory and predicted map;
CEC is the cation exchange capacity in cmof*drom
laboratory and predicted map; and TNP is the total
neutralizing power in %. For the LR calculation, we adopted
base saturation of 80% for crop ahNP of 100%.We
used the raster calculation of QGIS (QGIS Development
Team, 2018) to achieve the LR. Basicdlys tool retrieved
from the V% and CEC maps the value of each pixel at the
same location and then, the formula of liming rate was
calculated generating the final map with a pixel resolution
of 30 m.

RESULTSAND DISCUSSION

The Pearsos’correlation codtient (r) of the dataset
presented moderate linearity between the soil attributes
and the satellite bands of the SYSI, which represents the
bare soil pixels (Figure 2). Howeyéne DEM had low
values for all attributes (Figure 1). The linearity among
them is a fundamental principle to identify the normal
distribution needed before of mapping the soil attributes,
and the evaluation of the kriging process in geostatistics
is analysing its variance and standard variation.
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The variance and standard deviation increases as tbephosphorus and potassium prediction in Oxisol is less
spatial dependency decreases (Figure 3). Thus, whetbeequal to 1 sample per 100x100 m (Cherebai, 2015).
the distance among the collected samples are higher tt&uwil grids larger than 100x100 m display high variance and
one sample per hectare, the soil chemical attributes hawesome degree no spatial dependemdyich reallocate
no fair prediction. For example, the recommended grid sizeem in the conventional statistics. For physical attributes,
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Figure2: Pearsors correlation coditient (p < 0.01) for all attributes used to map the area. SYSI is the Synthetic Soil Image and the
numbers are the satellisehands; DEM is the digital elevation modé¥ is the base saturation; and CEC is the cation exchange
capacity Checkbox values no significant.
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Figure 3: Maps of variance resulted from the ordinary kriging for clay (a) and cation exchange capacity (b). Red arrow indicates
increasing variance.
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it is acceptable grids up to one sample per 7.2 hectate® methods (Nussbaumt al, 2017).We basically
(Nanni et al, 2011). These authors found moderatperformed the three methods in order to predict the soil
correlation for clay prediction @ 0.53). attributes. Subsequentiye calculate the liming rate based
The machine learning methods are evaluated by otham the results from REub, SVM, and the best predicted
meanings, which are the RMSE, r and IOA. The Index Gittribute independent of the method. This last one named
Agreement (IOA) and r values close to one means that tBest Model (BM). The ordinary kriging was kept a part
model prediction fitted well @ble 2).Taking this into from the machine learning methods because our intention
account, the RF was the best algorithm to predict clay to prove that machine learning methods can be a
(IOA=0.689 and r=0.83) (Beguat al, 2017; Fongaret reasonable framework economicallyocially and
al., 2018Vasaveet al, 2019) and had close correlation toenvironmentally sustainable for agriculture. Furthermore,
SVM predicting CEC. For mapping base saturation, thewas calculated the liming rate for an extent of the study
cubist model had better performance rather than the otta@ea showing the practicability of machine learning

Table 2: Evaluation of the machine learning methods performed for three soil attributes

) . Models
Sail attributes
RMSE r 10A
Random For est
Clay 73.66 0.52 0.59
CEC 1.33 0.69 0.34
V% 9.57 0.83 0.68
Cubist
Clay 82.15 0.39 0.55
CEC 1.31 0.64 0.37
V% 8.56 0.86 0.72
Support Vector Machine
Clay 76.35 0.49 0.57
CEC 1.27 0.68 0.38
V% 10.54 0.76 0.68
1OA — Index ofAgreement (llmott et al, 2012).
a g
5 Z 2 2
EI 5| 6I 5| éI GI El
g & o & & & & .
LR_Lab 1 0.7 085 065 079 062 073 05
LR_Extent 1 069 076 084 068 0.8 0.6
04
LR_OrdKrig 1 063 | 0.71 0.6 0.71
02
LR_SVM 1 084 072 092 0
02
LR_RF 1 0.8 0.89
-04
LR_Cubist 1 0.82 06
038
LR_BM 1

-

Figure4: Pearsors correlation coditient (p < 0.01) for liming rate predicted by Ordinary Kriging (LR_OrdKrig), Supygector
Machine (LR_SVM), Random Forest (LR_RF), the best model (LR_BM), the extent of the study area (LR_Extent), and cubist
(LR_Cubist) methods compared with the calculation from soil laboratory analyses (LR_Lab).
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methods because they can spatialize attributes or respolesening methods to achieve agricultural field application
variables without needs of grid size depende@bgecking relies on the absence of spatial dependency among soll
the reliability of the calculation of all methods, the Peassonsample observations, which is a requirement in
index presented strong results for soil attributes predictgéostatistical frameworlAnother advantage, it is to map

by RF and OrdKrig. These methods had better performaneage areas (Figure 5) with close performance to
among others (Figure 4). The advantage of using machigeostatistical approaches (r = 0.7).

Figureb5: Liming rate maps generated using soil attributes predicted from Ordinary Kriging (a), Random Forest (b), Best Model (c),
SupportVector Machine (d), Cubist (e), and Extent aredl{fe Bing aerial map is used as background.
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