
DOI: 10.1590/1808-057x201704140
ISSN 1808-057X

361

Value-at-risk modeling and forecasting with range-based volatility 
models: empirical evidence

Leandro dos Santos Maciel
Universidade Federal do Rio de Janeiro, Faculdade de Administração e Ciências Contábeis, Departamento de Ciências Contábeis, Rio de Janeiro, 
RJ, Brazil

Rosangela Ballini
Universidade Estadual de Campinas, Instituto de Economia, Campinas, SP, Brazil

Received on 08.10.2016 – Desk acceptance on 08.18.2016 – 2nd version approved on 03.23.2017

ABSTRACT
This article considers range-based volatility modeling for identifying and forecasting conditional volatility models based on 
returns. It suggests the inclusion of range measuring, defined as the difference between the maximum and minimum price of 
an asset within a time interval, as an exogenous variable in generalized autoregressive conditional heteroscedasticity (GARCH) 
models. The motivation is evaluating whether range provides additional information to the volatility process (intraday 
variability) and improves forecasting, when compared to GARCH-type approaches and the conditional autoregressive range 
(CARR) model. The empirical analysis uses data from the main stock market indexes for the U.S. and Brazilian economies, 
i.e. S&P 500 and IBOVESPA, respectively, within the period from January 2004 to December 2014. Performance is compared 
in terms of accuracy, by means of value-at-risk (VaR) modeling and forecasting. The out-of-sample results indicate that 
range-based volatility models provide more accurate VaR forecasts than GARCH models. 

Keywords: volatility, forecasting models, financial markets, price range, value at risk (VaR).
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1. INTRODUCTION

Volatility modeling and forecasting play a significant 
role in derivatives pricing, risk management, portfolio 
selection, and trading strategies (Leite, Figueiredo 
Pinto, & Klotzle, 2016). It is also noteworthy for policy 
makers and regulators, since the volatility dynamics is 
closely related to stability in financial markets and the 
economy as a whole. Time series models, such as the 
generalized autoregressive conditional heteroscedasticity 
(GARCH) model, stochastic volatility modeling, the 
implied volatility of option contracts and direct measures, 
like the realized volatility, are the most common choices 
to estimate volatility in finance (Val, Figueiredo Pinto, 
& Klotzle, 2014; Poon & Granger, 2003). 

When compared to other methods, the GARCH-type 
approaches are the most widely used for modeling time-
varying conditional volatility, due to their simple form, 
easy estimation, and flexible adaptation concerning the 
volatility dynamics. As return-based methods, the GARCH 
models are designed using data on closing prices, i.e. daily 
returns. Thus, they may neglect significant intraday price 
movement information. Also, as the GARCH models 
rely on the moving averages with gradually decaying 
weights, they are slow to adapt to changing volatility 
levels (Andersen, Bollerslev, Diebold, & Labys, 2003; 
Sharma & Vipul, 2016). To overcome this issue, intraday 
volatility models emerge as alternative tools. Another 
simple procedure for modeling intraday variation is 
adopting price range. 

Range is defined as the difference between the highest 
and lowest market prices over a fixed sampling interval, 
e.g. day-to-day or week-to-week variability. The literature 
has claimed that range-based volatility estimators are 
more effective than historical volatility estimators (e.g. 
Garman & Klass, 1980; Parkinson, 1980; Rogers & 
Satchell, 1991; Yang & Zhang, 2000). This approach 
is easy to implement; it only requires readily available 
high, low, opening, and closing prices. Andersen and 
Bollerslev (1998) report the explanatory usefulness of 
range to discuss the realized volatility. Gallant, Hsu, 
and Tauchen (1999) and Alizadeh, Brandt, and Diebold 
(2001), in a stochastic volatility framework, include 
range in the equilibrium asset price models. Brandt 
and Jones (2002) stated that a range-based exponential 
generalized autoregressive conditional heteroskedastic 
(EGARCH) model provides better results for out-of-
sample volatility forecasting than a return-based model. 
Using S&P 500 data, Christoffersen (2002) stated that 
range-based volatility showed more persistence than 

squared return based on estimated autocorrelations, thus 
its time series may be used to devise a volatility model 
within the traditional autoregressive framework.

Dealing with range-based models has not drawn 
attention in estimating and forecasting volatility, due to 
their poor performance in empirical studies. Chou (2005) 
indicates that range-based models cannot capture volatility 
dynamics and by properly modeling the dynamics, range 
retains its superiority in forecasting volatility. Thus, the 
author proposed a range-based volatility method named 
as conditional autoregressive range (CARR) model. 
Similarly to the GARCH-type approaches, the CARR 
model consists in a dynamic approach for the high/low 
asset price range within fixed time intervals. The empirical 
results using S&P 500 data showed that the CARR model 
does provide better volatility estimates than a standard 
GARCH model. 

Li and Hong (2011) also suggest a range-based 
autoregressive volatility model inspired on the GARCH 
and EGARCH approaches. The results concerning S&P 
500 data demonstrate that a range-based approach 
successfully captures volatility dynamics and show a 
better performance than GARCH-type models. On the 
other hand, Anderson, Chen and Wang (2015) suggest a 
time range-based volatility model to capture the volatility 
dynamics of real estate securitization contracts, using a 
smooth transition copula function to identify nonlinear 
co-movements between major real estate investment trust 
(REIT) markets in the presence of structural changes. 
Further, Chou, Liu and Wu (2007) applied the CARR 
model to a multivariate context using the dynamic 
conditional correlation (DCC) model. The authors found 
that a range-based DCC model is better at forecasting 
covariance than other return-based volatility methods. 

Over the last decade, there has been considerable 
growth in the use of range-based volatility models in 
finance (Chou, Chou, & Liu, 2010; Chou, Chou, & 
Liu, 2015). However, most of the literature evaluates 
the models in terms of forecasting accuracy, instead of 
financial applications using volatility forecasts. Moreover, 
the literature still lacks empirical works addressing range-
based volatility models in emergent economies. 

This article aims to assess range-based volatility models 
in the U.S. and Brazilian stock markets. The contribution 
of this work is twofold. First, theoretically, it suggests a 
GARCH-type approach designed to incorporate range-
based volatility as an exogenous variable in GARCH and 
threshold autoregressive conditional heteroscedasticity 
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(TARCH) models. The main goal is to evaluate gains in 
forecasting by including range as additional information 
in GARCH-type approaches. Notice that in the CARR 
model, Chou (2005) addressed range-based modeling 
using a conditional variance approach, differently from 
GARCH-type models, which deal with modeling of 
financial asset returns. Herein, we resort to a GARCH-
type approach, i.e. based on returns, but also including 
range as a source of additional information on volatility. 
Second, empirically, we evaluate the performance of 
range-based volatility models in the U.S. and Brazilian 
stock markets. It is worth noticing that this article 
contributes to the literature by empirically addressing 
an emergent market; there is a lack of studies in this 
context, so our results may provide valuable information 
for stock market players. 

Our empirical analysis use data from the main stock 
market indexes for the U.S. and Brazilian economies, i.e. 
S&P 500 and IBOVESPA, respectively, within the period 
from January 2004 to December 2014. Experimental data 
employs statistical analysis and also economic criteria 
in terms of risk analysis. One-step-ahead forecasts are 
assessed using accuracy measures and statistical tests. 

The range-based models are assessed by means of 
value-at-risk (VaR) forecasting. VaR is the most widely 
used measure in empirical analysis and its accurate 
computation is also crucial for other quantile-based risk 
estimation measures, such as expected shortfall (Wang 
& Watada, 2011; Hartz, Mittinik, & Paolella, 2006). VaR 
forecasts produced through traditional approaches, such 
as historical simulation, exponentially weighted moving 
average (EWMA), GARCH, and TARCH methods, are 
compared to the traditional CARR model and to the 
GARCH and TARCH models that include range-based 
volatility as an exogenous variable.

This article consists of four parts, in addition to this 
introduction. Section 2 describes GARCH-type models 
and range-based volatility approaches, including those 
suggested in this article. Section 3 briefly reports 
the methodology, concerning data, performance 
measurements, basic concepts of VaR, as well as its 
traditional estimation approaches and validation measures. 
Section 4 consists of empirical findings and their 
discussions. Finally, our conclusion suggests issues for 
further research.

2. VOLATILITY MODELS

This section provides a brief overview of the traditional 
GARCH and TARCH models, as well as these models 
using range-based volatility as an exogenous variable. 
And the CARR method is also described.

2.1 GARCH and TARCH Models 

One of the simplest forms for modeling daily returns 

may be written as follows:

where rt = ln(Pt) – ln (Pt-1) is the log price return at t, Pt 
is the asset price at t, ϵt ~ i.i.d.(0,1) is a zero-mean white 
noise, often assumed to be normal, and σt is time-varying 

volatility. Different specifications for σt define different 
volatility models.

1
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The GARCH model was introduced by Bollerslev 
(1986), as an extension of the autoregressive conditional 
heteroskedasticity (ARCH) model proposed by Engle 
(1982), and it allowed including past conditional variance 
in the current conditional variance equation. It is one of 

the most widely used and well-known volatility models 
due to its flexibility and accuracy to modeling stylized 
facts of financial asset returns, such as leptokurtosis and 
volatility clustering. 

A GARCH (p, q) model may be described as follows:

where ω > 0 is a constant, αi ≥ 0 is a coefficient to measure 
the short-term impact of ϵt on conditional variance, and 
βi ≥ 0 is a coefficient to measure the long-term impact 
on conditional variance.

The TARCH model is an asymmetric approach based 
on the assumption that unexpected changes in returns 

have different effects on conditional variance, i.e. variance 
responds differently to positive and negative shocks, 
accounting for the asymmetry effect. A TARCH (p,q) 
model is defined according to Glosten, Jagannathan and 
Runkle (1993):

where It-1 = 1, if rt-1 < 0 (negative shocks), It-1 = 0, if rt-1 ≥ 0 
(positive shocks), and the coefficient γi denotes an 
asymmetric effect, also known as leverage effect. A 
leverage effect is observed if γi is positive, otherwise γi 
equals to zero indicates a symmetric response by change 
in volatility returns. 

2.2 Range-Based Volatility Models

Regarding an asset, the range of log prices, Rt, is defined 
as the difference between the highest daily price Ht and the 
lowest daily price Lt in a logarithm type, in the trading day 
t. This may be calculated according to Chou et al. (2015):

It is worth noticing that different range estimators may 
be considered as those suggested by Parkinson (1980) or 
Garman and Klass (1980), which also includes opening 
and closing prices to estimate range. However, herein 
range-based volatility, just as in (6) is chosen due to its 
ability to describe volatility dynamics, as claimed by 
Christoffersen (2002), and also because this is the same 
measure used in the CARR model. Thus, it is more suitable 
for comparison purposes. 

This article takes two classes of the range-based 
volatility models. The first concerns including the realized 
range as an exogenous variable in the variance equation 
of traditional GARCH and TARCH models. The main 
goal is evaluating whether range-based volatility provides 
better information to the GARCH-type models, in order 
to achieve better forecasts and persistence reduction. 
Therefore, the GARCH model of equations (2) and (3) 
may be rewritten as follows:

2
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where θk are the parameters that measure the contribution 
of range-based volatility to the volatility process. 

We denote the model in (7) and (8) as the range 
generalized autoregressive conditional heteroscedasticity 

(RGARCH) (p,q,s) model. Similarly, the range threshold 
autoregressive conditional heteroscedasticity (RTARCH) 
(p,q,s) model is written this way:

On the other hand, the second class of range-based 
volatility models considered is the CARR model, as 
proposed by Chou (2005), which constitutes a special 
case of the multiplicative error model (MEM), suggested 
by Engle (2002), extended for the GARCH approach. The 
MEM is used to modeling a non-negative valued process, 

such as trading volume, duration, realized volatility, and 
range. Instead of modeling the log range, Chou (2005) 
directly focused on the price range process. Considering 
the time-series data of price range Rt, the CARR (p,q) 
model is written like this:

where ht is the conditional range-based mean value of 
all information up to time t and the distribution of the 
disturbance term ϵt is assumed to take a density function 
f (•) with a unit mean. For a detailed discussion of the 
CARR model, properties refer to Chou (2005).

Notice that the CARR approach concerns the price 
range (Rt) modeling process, whereas the GARCH-type 

models focused on asset returns (rt) using conditional 
variance modeling. Herein, the models suggested assume 
the modeling of asset returns, just as in the GARCH 
approach, but they include lagged realized variation as an 
exogenous variable to verify the contribution in volatility 
estimation and forecasting.
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3. METHODOLOGY

This section reviews the sources of data and the 
performance measurements adopted in this article. The 
basic concepts of VaR modeling and forecasting are also 
detailed, as well as its validation analysis.

3.1 Data

We consider the highest, lowest, and closing daily 
prices from the main stock market indexes of U.S. and 
Brazilian economies, i.e. S&P 500 and IBOVESPA, 
respectively, within the period from January 2004 to 
December 2014. Also, as the realizations of volatility 
are unobservable, a proxy for volatility is required to 
devise the loss functions for analyzing the performance of 
models. Squared return is a widely used proxy, but  as this 
is calculated through closing prices, intraday variability 
is neglected. Patton (2011) suggests using the realized 
volatility as an unbiased estimator. It is also more efficient 
than squared return if the log price follows a Brownian 
motion (Tian & Hamori, 2015). Realized volatility is the 
sum of squared high-frequency returns within a day. It 
conveniently avoids data analysis complications, while 
covering more information during daily transactions. 
Therefore, ‘true volatility’ is considered through the 
realized volatility measure. To compute daily realized 
volatility, data also comprise 1-minute quotations from 
January 2004 to December 2014, according to the S&P 
500 and IBOVESPA indexes. Notice that intraday data 
was used only to compute daily realized volatility, as a 
proxy for volatility. The models considered daily price 
data, provided by Bloomberg. The sample is divided into 

two parts: data from January 2004 to December 2010 
was taken as the estimation sample (in-sample), while 
the remaining 4-year data was used as the out-of-sample 
period for volatility and VaR forecasting. Out-of-sample 
forecasts are computed having re-estimated volatility 
models parameters as a basis, according to a fixed data 
window.

The experimental results are analyzed on the basis of 
statistical criteria and also considering economic criteria 
in terms of risk analysis. The subsections below describe 
the evaluation models.

3.2 Forecast Evaluation

Forecasting performance is compared in terms of 
statistical loss functions. As true volatility is latent, 
estimation error in the proxy for volatility may distort 
the ranking of competing volatility forecasts. Patton (2011) 
compared different widely used loss functions for volatility 
forecasting and demonstrated that only the mean squared 
error (MSE) and quasi-likelihood (QLIKE) loss functions 
are robust to an imperfection in the proxy for volatility. 
These two criteria are considered herein.

MSE penalizes forecasting error in a symmetrical 
way. Otherwise, QLIKE is an asymmetric loss function 
that penalizes under-prediction more heavily than over-
prediction, it is more suitable for applications such as 
risk management and VaR forecasting, where under-
prediction of volatility can be more costly than over-
prediction (Sharma & Vipul, 2016). MSE and QLIKE 
are defined as:

where  is the forecasted variance at  and  is the actual variance (notice that for the CARR model, ), 
which is realized variance, calculated according to:

13
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where rt,Δ= ln(Pt) - ln(Pt-Δ) is the discrete sample of the 
Δ-period return (in this article Δ is equal to 1-minute 
quotations).

For both MSE and QLIKE, the smaller the values, the 
more accurate the model is. Despite the good performance 
of forecasting measures that are widely used in practice, 
they do not reveal whether the forecast of a model is 
statistically better than another one. Therefore, it is a 
must to use additional tests to help comparing two or 
more competing models in terms of forecasting accuracy. 

Moreover, this article employs the Diebold-Mariano 
(DM) statistic test to evaluate the null hypothesis of equal 
predictive accuracy between competitive forecasting 
methods (Diebold & Mariano, 1995). We assume that 
the losses for forecasting models i and j are given by Li

t 
and Lj

t, where 𝐿𝑡 = 𝜎𝑡2− 𝜎�𝑡2 . The DM test verifies the 
null hypothesis E(Li

t) = E(Lj
t). The statistic test is based 

on the loss differential dt = Li
t - Lj

t. The null hypothesis 
of equal predictive accuracy is:

The DM test is:

where , and T is the total number 
of forecasts. The variance of , is estimated by 
the heteroskedasticity and autocorrelation consistent 
(HAC) estimator, as proposed by Newey and West (1987). 
According to Diebold and Mariano (1995), under the null 
hypothesis of equal predictive accuracy, the statistic test 
follows normal distribution with zero mean value and 
unitary variance.

3.3 VaR Estimation and Validation

In order to evaluate the usefulness of the volatility 

forecasting methods suggested by applying perspective, 
we examine the performance of forecasting by means of 
economic criteria in terms of risk analysis. VaR has been 
adopted by practitioners and regulators as the standard 
mechanism to measure market risk of financial assets. It 
determines the potential market value loss of a financial 
asset over a time horizon h, at a significance or coverage 
level αVaR. Alternatively, it reflects the asset market value 
loss over the time horizon h, which is not expected to be 
exceeded with probability 1 - αVaR, so:

Hence, VaR is the αVaR-th quantile of conditional 
distribution of returns, defined as: , 
where CDF(•) refers to the return cumulative distribution 

function and CDF-1(•) denotes its inverse. Herein, we 
consider h = 1, as it bears the greatest practical interest 
with daily frequency.
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Therefore, the parametric VaR at t + 1 is given by:

where   is the forecasted volatility at and 
is the critical value from the normal 

distribution table at the αVaR confidence level.
In a VaR forecasting context, volatility modeling 

plays a crucial role, thus it is worth emphasizing the 
volatility models adopted. In this research, VaR forecasts, 
as in (19), are obtained using traditional return-based 
volatility models, like GARCH and TARCH; just as 
the same approaches that take volatility range as an 
exogenous variable (RGARCH and RTARCH models), 
the range-based volatility CARR model is also considered 
in comparisons. Non-parametric VaR forecasts are also 
performed by the historical simulation approach, since 
it is widely used in the literature on VaR modeling. 
Historical simulation is a non-parametric approach to 
VaR estimation, where the main issue is constructing the 

cumulative distribution function (CDF) for asset returns 
over time. Unlike parametric VaR models, historical 
simulation does not assume a particular distribution of 
the asset returns. In addition to its simple estimation, 
historical simulation assumes that asset returns consists in 
independent and identically-distributed random variables, 
but this is not the case: based on empirical evidence, it is 
known that asset returns are clearly not independent, as 
it exhibits certain patterns, such as volatility clustering. 
Further, this method also applies equal weight to returns 
over the whole period. 

The performance of VaR forecasting models is 
evaluated using two loss functions: the violation ratio 
(VR) and the average square magnitude function. The VR 
is the percentage of actual loss higher than the estimated 
maximum loss in the VaR framework. The VR is computed 
as follows:

where δt = 1 if rt < VaRt and δt = 0 if rt ≥ VaRt, if where 
VaRt is the one-step-ahead forecasted VaR for day t, and 
T is the number of observations in the sample. Notice 
that, in some cases, a lower VR does not indicate better 
performance. If VaR is estimated at a confidence level 
(1 – αVaR)%, a general αVaR% of violations is expected. A 
VR much lower (much greater) than αVaR% indicates that 
VaR is overestimated (underestimated), and this reveals 

lower model accuracy, resulting in practical implications, 
such as changes on investment positions due to VaR 
alert-based strategies.

The average square magnitude function (ASMF) 
(Dunis, Laws, & Sermpinis, 2010) considers the amount 
of possible default measuring the average squared cost of 
exceptions. It is computed using:

where ϑ is the number of exceptions in the respective model, 
ξt = (rt – VaRt)

2 when rt < VaRt and ξt = 0, when rt  ≥VaRt. 
The average squared magnitude function enables us to 
distinguish between models with similar or identical hit 
rates. For both VR and ASMF measures, the lower values, 
the higher accuracy. Since VaR estimates potential loss, 
its accuracy is relevant in investment decisions.

Since VaR encompasses some restrictive assumptions, 
statistical tests are required to verify the validity of VaR 
estimates. VaR forecasting models are also assessed by 

using unconditional and conditional coverage tests. The 
unconditional coverage test (LRuc), proposed by Kupiec 
(1995), examines whether the unconditional coverage 
rate is statistically consistent with the confidence level 
prescribed for the VaR model. The null hypothesis is 
defined as the failure probability of each trial   equals 
the specified probability of this model (αVaR). A failure 
occurred when the predicted VaR cannot cover the 
realized loss. The statistic likelihood ratio test is given by:

19
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where , the failure rate, is the maximum 
likelihood estimate of αVaR, f = denotes a 
Bernoulli random variable representing the total number 
of VaR violations for T observations. The null hypothesis 
of the failure rate αVaR is tested against the alternative 
hypothesis that the failure rate is different from αVaR, i.e. 
the test verifies if the observed VR of a model is statistically 
consistent with the pre-specified VaR confidence level.

Although the LRuc test can reject a model that either 
overestimates or underestimates the actual VaR, it cannot 
determine whether the exceptions are randomly distributed. 

In a risk management framework, it is of paramount 
importance that VaR exceptions be uncorrelated over time 
(Su & Hung, 2011). Thus, the conditional coverage test 
(LRcc), as proposed by Christoffersen (1998), is addressed. 
It tests unconditional coverage and serial independence. 
The statistical test is LRcc = LRuc + LRind; LRind represents 
the likelihood statistics that checks whether exceptions 
are independent. Considering the null hypothesis that the 
failure process is independent and the expected proportion 
of exceptions equals αVaR, the likelihood ratio is calculated 
as:

where fij is the number of observations with value i followed by value j (i, j = 0, 1), πij = Pr{δt = j | δt-1 = i}, π01 = f01/
(f00 + f01), π11 = f11/(f10 + f11).

4. EMPIRICAL RESULTS

This section presents the empirical results of the range-
based volatility models in comparison to return-based 
volatility models, using data from the main stock market 
indexes for the U.S. and Brazilian economies, i.e. S&P 
500 and IBOVESPA, respectively, within the period from 
January 2004 to December 2014.

Table 1 displays the statistics of S&P 500 and IBOVESPA 
returns and range-based volatility. The returns for both S&P 
500 and IBOVESPA indexes have a mean value around 
zero, similar standard deviation, high positive kurtosis, 
and negative skewness, indicating heavy tails, as usual in 
financial time series of returns. Regarding the volatility 
range series, daily ranges for S&P 500 and IBOVESPA have 

mean values about 1% and 2%, respectively, and similar 
standard deviation to the return series (Table 1). However, 
volatility ranges have a higher kurtosis than the return 
series and positive skewness, as expected for variance 
measurement. It is worth observing the different values 
for autocorrelation functions (ACFs) and of the Ljung-Box 
Q statistics for returns and range series, which indicate a 
much higher persistence level for range than return series. 
This fact confirms the use of the CARR model in range 
volatility forecasting. Figure 1 shows daily returns and range 
volatility series of the S&P 500 and IBOVESPA indexes for 
the period under study. The series reveals volatility clusters. 

^
^ ^
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Table 1. Descriptive statistics of the S&P 500 and IBOVESPA returns and range-based volatility within the period from January 
2004 to December 2014.

Statistics S&P 500 returns S&P 500 range-based volatility IBOVESPA returns IBOVESPA range-based volatility 
Mean 0.0002 0.0130 0.0003 0.0224

Standard deviation 0.0125 0.0108 0.0181 0.0136
Kurtosis 11.5540 20.1899 5.2376 19.2702

Skewness -0.3271 3.6427 -0.0490 3.2491
Minimum -0.0947 0.0000 -0.1210 0.0032
Maximum 0.1096 0.1090 0.1368 0.1681

ACF(1) -0.1093 0.6987 -0.0112 0.5717
ACF(15) -0.0494 0.5316 0.0110 0.4006
Q(15) 79.2194 15727.91 26.4686 9507.68

Note: Q(15) statistics represent the Ljung-Box Q statistics for autocorrelation in the returns and range volatility series.
Source: Prepared by the authors.

Figure 1. Time series of returns and volatility ranges for S&P 500 and IBOVESPA indexes within the period from January 2004 to 
December 2014.
Source: Prepared by the authors.

Dec 05 Dec 07 Dec 09 Dec 11 Dec 13
−0.2

−0.1

0

0.1

0.2

(a) S&P 500 returns

Dec 05 Dec 07 Dec 09 Dec 11 Dec 13
−0.2

−0.1

0

0.1

0.2

(b) IBOVESPA returns

Dec 05 Dec 07 Dec 09 Dec 11 Dec 13
0

0.05

0.1

0.15

(c) S&P 500 volatility range

Dec 05 Dec 07 Dec 09 Dec 11 Dec 13
0

0.05

0.1

0.15

0.2

(d) IBOVESPA volatility range

The number of lags, p and q, for GARCH, TARCH, 
and CARR models, and p, q and s, for RGARCH and 
RTARCH models, is determined according to the 
Schwarz criterion. For both indexes, all models were 
estimated considering p = q = s = 1, which result in 
parsimonious structures with high accuracy and a few 
number of parameters. Table 2 displays the estimates of 
return- and range-based volatility models for the S&P 
500 index. The estimation sample considers data from 
January 2004 to December 2010. All models are affected 
by the news, as the values of ω in each case are significant, 
except for RTARCH. In asymmetric models, TARCH and 
RTARCH, the effect of past squared returns, measured 
by the parameter α, is negatively related to volatility, 

whereas in the symmetric models this parameter has 
a positive sign. The β value in the range-based CARR 
model is lower than in the other approaches, indicating a 
shorter memory in its volatility process. The parameter γ 
indicates the presence of a leverage effect on the volatility 
process in the S&P 500 index, i.e. volatility responds 
differently to negative and positive shocks (returns). 
The significance of the parameter θ in RGARCH and 
RTARCH models indicates that range-based volatility 
provides information to modeling volatility in the S&P 
500 index. Finally, the Akaike information criterion 
and the Bayesian information criterion confirm that 
the simplicity of models (few number of parameters) 
is adequate.
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Table 2. Return- and range-based volatility model estimates for the S&P 500 index within the period from January 2004 to 
December 2010.

Parameter GARCH (1,1) TARCH (1,1) RGARCH (1,1,1) RTARCH (1,1,1) CARR (1,1)

ω 1.20E-06
(0.0000)

9.66E-07
(0.0000)

-2.69E-06
(0.0074)

-5.57E-07
(0.3711)

3.92E-06
(0.0153)

α 0.075
(0.0000)

-0.031
(0.0000)

0.055
(0.0000)

-0.038
(0.0000)

0.182
(0.0000)

β 0.915
(0.0000)

0.953
(0.0000)

0.891
(0.0000)

0.928
(0.0000)

0.802
(0.0000)

γ -
0.135

(0.0000)
-

0.155
(0.0000)

-

θ - -
0.001

(0.0002)
0.003

(0.0052)
-

L 5634.65 5677.66 5638.47 5676.15 5077.79
AIC -6.392 -6.440 -6.399 -6.440 -5.761
BIC -6.383 -6.427 -6.386 -6.425 -5.750

Note: The values in parentheses represent p values, L is the log-likelihood function value, and the AIC and BIC denote the Akaike 
and Schwarz information criteria, respectively.
Source: Prepared by the authors.

The estimates of volatility models for the IBOVESPA 
index are shown in Table 3. Similarly, except for the 
RTARCH model, volatility in the IBOVESPA is affected 
by the news, as the significance of the coefficient ω. 
Previous squared return values and range (for the 
CARR model), measured by the parameter α, have a 
positive effect on volatility, but this estimation is non-
significant only for the TARCH model. Estimating the 
β value indicates the volatility persistence; the Brazilian 
market is less persistent than the β estimates for S&P 
500 (see Table 2). As for the CARR model, it is worth 

noticing a lower persistence in range-based volatility 
(Table 3). The threshold models, TARCH and RTARCH, 
imply by the significance of the parameter γ a leverage 
effect on the volatility of the IBOVESPA; RGARCH and 
RTARCH models also indicate that considering range-
based volatility is significant for modeling volatility 
dynamics and volatility has positive impacts according 
to the θ estimates. The log-likelihood, as well as AIC 
and BIC values, confirms the adequacy of parsimonious 
structures for volatility modeling. 

Table 3. Return- and range-based volatility estimates for the IBOVESPA index within the period from January 2004 to December 2010.

Parameter GARCH (1,1) TARCH (1,1) RGARCH (1,1,1) RTARCH (1,1,1) CARR (1,1)

ω 6.99E-06
(0.0001)

1.04E-05
(0.0000)

-1.40E-05
(0.0067)

-7.61E-06
(0.1289)

2.77E-05
(0.0115)

α 0.072
(0.0000)

0.0033
(0.7771)

0.034
(0.0213)

-0.038
(0.0135)

0.190
(0.0000)

β 0.907
(0.0000)

0.898
(0.0000)

0.856
(0.0000)

0.851
(0.0000)

0.769
(0.0000)

γ -
0.134

(0.0000)
-

0.159
(0.0000)

-

θ - -
0.002

(0.0002)
0.002

(0.0001)
-

L 4561.47 4584.97 4569.92 4591.02 3951.85
AIC -5.269 -5.295 -5.281 -5.304 -4.565
BIC -5.260 -5.283 -5.268 -5.289 -4.555

Note: The figures in parentheses represent p values, L is the log-likelihood function value, and the AIC and BIC denote the Akaike 
and Schwarz information criteria, respectively.
Source: Prepared by the authors.



Value-at-risk modeling and forecasting with range-based volatility models: empirical evidence

R. Cont. Fin. – USP, São Paulo, v. 28, n. 75, p. 361-376, set./dez. 2017372

Table 4. Performance of volatility forecasting models for the S&P 500 and IBOVESPA indexes based on the MSE and QLIKE 
criteria within the period from January 2011 to December 2014.

Models
S&P 500 IBOVESPA

MSE QLIKE MSE QLIKE
GARCH 8.7337E-05 -2.2002 2.0099E-04 -1.8630
TARCH 8.8467E-05 -2.1405 1.8305E-04 -1.9095

RGARCH 8.1272E-05 -2.6004 1.2468E-04 -2.1896
RTARCH 7.9599E-05 -2.8640 1.0051E-04 -2.2177

CARR 7.7771E-06 -2.8763 6.3166E-05 -2.4938

Source: Prepared by the authors.

As mentioned in section 3.2, the forecasting 
performance of volatility models is evaluated through the 
MSE and QLIKE loss functions. To evaluate this, realized 
volatility, computed by (15) and 1-minute quotations of 
the S&P 500 and IBOVESPA, is taken as a proxy. Our 
analysis concerns the out-of-sample volatility forecasting, 
i.e. we use data from January 2011 to December 2014. In 
the out-of-sample analysis, the volatility model parameters 
were re-estimated for forecasting by means of a fixed data 
window. To each prediction, the last observation has been 
removed, in order to keep the same data window size. 

Table 4 displays the forecasting evaluation of the S&P 
500 and IBOVESPA indexes for the MSE and QLIKE loss 
functions. The lower the values, the better the model. 
As for the S&P 500 index, range-based models – such 
as the RGARCH, RTARCH, and CARR – showed lower 
loss function values than the traditional GARCH and 

TARCH methods. This was expected, as the standard 
GARCH models have a limited information set that 
only includes daily returns. Threshold approaches 
performed worst (higher loss function values). The 
results also indicate that the CARR model outperforms 
the remaining methodologies concerning both MSE and 
QLIKE values. Similar results are found for the IBOVESPA 
index. However, the leverage-based methods, TARCH 
and RTARCH, result in the best performance against 
GARCH and RGARCH, respectively. Again, including 
range-based volatility in RGARCH and RTARCH models 
provides relevant information to volatility process as these 
models achieved better forecasting performance than 
the benchmarks (GARCH and TARCH). Further, direct 
range-based modeling, i.e. the CARR model, emerges as 
the most accurate approach, with lower MSE and QLIKE 
values, regarding the alternative methods in focus.

Next, we provide the results of the DM test to verify 
whether a model is statistically better than another one. 
Table 5 shows the statistics of the DM test for a pair 
of competing forecasting models. All statistical values 
significant at the 5% level are marked with asterisks. 
For the S&P 500 index, the CARR model provides a 
better accuracy performance in statistical terms than 
the GARCH and TARCH models. The CARR model 

also outperforms the GARCH model with regard to 
the IBOVESPA index volatility forecasting according 
to the DM test. In all the remaining cases, volatility 
forecasting may be considered as equally accurate in 
statistical terms. A better performance of the CARR 
model may be due to the fact that this approach resorts 
to range-based volatility modeling instead of return-
based volatility modeling in GARCH-family models. 
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The volatility models are also compared in terms of 
VaR forecasting, which concerns economic evaluation. The 
VaR is a widely used measure for assessment of conditional 
volatility forecasting models. A VaR estimate is said to be 
valid if it meets the unconditional coverage condition, as 
proposed by Kupiec (1995), and the independence and 
conditional coverage, as proposed by Christoffersen (1998). 
One-step-ahead forecasts are also evaluated in terms of VR 
and ASMF. VR evidences the proportion in which the actual 
returns exceed VaR, whereas ASMF aims to measure the 
magnitude of VaR exceedance. Herein, we set αVaR = 5%, 
i.e. VaR at the 95% confidence level. As a benchmark, the 
non-parametric VaR of historical simulation is compared 
to the return- and range-based volatility models: GARCH, 
TARCH, RGARCH, RTARCH, and CARR. 

Table 6 shows the out-of-sample VaR backtesting 
results for the S&P 500 index. All models generate valid 
VaR forecasts, both for the unconditional coverage test, as 
proposed by Kupiec (1995), and the conditional coverage 
test, as proposed by Christoffersen (1998), except for the 
historical simulation approach, the VaR estimates are 

statistically in line with the pre-specified VaR confidence 
level (5% in this study).

In terms of VR exceedance, generally the methods 
considering range volatility show lower violation rates: 
RGARCH, RTARCH, and CARR models (Table 6). This 
is also confirmed by the ASMF loss function. Besides 
providing valid VaR estimates, according to unconditional 
and conditional coverage tests, VR in the CARR model 
(3.2076%) is significantly lower than the expected 
failure ratio (5%). It indicates that, in some cases, VaR is 
overestimated, and this may cause unnecessary position 
changes for risk-averse investors. On the other hand, 
RGARCH and RTARCH showed VR values that indicates 
more accurate VaR estimates, i.e. according to the 5% 
expected failure rate (95% confidence level). Finally, notice 
that including range-based volatility in conditional models, 
RGARCH and RTARCH, besides providing more accurate 
volatility forecasts (see Table 4), does also improve VaR 
forecasting, in comparison to the GARCH and TARCH 
approaches, i.e. lower VR and ASMF values are achieved. 

Table 5. Diebold-Mariano test statistics for volatility forecasting of the S&P 500 and IBOVESPA indexes within the period from 
January 2011 to December 2014. 

S&P 500
Models TARCH RGARCH RTARCH CARR
GARCH 1.11 -1.80 -1.74 -2.60*

TARCH - -1.55 -1.40 -2.79*

RGARCH - - 0.82 -1.02
RTARCH - - - -1.45

IBOVESPA
Models TARCH RGARCH RTARCH CARR
GARCH -0.70 -1.66 -1.89 -2.04*

TARCH - -1.49 -1.30 -1.80
RGARCH - - -0.68 -1.13
RTARCH - - - -1.30

Note: * indicates significance at the 5% level.

Source: Prepared by the authors.

Table 6. One-step-ahead VaR backtesting at a 95% confidence level for the S&P 500 index within the period from January 2011 
to December 2014. 

Models VR (%) ASMF (%) LRuc LRcc

HS 6.7652 0.0129 0.8726* 6.4663
GARCH (1,1) 5.4108 0.0082 0.3458* 3.8723*

TARCH (1,1) 6.0120 0.0067 2.0268* 3.7261*

RGARCH (1,1,1) 4.8762 0.0059 0.3458* 4.9827*

RTARCH (1,1,1) 5.0321 0.0055 1.0188* 4.2001*

CARR (1,1) 3.2076 0.0049 3.3649* 5.5374*

Note: * indicates a 5% significance level, and LRuc and LRcc are the statistics of unconditional and conditional coverage tests, 
respectively. For the unconditional and conditional coverage test, the critical values are 3.841 and 5.991, respectively.
Source: Prepared by the authors.
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Table 7. One-step-ahead VaR backtesting at the 95% confidence level for the IBOVESPA index within the period from January 
2011 to December 2014. 

Models VR (%) ASMF (%) LRuc LRcc

HS 6.2359 0.0166 0.9182* 5.4663*

GARCH (1,1) 4.4442 0.0141 0.6789* 3.8721*

TARCH (1,1) 4.1303 0.0154 2.3961* 3.4469*

RGARCH (1,1,1) 3.9434 0.0124 0.9522* 4.7262*

RTARCH (1,1,1) 3.5319 0.0119 3.4413* 5.2039*

CARR (1,1) 3.4813 0.0112 3.7341* 5.7770*

Note: * indicates a 5% significance level, and LRuc and LRcc are the statistics of unconditional and conditional coverage tests, 
respectively. For the unconditional and conditional coverage test, the critical values are 3,841 and 5,991, respectively.
Source: Prepared by the authors.

Table 7 displays the VaR backtesting results for the 
IBOVESPA index. Valid VaR forecasts are achieved for 
all models regarding the conditional and unconditional 
coverage tests, as the LRuc and LRcc are significant at a 5% 
significance level. Historical simulation has the worst 
performance in contrast to parametric VaR models in 
terms of VR and the respective average squared magnitude 
function values. By including range-based volatility in 
the GARCH and TARCH models, VaR forecasting is 
improved, revealing that range provides the volatility 
process with relevant information, i.e. the VR measure is 

decreased by about 12.82% using RGARCH and RTARCH 
instead of the GARCH and TARCH models (Table 7). 
This improvement is more relevant in terms of VR for the 
IBOVESPA index than for the S&P 500 index resorting to 
the RGARCH and RTARCH models (see Table 6). Also, 
in the context of the Brazilian stock market, asymmetric 
volatility models, TARCH and RTARCH, showed to be 
better than symmetric volatility approaches to indicate 
the significance of leverage effects on volatility modeling. 
Again, the CARR model provides a lower VR, which 
indicates that in some cases VaR is overestimated.

Overall, VaR forecasts generated by range-based 
volatility models are reliable for both the S&P 500 and 
IBOVESPA indexes. Furthermore, in the context of the 
U.S. and Brazilian stock markets, including this exogenous 
variable in traditional conditional variance models improves 

volatility forecasting and also provides more accurate VaR 
estimates, a key issue in many risk management situations. 
Therefore, the benefits of addressing range-based volatility 
are more significant in the Brazilian stock market. 

5. CONCLUSION

Volatility is a key variable in asset allocation, derivative 
pricing, investment decisions, and risk analysis. Thus, 
volatility modeling, as an important issue in financial 
markets, has drawn the attention of finance academics 
and stock market practitioners over the last decades. Since 
asset price volatility cannot be observed, there is a need 
to estimate it. In the literature on conditional volatility 
modeling and forecasting, the GARCH-type models are 
widely used and well-known due to their accuracy to 
deal with financial return stylized facts modeling, such 
as volatility clustering and autocorrelation. However, they 
are return-based models calculated by means of closing 
price data. Thus, they fail to capture intraday asset price 
variability, neglecting significant information. 

Price range, or volatility range, defined as the 
difference between the highest and lowest market prices 
over a fixed sampling interval, has been known for a long 

time and has recently regained critical interest as a proxy 
for volatility. Many studies showed that we can use the 
price range scale to improve volatility estimation and 
forecasting, which is more effective than using squared 
daily returns. Thus, this article evaluates the performance 
of range-based volatility models in a risk management 
application: VaR forecasting. This article suggests the 
inclusion of volatility range as an exogenous variable 
in traditional GARCH and TARCH models, in order to 
evaluate whether range provides additional information 
on volatility and better volatility forecasting than return-
based GARCH-type approaches and CARR model. Our 
empirical analysis uses data from the main stock market 
indexes for the U.S. and Brazilian economies, i.e. S&P 
500 and IBOVESPA, respectively, thus a developed 
and an emergent market are addressed; the models 
are compared in terms of loss functions and statistical 
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tests for volatility assessment, also considering VaR 
backtesting approaches. 

Our out-of-sample results indicate that range-based 
volatility models do provide additional information to 
traditional GARCH and TARCH models. In addition, 
more accurate VaR forecasts are achieved by the models 
that include the range as an exogenous variable in the 

variance equation for both stock indices evaluated. 
Future research should include the evaluation of different 
volatility range measures as the realized range, as well 
as the comparison of the long-term forecasting models, 
addressing different volatility patterns, such as in crisis 
scenarios, and their application to asset trading strategies.
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