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Abstract

This article presents a numerical model based on the finite difference method for 
the physical and geometric non-linear analysis of a one-dimensional consolida-
tion problem regarding a saturated, homogeneous and isotropic soil layer with 
low permeability and high compressibility. The problem is formulated by adopt-
ing the void ratio as the primary variable, considering a Lagrangian movement 
description. The physical non linearity is introduced on the formulation by the 
constitutive law defined as effective stress and permeability void ratio functions. 
Based on this numerical model, a computational system named AC-3.0 was de-
veloped, which has been verified and validated in terms of the temporal variation 
of the void ratio distribution throughout the soil layer, by comparing the numeri-
cal results with analytical and numerical solutions found in literature for some 
specific scenarios. Knowing the void ration distribution,it is possible to obtain 
secondary variables such as: superficial settlement, effective stress and excess of 
pore water pressure.The importance of the non-linear formulation is highlighted 
for the analysis of problems related to material presenting high compression and 
a very high initial void ratio.
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1. Introduction

Consolidation is a physical phenom-
enon that can occur in porous media and 
is related to the temporal dissipation of the 
excess of pore water pressure generated 
by anexternal force (body and/or surface 
loads), causing displacement, strain, and 
stress field variations throughout the soil 
layer. This problem was initially studied 
by Terzaghi, in 1923,who formulated the 
classical consolidation theory (Schiffman, 
2001). Terzaghi adopted some simplified 
hypotheses, such as: the soil layer’s materi-
al is homogeneous and saturated; the solid 
particles and the water are incompressible; 
the water flow and the deformation occur 
only in a vertical direction; the strains are 
small and time-independent; the Darcy 
Law is valid; and, the permeability coef-
ficient and the volumetric compressibility 
modulus does not vary during the process. 

Although these simplified hypoth-

eses are unreal for some scenarios, the Ter-
zaghi’s theory, by its mathematical relative 
simplicity, provides very good results for 
some practical engineering problems. 
Nevertheless, in some engineering prac-
tical situations, such as mining tailings 
deposits/dams and the dredging process, 
it is necessary toadopt a more precise 
theory involving physical and geometric 
non-linearity,since the tailings(ormud) 
generated by the mining plant and dredg-
ing activities are very soft and present a 
high initial void ratio distribution when 
placed in the field.

Bartholomeeusen et al. (2002) 
highlight the importance of using a non-
linear constitutive law in order to analyze 
the consolidation problem related to the 
dredging and embankment of soft soil. 
Yao et al. (2002) highlight the importance 
of studying this phenomenon in the sense 

of optimizing the storage capacity and 
the consolidation time reduction of the 
high amount of tailings generated by the 
mining and civil construction industries. 
In this context, as well highlighted by 
Abu-Hejleh et al. (1996), the computa-
tional models are valuable tools for the 
mining reclamation process, since they 
provide the storage capacity of the tailings 
disposal along with the estimated duration 
of the consolidation process (Almeida et 
al. 2005). Penna and Oliveira Filho (2012) 
highlight the importance of the slope sta-
bility of the tailings retaining structures 
during their constructive phase.

Herein, the governing differen-
tial equation and the finite difference 
equations of the non-linear, physical 
and geometric, one dimensional con-
solidation problem taking into account 
body force effects are presented. The 
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numerical model generated was imple-
mented into a computational system 
named AC (Analysis of Consolidation) 
in its third version. The previous ver-

sion was developed by Nogueira (2002) 
and Ferreira and Nogueira (2004). This 
computational system is verified with the 
analytical solution provided by Gibson 

et al. (1967) and Xie and Leo (2004); 
and, with other numerical solutions 
presented by Yao and Znidarcic (1997) 
and Batholomeeusen et al. (2002).

2. Non-linear consolidation problem’s governing equation

The theory of the non-linear one 
dimensional consolidation problem pre-
sented by Gibson et al. (1967) considers 
the following hypotheses: the porous 
media is considered as homogeneous, 
saturated and normally consolidated; 
solid particles and water are incom-
pressible; the deformation of the media 
is due to solid particle rearrangement 
followed by the flow of the water into 

pores;the volume of the solid remains 
constant during the process; there is 
no restriction related to the magnitude 
of the deformation; the strain and the 
water flow occur in a vertical direction; 
the process is induced by the body and/
or surface monotonic loads; the strain 
is time-independent; the permeability 
coefficient and the volumetric compress-
ibility vary during the process with the 

void ratio variation.
By considering the above hy-

potheses and adopting a Lagrangian 
movement description, one can obtain 
the following non-linear differential 
partial equation, which represents the 
conservation and balance of the porous 
media mass (Gibson et al., 1967), in 
terms of the reduced coordinate (z) and 
the time (t):

( )
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where e is the void ratio; γs is the self-
weight of solid particles; γw is the self-
weight of water; k and σ´ are, respec-

tively, the permeability coefficient and 
the effective stress which is defined as a 
void ratio function named of constitu-

tive laws. The reduced coordinate (z) 
is defined in terms of the Lagrangian 
coordinate (a) as:
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where (a,0) represents the initial void ratio 
distribution, which inrelation to the solid 

particle volume isbetween the fixed refer-
ential and a generic point. Thus, Equation 

(1) can be rewritten in a compact form 
as follows:

in which:
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are functions which depend on the consti-
tutive laws and theirderivatives related to 
the void ratio. The constitutive laws are 

defined by field and laboratory observa-
tion (Silva and Azevedo, 1999). Many con-
stitutive laws can be found in literature. 

Based on the Hydraulic Consolidation 
Test (HCT), Liu and Znidarcic (1991) 
suggested the following constitutive laws:

K = CeD

s' = ( e/A )1/B - ZL

e (s') = A ( s' + ZL )
Bor

for which A, B, C, D, and ZL are consti-
tutive parameters determined by curves 

adjusted for the procedure. From Equation 
(7b) it is possible to obtain:
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Xie and Leo (2004), on the other hand, suggested the following ones:
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or e = 1 - ( 1 + e00) exp [ mv ( s'0 - s']

where σ0´ is the previous effective stress on 
the soil layer; mv is the volumetric deform-
ability modulus on confined compression 

(made constant during the process); e00 is 
the initial void ration on the soil layer’s 
surface; and, k00 is the permeability coef-

ficient related to the initial void ratio for 
the soil layer’s surface.From Equation (8b), 
it is possible to obtain:

d 1 1
= =

+
 

where av is the compressibility coefficient 
(made constant during the process).

Equation (3) can be written in a 
normalized form as suggested by Gibson 

et al. (1981) by doing:

Z = z/Hr

Hr = H0 /(1+e00)

( )
00

2
2 rT g tH=  

where Z and T are, respectively, the 
normalized height and time; z is the 
height of a generic point on the soil 
layer defined in terms of reduced co-
ordinated according to the Equation 

(2); Hr is the initial thickness of the 
soil layer in the reduced coordinate 
system; H0 is the initial thickness of the 
soil layer; 

002  is the function defined 
in Equation (6) corresponding to the 

initial void ration on the soil layer’s 
surface (e00). Using the definition on 
Equations (9) to (11), one can obtain 
the following normalized governing 
equation:

2ee e
N M

Z Z T
+ =  

where

Equation (12) must obey the initial condition, e (Z,0) = e ( s' (Z,0) ), where:

s' (Z,0) = s'0 + (gS - gW )Hr (1-Z)

e(1,T) = e(s' (1,T)) = e(s'0+Dq)

e(0,T) = e(s' (0,T)) = e (q'0 + Dq + (gS - gW )Hr) 

The second term of Equation (15) rep-
resents the effective surcharge of the soil layer 

weight on the Z point. In addition, Equation 
(12) must obey the following boundary con-

ditionon the surface or top of the soil layer 
(Z=1), considered as a drained boundary:

in which Δq is the incremental load 
applied instantaneously on the surface 
and kept constant during the process. 

For the base of the soil layer (Z=0), the 
condition depends on the drainage. 
If the base is considered as a drained 

boundary, the problem is identified as 
double drained where:

For a single drained condition, when the base is considered as an impermeable boundary, one can have

( ) ( )w s r
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3. Finite difference equations of the non-linear consolidation problem

Once the void ratio distribution 
(primary variable)is obtained by solv-
ing Equation (12), one can obtain the 

secondary variables such as: settlement, 
total and effective stress, and pore wa-
ter pressure (total, initial and excess).

The settlement S(T) can be obtained 
by executing:

The total stress distribution σ(Z,T) can be obtained with:
Z

0 w w s r w r
0(Z,0)

(Z,T) q H H Z H e(Z,T)dZ= + +  
v

where Hw is the water thickness above 
the soil layer surface. The effective 
stress can be obtained by adopting 

one of the constitutive laws presented 
Equation (7a) or (8a).Once the total 
and effective stressesare known, the 

pore water pressure (p) can be obtained 
according to the Terzaghi’s principle, 
by using:

p (Z,T) = s (Z,T) - s' (Z,T)

( ) ( )
Z

ss w w r r
0

p Z,T H(T) H (T) H Z H e Z,T dZ= +  

The hydrostatic pore water pressure pss (Z,T) is given by:

where
H (T) = Hr - S(T)

is the soil layer’s height at the reduced coordinate. Finally, the excess of pore water pressures is obtained by doing:

Dp (Z,T) = p (Z,T) pss (Z,T)

The non-linear second order dif-
ferential partial equation which rep-
resents the non-linear consolidation 
problem (Equations 1, 3and 12), is 
considered as a high complexity reso-
lution differential partial equation. 
For some simplified situations, it is 
possible to obtain an analytical solu-
tion such as the solution presented by 
Xie and Leo (2004). However, some 
situations having complex geometry, 
loading and boundary conditions 
indicate the use of some approxima-
tion technique which transforms the 
differential equation into an algebraic 
equation system. By doing this, it 

is possible to obtain at least an ap-
proximated solution for the complex 
problem. Many different methods can 
be defined depending on the adopted 
discretization technique.

The finite difference method 
(FDM), adopted herein, divides the 
domain problem into a finite num-
ber (npoin) of discreet points named 
nodal points (k point). The set of 
nodal points is the nodal point mesh. 
For each nodal point, the derivative 
parcels of the differential partial 
equation are changed by the variation 
rate of the primary variable.

As Equation (12) involves a 

time derivative, the normalized time 
(T) is divided into finite increments 
(ΔT) and a time march is defined by 
the θ constant, which localizes the 
time function into the time interval 
from T to T+ΔT and defines the kind 
of algorithm: θ=0.0 for the explicit 
algorithm, θ=0.5 for the implicit 
algorithm (Cranck-Nicholson), and 
θ=1.0 for the purely implicit algo-
rithm.Using a central difference ap-
proximation, it is possible to obtain 
the following approximation for the 
first and second order of the space 
derivative which appears in the  
governing equation:

Z+ Z,T+ T Z Z,T+ T Z+ Z,T Z Z,T
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Applying the approximation 
described by Equations (24) into 

Equation (12), one can obtain the 
following algebraic equation system 

on a generic k nodal point within the 
problem domain:

(20)

(21)

(22a)

(22b)

(23)

(24a)

(24b)

(19)
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B1ek+1,T+DT+B2ek,T+DT + B3ek-1,T+DT = A1ek+1,T+ A2ek,T + A3ek-1,T

B1 basee1, j+1 + B2 base e2, j+1 = A1 basee1,j + A2 base e2, j + CCbase

B1 topoenpoin-1, j+1+B2 topoenpoin, j+1 = A1 topoenpoin-1, j+ A2 topoenpoin, j + CC topo

(25)

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

(27a,b)

(28)

(29a)

(29b)

(29c)

(30)

(31a)

(32a)

(31b)

(32b)

(32d)

(31c)

(32c)

(32e)

(33)

where:
A1 = (1-θ) (NR1 + MR2)

A2 = [1- 2M (1-θ) R2)]

A3 = (1-θ) (-NR1 + MR2)

B1 = θ (-NR1 - MR2)

B2 = θ (1 + 2MθR2)

B3 = θ (NR1 - MR2)

R1 = DT/2DZ and R2 = DT/DZ2

A1 topo = A2 topo = B1 topo = 0.0

A1base = A2base = B2base = 0.0

A1base = 1 - 2(1-θ)MR2

A2base = 2(1-θ)MR2

B1base = 1 + 2θMR2

B1base = -2θMR2

BE1 = AE0 + C

B1base = 1.0

B2 topo = 1.0

CC topo = enpoin = e (q'0 + Dq)

CC base = e1 = e (q'0 + Dq + (gS - gW )Hr)

CC base = (NR1 - MR2) [2DZ (gW - gS )Hr][1/(dσ/de)]

and:

where:

For the point on the top of soil layer 
(k=npoin; Z=1), considered as a drained 

contour, the boundary condition equation 
(Equation 16) is given by:

For the point on the base of soil layer (k=1; Z=0) the boundary condition equation is given by:

For the drained contour (Equation 17a):

For the impermeable contour (Equation 18):

Equations (25), (28) and (30) can be arranged into a compact form by making:

where:
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(37)

(34) (35) (36)

(38)

(39)

... ...

Due to the non-linear nature of the 
constitutive laws, Equation (33) is also non-

linear. Then, an iterative process is neces-
sary in order to obtain the equation solu-

tion.This study adopts the Picard Method 
(Pereira, 2017) as the solution strategy.

4. Verification examples

4.1 Example 1

Three examples are now presented.
The first example refers to the non-linear 
analyses of the consolidation problem due 
to the body and surface load as suggested 
by Xie and Leo (2004). The second exam-
ple considers a specific scenario of a mining 

industry related to a material with initial 
void ratio distribution (Yao and Znidarcic, 
1997). The last one was proposed by Bar-
tholomeeusen et al. (2002) and is related 
to a consolidation problem due to the self-
weight force of a sedimentproduced by a 

dredgingprocess. The results presented by 
Xie and Leo (2004) are analytical, while 
the results presented by Yao and Znidarcic 
(1997) and Bartholomeeusen et al. (2002) 
are numerically obtained by different  
computational systems.

This first example deals with the 
consolidation problem in the context 
of the physical and geometric non-
linearity of a saturated, homogeneous, 
isotropic and soft soil layer. The initial 
thickness of the soil layer is 10m. The 
soil layer presents an initially uni-
form distribution of effective stress  

(q'0) of 10kPa and is subject to a uniform 
surface load of 100kPa instantaneously 
applied and kept constant throughout 
the time limit.This soil layer is subject 
to a doubled drainage boundary condi-
tion. The following material parameters 
were considered: mv of 0.004kPa-1; e00 
of 3.0; k00 of 10-9m/s; γs of 27.5 kN/m³ 

and γw of 10kN/m³. The initial thick-
ness in the reduced coordinate is equal to 
2.5m according to Equation (11), while 
Equations (6), (9) and (10) respectively 
provide: g2(e00)=1.5625x10-9m²/s, Z=0.4z 
and T=2.5x10-10t. According to the con-
stitutive law indicated by Equations (8c), 
one can obtain:

e = 4exp[0.004(10 - s')] - 1.0
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The initial condition in terms of the 
void ratio is obtained by Equation (39) 

according to the following distribution 
of the effective stress along the soil layer:

s' (Z,0) = 10 + 43.75 (1-Z) (40)

(41)

(42a)

(42b)

According to this equation, the ini-
tial void ratio on the base and top of the 
soil layer is respectively given by 2.36 
and 3.0. According to the Equations (16) 
and (17) the effective stress at the top 
(Z=1) and base (Z=0) of soil layer is, re-
spectively, 110kPa and 153kPa, leading 

to a boundary condition in terms of the 
void ratio of 1.68 and 1.25, respectively.

Figure 1 presents the numerical 
results obtained with theAC-3.0 system 
by adopting a finite difference mesh 
with 21 nodal points and the implicit 
algorithm (θ=1.0) with the real time 

increment (Δt) of 9.855x106s. The tol-
erance for Picard’s algorithm was 10-5. 
Figure 1 apresents the time variation 
of the void ratio distribution, while 
Figures 1b presents the time variation 
of the average degree of consolidation  
defined as:

( ) m
m

m

p (T)
U T 1 100%

p (T 0 )+
=

=
 

where: npoin

km
k 1

p (T) p(Z ,T)
=

=

for which, Δp is the excess of pore water 
pressure given by Equation (23); and T=0+ 

represents the time instant immediately after 
the instantaneous surface load application.

(a) (b)

Figure 1
Example 1.

Numerical results versus analytical results.

The numerical results are in a good 
agreement with the analytical solution 
presented by Xie and Leo (2004). This 
verifies the implementation of the AC-3.0 
computational program. At the end of the 
process, the void ratio distribution tends 

to a linear variation, such as the initial 
distribution. As can be seen in Figure 1b, 
more than 70% of consolidation occurs 
in a normalized time around 0.1, while 
according to the linear theory (Schiff-
man, 2001), this same average degree of 

consolidation is observed at a normalized 
time of 0.4. The velocity of the consoli-
dation process is higher when analyzed 
in the context of the non-linear theory 
than when analyzed in the context of the 
linear theory.

4.2 Example 2
The second example presents the 

consolidation analysis of a saturated, 
homogeneous, isotropic and soft soil 
layer withhigh initial void ratio uniform 
distribution subject to a self-weightload. 
The initial thickness of the soil layer is 
17.85m. The uniform distribution of the 
initial void ratio of 32.42 is considered 
as the initial condition. The base of the 
soil layer is considered impermeable, so 

the problem is analyzed adopting as-
ingle drainage boundary condition. The 
constitutive law (Equation 7) proposed 
by Liu and Znidarcic (1991) is adopted 
and the following material parameters 
were considered:A=13.49; B=−0.319; 
ZL=0.064kPa; C=3.84x10-12m/s; and, 
D=3.5. Also, considered were: γs is 
equal to 26.58kN/m³; and γw is equal to 
9.81kN/m³. This scenario was analyzed 

numerically by the software Condes0 
(Yao and Znidarcic, 1997).

The initial thickness for ther-
educed coordinate is equal to 0.534m 
according to Equation (11), while 
Equations (6), (9) and (10) respectively 
provide:g2(e00)=1.41x10-11 m²/s, Z=1.87z 
and T=4.94x10-11t.The boundary condi-
tion on top of the soil layer is 32.42 as 
the soil layer is only subject to a self-
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(43)

(44)

4.13
d e

= 0.232
de 13.49

Figure 2 presents the numerical 
results obtained in theAC-3.0 system 
by adopting a finite difference mesh 
with 61 nodal points and the implicit 
algorithm (θ=1.0) with the real time in-
crement (Δt) of 3.15x106s. The tolerance 
of Picard’s algorithm was 10-5. Figure 

2a presents the time variation of the 
void ratio distribution, while Figure 2b 
presents the variation in time of the soil 
layer thickness. The numerical results 
obtained by the AC-3.0 software are in 
good agreement with those of software 
Condes0. The final void ratio distribu-

tion is non-linear with the minimal 
value located at the base of the soil layer. 
No significant variation of the soil layer 
thickness is observed after 20 years. 
This information is very important in 
the field of tailings disposal in the min-
ing process.

Figure 2
Example 2 – Numerical
results: AC-3.0 versus Condes0.

(a) (b)

4.3 Example 3
Bartholomeeusen et al. (2002) 

studied the consolidation problemfora 
sediment of the Schelde River (Antwerp, 
Belgium) provided by a dredging pro-
cess. The consolidation problem was 
considered for only the self-weight load. 
Bartholomeeusen et al. (2002) adopted 
a different constitutive law in order to 
analyze its influence on the process. 
According to these authors, when com-
pared to the large scale experimental 
data,the best numerical results were 

obtained by adopting the constitutive 
law (Equation 7) presented by Liu and 
Znidarcic (1991).

The homogeneous, isotropic and 
saturated sediment was placed into a con-
solidation column withan initial thickness 
of 0.565m. The sediment layer is submit-
ted to a single drainage from its top. The 
following material parameters were ad-
opted: γs=27.2kN/m³; γw=10kN/m³; A=1.69, 
B=−0.12, ZL=0.046kPa; C=4.14x10-9m/s; 
and, D=6.59. The initial thickness 

of thereduced coordinate is equal to 
0.16m according to Equation (11) by 
considering a uniform initial void 
ratio distribution of 2.45. Equations 
(6), (9) and (10) respectively provide:  
g2(e00)= 6.15x10-9 m²/s, Z=6.25z and 
T=2.40x10-7t. The boundary condition 
on top of the soil layer is 2.45, as the 
soil layer is subject only to a self-weight 
load. However, the boundary condition 
on the base of the soil layer is given 
when adopting the Equations (7d), by:

9.33
d e

=
de 1.69

4.93

Figure 3 presents the numerical 
results obtained by AC-3.0 system by 
adopting a finite difference mesh with 41 
nodal points and the implicit algorithm 
(θ=1.0) with the real time increment (Δt) 
of 8.6x103s. The tolerance of Picard’s al-
gorithm was 10-5. Figure 3a presents the 
time variation of the void ratio distribution, 
while Figure 3b presents the variation in 
time of the soil layer thickness. The numeri-

cal results obtained by the AC-3.0 software 
are in a good agreement with the numerical 
results presented by Bartholomeeusen et 
al. (2002) at the end of the consolidation 
process. No significant variation of the soil 
layer thickness is observed after 7 days. 
The final void ratio at the base of soil layer 
was found to be around 1.54, while on the 
top of this layer the void ratio was kept 
constant and equal to 2.45.

The time variation of the soil layer 
thickness obtained by AC-3.0 software 
(Figure 3b) agrees with the result presented 
by Bartholomeeusen et al. (2002) and the 
results provided by the software SVFLUX/
SVSOLID GT (SoilVision Systems Ltda, 
2017). In the context of a practical engi-
neering problem, the numerical results are 
in a good agreement with the large scale 
experimental data.

weight load. However, the boundary condition on the base of the soil layer is given,adopting Equations (7d), by:
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Figure 3
Example 3. 

Numerical results comparison.

5. Conclusions

A soft soil layer that is highly 
compressible and with a high initial dis-
tribution void ratio subject to a consoli-
dation process due to self-weight and/
or surface load must be analyzed in the 
context of the physical and geometric 
nonlinearities. The physical nonlinear-

ity should take into account the con-
stitutive law that plays a fundamental 
role in the numerical simulation.The 
numerical/computational model based 
on the FDM presented herein was veri-
fied by comparison with analytical and 
numerical solutions available in litera-

ture. Also, the model was validated by 
comparison with field data that is also 
available in literature. However, great 
effort must be made regarding constitu-
tive law definition and field monitoring 
in order to improve the quality of the 
numerical simulation.
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