Acessibilidade / Reportar erro

Carbon and carbon dioxide accumulation by marandu grass under nitrogen fertilization and irrigation1 Project funded by FAPESP.

Acúmulo de carbono e dióxido de carbono pelo capim-marandu sob adubação nitrogenada e irrigação

ABSTRACT

Nitrogen (N) is the most limiting nutrient for growth of forage grasses, especially in conditions of low water availability. Therefore, it is important to evaluate the effect of N fertilization and irrigation on the accumulation of carbon (C) and carbon dioxide (CO2) by marandu grass in the Cerrado Paulista, in the rainy and dry seasons. Experiments were conducted to evaluate N fertilization in each season, with and without irrigation. Five N rates were used (0, 50, 100, 150 and 200 kg ha-1 per cutting), using urea as N source, totaling 0, 300, 600, 900 and 1200 kg ha-1 in the rainy season and 0, 100, 200, 300 and 400 kg ha-1 in the dry season. The experiments were arranged in a split-plot randomized block design. There was no significant interaction (p > 0.05) between N and time of fertilization in the irrigated experiment. However, N promoted a quadratic effect in organic matter production (OMP), accumulation of C and CO2 by marandu grass, while there was no influence of the seasons. In the non-irrigated experiment, the interaction between N rates and seasons was significant (p < 0.05) only for the rainy season. Organic matter production and C and CO2 accumulation was greater in the rainy season than in the dry season. Irrigation provided increases of approximately 20% in C and CO2 accumulation. The use of N and irrigation increases the accumulation of C and CO2 by marandu grass, and this increase is higher during the rainy season.

Keywords:
global warming; greenhouse effect; forage; Brachiaria brizantha cv Marandu

RESUMO

O nitrogênio (N) é o nutriente mais limitante ao crescimento de gramíneas forrageiras, principalmente em condições de baixa disponibilidade hídrica, o que justifica avaliar o efeito da adubação nitrogenada e da irrigação no acúmulo de carbono (C) e dióxido de carbono (CO2) pelo capim-marandu no Cerrado Paulista, na época das águas e da seca. Para avaliar a fertilização nitrogenada em cada época foram conduzidos experimentos com e sem irrigação. Foram utilizadas cinco doses de N (0, 50, 100, 150 e 200 kg-1 ha-1 por corte), aplicadas na forma de ureia, totalizando 0, 300, 600, 900 e 1200 kg ha-1 na época das águas e 0, 100, 200, 300 e 400 kg ha-1 na época da seca. O delineamento experimental adotado foi de blocos ao acaso em esquema de parcelas subdivididas. Não houve interação significativa (p > 0,05) entre doses de N e época de fertilização no experimento irrigado. Entretanto, o fornecimento de N promoveu efeito quadrático na produção de matéria orgânica (PMO), acúmulo de C e CO2 pelo capim-marandu, enquanto não houve influência das épocas. No experimento não irrigado a interação entre doses de N e épocas do ano foi significativa (p < 0,05) somente para a época das águas. Houve maiores PMO e acúmulos de C e CO2 no período das águas em relação ao período seco. A irrigação proporcionou incrementos de aproximadamente 20% no acúmulo de C e CO2. O uso de N e irrigação aumentam o acúmulo de C e CO2 pelo capim-marandu, e esse aumento é maior na estação chuvosa.

Palavras-chave:
aquecimento global; efeito estufa; forragem; Brachiaria brizantha cv Marandu

INTRODUCTION

Concern over global climate change has been growing worldwide. Global warming results mainly from the emission of CO2 and other greenhouse gases (GHGs) such as methane (CH4) and nitrous oxide (N2O), leading to the search of strategies to reduce the sources of greenhouse gas emissions, e.g. C sequestration by vegetation (Carvalho et al., 2010Carvalho JLN, Avanzi JC, Silva MLN, Mello CR & Cerri CEP (2010) Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira de Ciência do Solo, 34:277-289.; Cerri et al., 2007aCerri CEP, Sparovek G, Bernoux M, Easterling WE, Melillo JM & Cerri CC (2007a) Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola , 64:83-89.; Cerri et al., 2009Cerri CC, Maia SMF, Galdos MV, Cerri CEP, Feigl BJ & Bernoux M (2009) Brazilian greenhouse gas emissions: the importance of agriculture and livestock. Scientia Agricola, 66:831-843.).

In pastures, C assimilation is directed towards the production of fiber and forage (Luyssaert et al., 2008Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P & Grace J (2008) Old-growth forests as global carbon sinks. Nature, 455:213-215.). Thus, the intensification of the production system, through fertilization and irrigation, can be an important tool to mitigate GHGs in this ecosystem (Conant et al., 2001Conant RT, Paustian K & Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11:343-355.). According to FAO (Food and Agriculture Organization, 2011FAO - Food And Agriculture Organization (2011) FAO statistical database. Disponível em: <Disponível em: http://faostat.fao.org/site/291/default.aspx >. Acessado em: 12 de fevereiro de 2011.
http://faostat.fao.org/site/291/default....
), Brazil has 196 million hectares of grasslands, and approximately 80% of this area is in some stage of degradation (Marchão et al., 2007Marchão RL, Balbino LC, Silva EM, Santos Junior JDG, Sá MAC, Vilela L & Becquer T (2007) Qualidade física de um Latossolo Vermelho sob sistemas de integração lavoura-pecuária no Cerrado. Pesquisa Agropecuária Brasileira, 42:873-882.), due to, among other reasons, low soil fertility and lack of nutrient replacement through fertilizer application. For comparison, the annual CO2 sequestration in pasture conducted extensively vary from 4 to 10 t ha-1 in the shoot, while in tropical forage, well-nourished pastures, these values ​​range from 30 to 50 t ha-1 (Primavesi et al., 2007Primavesi O, Arzabe C & Pedreira MS (2007) Aquecimento global e mudanças climáticas: uma visão integrada tropical. São Carlos, Embrapa Pecuária Sudeste. 213p.).

Forage grasses adapted to soil and climatic conditions and of high dry matter productivity (DMP) should be used, as they contribute positively in CO2 sequestration (Conant et al., 2001Conant RT, Paustian K & Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11:343-355.). In this sense, Brachiaria grasses stand out for being highly productive (Bauer et al, 2011Bauer MO, Pacheco LPA, Chichorro JF, Vasconcelos LV & Pereira DFC (2011) Produção e características estruturais de cinco forrageiras do gênero Brachiaria sob intensidades de cortes intermitentes. Ciência Animal Brasileira, 12:17-25.) and highly responsive to fertilization (Rezende et al., 2011Rezende AV, Lima JF, Rabelo CHS, Rabêlo FHS, Nogueira DA, Carvalho M, Faria Júnior DCNA & Barbosa LA (2011) Características morfofisiológicas da Brachiaria brizantha cv. Marandu em resposta à adubação fosfatada. Agrarian, 4:335-343.; Cabral et al., 2012Cabral WB, Souza AL, Alexandrino E, Toral FLB, Santos JN & Carvalho MVP (2012) Características estruturais e agronômicas da Brachiaria brizantha cv. Xaraés submetida a doses de nitrogênio. Revista Brasileira de Zootecnia , 41:846-855. ; Cunha et al., 2012Cunha FF, Ramos MM, Alencar CAB, Oliveira RA, Cóser AC, Martins CE, Cecon PR & Araújo RAS (2012) Produtividade da Brachiaria brizantha cv. Xaraés em diferentes manejos e doses de adubação, períodos de descanso e épocas do ano. Idesia, 30:75-82.), which is extremely desirable to maximize C sequestration and consequently to mitigate GHGs (Conant et al., 2001Conant RT, Paustian K & Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11:343-355.).

According to Primavesi et al. (2007Primavesi O, Arzabe C & Pedreira MS (2007) Aquecimento global e mudanças climáticas: uma visão integrada tropical. São Carlos, Embrapa Pecuária Sudeste. 213p.), 60% of tropical soils undergo water stress, which can cause severe photosynthesis inhibition (Pinheiro & Chaves, 2011Pinheiro C & Chaves M (2011) Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62:869-882.), and 36% of tropical soils have low nutrient reserves, making irrigation and fertilization of pastures in these areas essential. Nitrogen fertilization stands out in this context for being the most limiting nutrient to plant growth (Rezende et al., 2015Rezende AV, Rabêlo FHS, Rabelo CHS, Lima PP, Barbosa LA, Abud MC & Souza FRC (2015) Características estruturais, produtivas e bromatológicas dos capins Tifton 85 e Jiggs fertilizados com alguns macronutrientes. Semina: Ciências Agrárias, 36:1507-1518.). Lack of N can directly affect photosynthesis, by affecting the synthesis and activity of the enzyme ribulose 1,5-bisphosphate carboxylase (RUBISCO), responsible for CO2 assimilation (Pinheiro & Chaves, 2011Pinheiro C & Chaves M (2011) Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62:869-882.), and indirectly the GHGs mitigation, as the C sequestration by shoots is compromised by the reduction of photosynthesis (Primavesi et al., 2007Primavesi O, Arzabe C & Pedreira MS (2007) Aquecimento global e mudanças climáticas: uma visão integrada tropical. São Carlos, Embrapa Pecuária Sudeste. 213p.).

Therefore, this study aimed to evaluate the accumulation of carbon (C) and carbon dioxide (CO2), based on dry matter productivity (DMP) and organic matter content (OM) of marandu grass (Brachiaria brizantha Stapf. cv. Marandu) under N rates and irrigation in the Cerrado Paulista during the rainy and dry seasons.

MATERIAL AND METHODS

The experiments were conducted in a Typic Dark soil, eutrophic, sandy texture (Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, 2013Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2013) Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos. 3ª ed. Brasília, Embrapa, 353p.), at the UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho" in Teaching and Research Farm, Ilha Solteira - SP, located on the left bank of the Parana River (20º 21' S and 51º 22' W), 326 m altitude, in an area previously occupied by Panicum maximum Jacq. cv. Colonião undergrazed. Table 1 shows the soil chemical analyzes carried out during the experiment.

Table 1:
Soil chemical analysis of the experimental areas in the layer 0-20 cm

The experimental areas were prepared by conventional system with one plowing and two disking, then sowing of marandu grass. At sowing, 20 kg ha-1 N were applied as urea (45% N); phosphorus (superphosphate - 18% P2O5) and potassium (potassium chloride - 60% K2O) were provided to adjust the phosphorus levels at 30 mg dm-3; and potassium occupying 5% of the cation exchange capacity (CEC).

Experiments were conducted with and without irrigation (Figure 1), and the N fertilization was evaluated during the rainy and dry seasons. The irrigated experiment used a fixed sprinkler irrigation system with nozzles spaced 12 × 12 m, with an average rainfall of 7.0 mm h-1 and mean Christiansen's uniformity coefficient of 84.5%. The irrigation had a 3-day schedule with replacement of the reference evapotranspiration estimated by Penman Monteith (Allen et al., 1998Allen RG, Pereira LS, Raes D & Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. Rome, FAO Irrigation and Drainage. 56p.) and crop coefficient of 1.0.

Figure 1
Total rainfall, total irrigation, average and minimum temperature, average global radiation and average net radiation, referring to the eight marandu grass cuttings.

Five N rates (0, 50, 100, 150 and 200 kg-1 ha-1 after each cutting) were applied as urea, resulting in the application of 0, 300, 600, 900 and 1200 kg ha-1 in the rainy season and 0, 100, 200, 300 and 400 kg ha-1 in the dry season. The experiments were arranged in a split plot randomized block design, with plots represented by N rates and the subplots by seasons (rainy and dry seasons). The plot areas were 9.0 m2 (3 x 3 m) spaced 2 m apart.

After the initial growth, the first cutting of marandu grass was performed and N fertilization was applied to the subplots. Every after three cuttings 18 kg ha-1 K2O (potassium chloride) were applied, and a new soil chemical analysis was performed to adjust the phosphorus again to 30 mg dm-3, with potassium occupying 5% of CEC, in order to meet phosphorus and potassium plant requirements and optimize the N response. Five months after the start of N fertilization, 81 kg ha-1 P2O5 (superphosphate) and 96 kg ha-1 K2O (chloride potassium) were applied to the plots, and seven months later, 71 kg ha-1 P2O5 (superphosphate) and 130 kg ha-1 of K2O (potassium chloride) were also applied.

Cuttings were performed manually, 15 cm above the ground in the center of the subplots, in an area of 1.0 m2. The intervals between cuttings ranged from 28 to 32 days in the rainy season, and 40-45 days in the dry season. The remaining biomass in the area was mechanically mowed, removed from the plot, and then N was applied to the subplots.

The clipped forage was packed in paper bags and then incubated in a forced circulation oven at 60 °C, for 72 hours, to determine dry matter content. Then, the samples were ground in a Wiley mill, with a 1 mm mesh screen, and analyzed for the content of organic matter (total carbon) following the method described by Silva (2002Silva DJ & Queiroz AC (2002) Análise de alimentos: métodos químicos e biológicos. 3a ed. Viçosa, UFV. 235p.).

Dry matter productivity (DMP) was calculated by multiplying the amount of green mass (kg m-2) by the content of the initial dry matter, and then extrapolating to one hectare. The estimates of OMP, C and CO2 sequestration were based on the DMP and OM content (%) (Table 2), using the respective equations described by Primavesi et al. (2007Primavesi O, Arzabe C & Pedreira MS (2007) Aquecimento global e mudanças climáticas: uma visão integrada tropical. São Carlos, Embrapa Pecuária Sudeste. 213p.): OMP (t ha-1) = DMP x OM%; C (t ha-1) = OMP / 1.724 and CO2 (t ha-1) = C (t ha-1) x 3.67.

Table 2:
Dry matter productivity (DMP) and organic matter content of marandu grass with or without irrigation and nitrogen rates for the eight cutings

Analyses of data separated and joined were carried out after verification of normality and homogeneity of variances, and by applying the analysis of variance (F test). When significance was found, regression analysis was performed for N rates and mean comparison for the seasons (Tukey test at 5% probability). Next, a combined analysis of the irrigated with the non-irrigated experiments was performed through the comparison of means (Tukey test at 5% probability) of the factor irrigation using the Statistical Analysis System (SAS, 2004SAS Institute Inc. (2004) JMP Statistics and Graphics Guide. Versão 9.1.2. Cary, SAS Institute Inc. ).

RESULTS AND DISCUSSION

There was no significant interaction (p > 0.05) between N and seasons in the irrigated experiment due to the inexistent water restriction, which is the main limiting factor for DMP in the dry season. However, N supply provided a quadratic increase in OMP and C and CO2 sequestration by marandu grass (Figure 2). It is known that N is the nutrient that most influence plant growth (Rezende et al., 2015Rezende AV, Rabêlo FHS, Rabelo CHS, Lima PP, Barbosa LA, Abud MC & Souza FRC (2015) Características estruturais, produtivas e bromatológicas dos capins Tifton 85 e Jiggs fertilizados com alguns macronutrientes. Semina: Ciências Agrárias, 36:1507-1518.), increasing plant DMP linearly up the point where other growth factors become limiting. Thus, OMP and sequestration of C and CO2 reflected the effect of N on DMP when there was adequate water availability.

Figure 2:
Means per cutting of the estimates for organic matter productivity (OMP), sequestration of carbon (C) and carbon dioxide (CO2) by marandu grass as a function of nitrogen rates (N) in the irrigated experiment.

Sequestration of C above 1 t ha-1 and CO2 above 5 t ha-1, per cutting, by marandu grass with N supply was verified, demonstrating that N fertilization associated with irrigation is essential to increase GHGs sequestration by pastures in a first moment. Pinheiro & Chaves (2011Pinheiro C & Chaves M (2011) Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62:869-882.) pointed out that the lack of N can directly affect photosynthesis, by affecting the synthesis and activity of the enzyme responsible for the assimilation of CO2 (RUBISCO), limiting the accumulation of C and CO2 by the vegetation. However, it is essential to adopt the correct management of N fertilization because of the emissions of N2O (and other GHGs) arising from the use of N fertilizers (Barcellos et al., 2008Barcellos AO, Ramos AKB, Vilela L & Martha Junior GB (2008) Sustentabilidade da produção animal baseada em pastagens consorciadas e no emprego de leguminosas exclusivas, na forma de banco de proteína, nos trópicos brasileiros. Revista Brasileira de Zootecnia, 37:51-67.; Virkajarvi et al., 2010Virkajarvi P, Maljanen M, Saarijarvi K, Haapala J & Martikainen PJ (2010) N2O emissions from boreal grass and grass - clover pasture soils. Agriculture, Ecosystems and Environment , 137:59-67.) when the source and the form of application recommended for each situation are disregarded.

In the non-irrigated experiment, the interaction between N rates and seasons was significant (p < 0.05) only for the rainy season. This result can be attributed to a higher rainfall recorded in the rainy season (> 900 mm) compared with the rainfall recorded in the dry season (< 200 mm) (Figure 1). The primary ion-root contact mechanism in the absorption of N is the mass flow, which is dependent on water (Malavolta et al., 1989Malavolta E, Vitti GC & Oliveira SA (1989) Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, Potafos. 201p.). Therefore, low water availability may limit the plant metabolism, uptake of N and, consequently, the plant productive response in terms of production (Primavesi et al., 2007Primavesi O, Arzabe C & Pedreira MS (2007) Aquecimento global e mudanças climáticas: uma visão integrada tropical. São Carlos, Embrapa Pecuária Sudeste. 213p., Pinheiro & Chaves, 2011Pinheiro C & Chaves M (2011) Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62:869-882.). According to Lopes et al. (2005Lopes RS, Fonseca DM, Oliveira RA, Andrade AC, Nascimento Júnior D & Mascarenhas AG (2005) Efeito da irrigação e adubação na disponibilidade e composição bromatológica da massa seca de lâminas foliares de capim-elefante. Revista Brasileira de Zootecnia , 34:20-29.), the DMP and, consequently, the OMP, the sequestration of C and CO2 by grasses during the dry season can be 70% lower than in the rainy season. The highest OMP (3686 kg ha-1) and sequestration of C (2136 kg ha-1) and CO2 (7846 kg ha-1) were recorded with application of 162 kg ha-1 N in the rainy season (Figure 3).

Figure 3:
Means per cutting of the estimates for organic matter productivity (OMP), sequestration of carbon (C) and carbon dioxide (CO2) by marandu grass as a function of nitrogen rates (N) in the non-irrigated experiment.

Carbon dioxide sequestration per cutting (7846 kg ha-1) was extremely high and confirms the beneficial effects caused by N fertilization and irrigation compared with the range between 30 and 50 t ha-1 annual cited as indicative of well-managed pastures by Primavesi et al. (2007Primavesi O, Arzabe C & Pedreira MS (2007) Aquecimento global e mudanças climáticas: uma visão integrada tropical. São Carlos, Embrapa Pecuária Sudeste. 213p.). Assuming that the climatic conditions remained constant, the final CO2 accumulation in the rainy season would be approximately 47 t ha-1. Paulino & Teixeira (2009Paulino VT & Teixeira EML (2009) Sustentabilidade de pastagem: Manejo adequado como medida redutora da emissão de Gases Efeito Estufa. Disponível em: <Disponível em: http:// http://www.iz.sp.gov.br/pdfs/1261419672.pdf >. Acessado em: 15 de junho 2014.
http:// http://www.iz.sp.gov.br/pdfs/126...
) reported that the lack of N fertilization and less frequent grazing resulted in loss of 57 g of C per square meter per year to the atmosphere. This report confirms the importance of N fertilization on GHGs mitigation.

Table 3 shows the effect of season in OMP, accumulation of C and accumulation of CO2 by marandu grass in the non-irrigated experiment. There was higher (p < 0.05) OMP and sequestration of C and CO2 in the rainy season due to increased water availability (> 900 mm) compared with the dry season (< 200 mm) (Figure 1). The water stress affects various physiological processes of plants, generally increasing the stomatal conductance, reducing perspiration and hence the CO2 supply to perform photosynthesis (Taiz & Zeiger, 2009Taiz L & Zeiger E (2009) Fisiologia vegetal. 4a ed. Porto Alegre, Artmed. 819p.). Therefore, biomass production and C sequestration by plants are compromised in environments with low water availability, even when there is adequate nutrient supply.

Table 3:
Mean per cutting of organic matter productivity estimates (OMP), accumulation of carbon (C) and carbon dioxide (CO2) by marandu grass as a function of the seasons for the non-irrigated experiment

Loss et al. (2013Loss A, Coutinho FS, Pereira MG, Costa e Silva RA, Torres JLR & Ravelli Neto A (2013) Fertilidade e carbono total e oxidável de Latossolo de Cerrado sob pastagem irrigada e de sequeiro. Ciência Rural, 43:426-432.) evaluated the effect of irrigation in the stock of total organic carbon (TOC) of an Oxisol with Cynodon grass and found that the irrigated area had the highest TOC values, regardless of the depth of evaluation. The authors attributed the result to higher production of green mass, under irrigation. It is noteworthy that the stock of C in the soil is derived in part from the decomposition of plant residues, which at some point captured CO2 from the atmosphere to produce biomass (Ministry of Agriculture, Livestock and Supply - MAPA, 2011MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2011) O Aquecimento Global e a Agricultura de Baixa Emissão de Carbono. Brasília, MAPA/Embrapa/FEBRAPDP. 75p.; Matheus, 2012Matheus MT (2012) Sequestro de carbono sob a óptica florestal no Brasil. Revista Trópica - Ciências Agrárias e Biológicas, 6:104-116.). Thus, the results obtained by Loss et al. (2013Loss A, Coutinho FS, Pereira MG, Costa e Silva RA, Torres JLR & Ravelli Neto A (2013) Fertilidade e carbono total e oxidável de Latossolo de Cerrado sob pastagem irrigada e de sequeiro. Ciência Rural, 43:426-432.) confirm the benefit provided by irrigation in the mitigation of greenhouse gases.

At the end of the trial period, not considering the effect of season and N rates, the factor irrigation was predominant to maximize the OMP and sequestration of C and CO2 by marandu grass (Table 4). Irrigation provided increments of approximately 20% in sequestration of C and CO2 compared with the non-irrigated experiment, contributing considerably to the mitigation of GHGs.

Table 4:
Mean per cutting of organic matter productivity estimates (OMP), sequestration of carbon (C) and carbon dioxide (CO2) by marandu grass as a function of the factor irrigation

The Brazilian herd contingent associated with the large area occupied by pastures point out the importance and impacts of livestock activity such as GHGs emitting source or as a drain, depending on the management used (Saussana et al., 2007Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Ress RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z & Valentini R (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecossistems and Environment, 121:121-134.). It is therefore essential to optimize the conditions for the cultivation of grasses, since under suitable vegetable mass production, grasses are able to sequester substantial amounts of C fixing it to the soil in the organic form (Cerri et al., 2007bCerri CEP, Easter M, Paustian K, Killian K, Coleman K, Bernoux M, Falloon P, Powlson DS, Batjes N, Milne E & Cerri CC (2007b) Simulating SOC changes in 11 land use change from Brazilian Amazon whith RothC and Century models. Agriculture, Ecosystems and Environment, 122:46-57.).

CONCLUSIONS

Nitrogen supply and irrigation increases the potential sequestration of C and CO2 by marandu grass, and this increase is higher during the rainy season.

REFERENCES

  • Allen RG, Pereira LS, Raes D & Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. Rome, FAO Irrigation and Drainage. 56p.
  • Barcellos AO, Ramos AKB, Vilela L & Martha Junior GB (2008) Sustentabilidade da produção animal baseada em pastagens consorciadas e no emprego de leguminosas exclusivas, na forma de banco de proteína, nos trópicos brasileiros. Revista Brasileira de Zootecnia, 37:51-67.
  • Bauer MO, Pacheco LPA, Chichorro JF, Vasconcelos LV & Pereira DFC (2011) Produção e características estruturais de cinco forrageiras do gênero Brachiaria sob intensidades de cortes intermitentes. Ciência Animal Brasileira, 12:17-25.
  • Cabral WB, Souza AL, Alexandrino E, Toral FLB, Santos JN & Carvalho MVP (2012) Características estruturais e agronômicas da Brachiaria brizantha cv. Xaraés submetida a doses de nitrogênio. Revista Brasileira de Zootecnia , 41:846-855.
  • Carvalho JLN, Avanzi JC, Silva MLN, Mello CR & Cerri CEP (2010) Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira de Ciência do Solo, 34:277-289.
  • Cerri CC, Maia SMF, Galdos MV, Cerri CEP, Feigl BJ & Bernoux M (2009) Brazilian greenhouse gas emissions: the importance of agriculture and livestock. Scientia Agricola, 66:831-843.
  • Cerri CEP, Easter M, Paustian K, Killian K, Coleman K, Bernoux M, Falloon P, Powlson DS, Batjes N, Milne E & Cerri CC (2007b) Simulating SOC changes in 11 land use change from Brazilian Amazon whith RothC and Century models. Agriculture, Ecosystems and Environment, 122:46-57.
  • Cerri CEP, Sparovek G, Bernoux M, Easterling WE, Melillo JM & Cerri CC (2007a) Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola , 64:83-89.
  • Conant RT, Paustian K & Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11:343-355.
  • Cunha FF, Ramos MM, Alencar CAB, Oliveira RA, Cóser AC, Martins CE, Cecon PR & Araújo RAS (2012) Produtividade da Brachiaria brizantha cv. Xaraés em diferentes manejos e doses de adubação, períodos de descanso e épocas do ano. Idesia, 30:75-82.
  • Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2013) Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos. 3ª ed. Brasília, Embrapa, 353p.
  • FAO - Food And Agriculture Organization (2011) FAO statistical database. Disponível em: <Disponível em: http://faostat.fao.org/site/291/default.aspx >. Acessado em: 12 de fevereiro de 2011.
    » http://faostat.fao.org/site/291/default.aspx
  • Lopes RS, Fonseca DM, Oliveira RA, Andrade AC, Nascimento Júnior D & Mascarenhas AG (2005) Efeito da irrigação e adubação na disponibilidade e composição bromatológica da massa seca de lâminas foliares de capim-elefante. Revista Brasileira de Zootecnia , 34:20-29.
  • Loss A, Coutinho FS, Pereira MG, Costa e Silva RA, Torres JLR & Ravelli Neto A (2013) Fertilidade e carbono total e oxidável de Latossolo de Cerrado sob pastagem irrigada e de sequeiro. Ciência Rural, 43:426-432.
  • Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P & Grace J (2008) Old-growth forests as global carbon sinks. Nature, 455:213-215.
  • Malavolta E, Vitti GC & Oliveira SA (1989) Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, Potafos. 201p.
  • Marchão RL, Balbino LC, Silva EM, Santos Junior JDG, Sá MAC, Vilela L & Becquer T (2007) Qualidade física de um Latossolo Vermelho sob sistemas de integração lavoura-pecuária no Cerrado. Pesquisa Agropecuária Brasileira, 42:873-882.
  • Matheus MT (2012) Sequestro de carbono sob a óptica florestal no Brasil. Revista Trópica - Ciências Agrárias e Biológicas, 6:104-116.
  • MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2011) O Aquecimento Global e a Agricultura de Baixa Emissão de Carbono. Brasília, MAPA/Embrapa/FEBRAPDP. 75p.
  • Paulino VT & Teixeira EML (2009) Sustentabilidade de pastagem: Manejo adequado como medida redutora da emissão de Gases Efeito Estufa. Disponível em: <Disponível em: http:// http://www.iz.sp.gov.br/pdfs/1261419672.pdf >. Acessado em: 15 de junho 2014.
    » http:// http://www.iz.sp.gov.br/pdfs/1261419672.pdf
  • Pinheiro C & Chaves M (2011) Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62:869-882.
  • Primavesi O, Arzabe C & Pedreira MS (2007) Aquecimento global e mudanças climáticas: uma visão integrada tropical. São Carlos, Embrapa Pecuária Sudeste. 213p.
  • Rezende AV, Lima JF, Rabelo CHS, Rabêlo FHS, Nogueira DA, Carvalho M, Faria Júnior DCNA & Barbosa LA (2011) Características morfofisiológicas da Brachiaria brizantha cv. Marandu em resposta à adubação fosfatada. Agrarian, 4:335-343.
  • Rezende AV, Rabêlo FHS, Rabelo CHS, Lima PP, Barbosa LA, Abud MC & Souza FRC (2015) Características estruturais, produtivas e bromatológicas dos capins Tifton 85 e Jiggs fertilizados com alguns macronutrientes. Semina: Ciências Agrárias, 36:1507-1518.
  • SAS Institute Inc. (2004) JMP Statistics and Graphics Guide. Versão 9.1.2. Cary, SAS Institute Inc.
  • Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Ress RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z & Valentini R (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecossistems and Environment, 121:121-134.
  • Silva DJ & Queiroz AC (2002) Análise de alimentos: métodos químicos e biológicos. 3a ed. Viçosa, UFV. 235p.
  • Taiz L & Zeiger E (2009) Fisiologia vegetal. 4a ed. Porto Alegre, Artmed. 819p.
  • Virkajarvi P, Maljanen M, Saarijarvi K, Haapala J & Martikainen PJ (2010) N2O emissions from boreal grass and grass - clover pasture soils. Agriculture, Ecosystems and Environment , 137:59-67.

Publication Dates

  • Publication in this collection
    May-Jun 2016

History

  • Received
    02 July 2014
  • Accepted
    20 Nov 2015
Universidade Federal de Viçosa Av. Peter Henry Rolfs, s/n, 36570-000 Viçosa, Minas Gerais Brasil, Tel./Fax: (55 31) 3612-2078 - Viçosa - MG - Brazil
E-mail: ceres@ufv.br