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Abstract

The discrimination between pores and cracks is an important step in the micro-
structural analysis of iron ore pellets. While the porosity is fundamental during the 
reduction process in blast furnaces, cracks are strongly detrimental to the mechanical 
strength. The usual image processing tools cannot automatically discriminate between 
these two types of features, especially in 3D images obtained, for instance, with x-
ray microtomography (microCT). As pores and cracks have essentially the same x-
ray absorbance, they cannot be discriminated by a simple intensity threshold. Given 
the complex shapes in 3D and the presence of many connections between pores and 
cracks, shape discrimination is not successful either. Thus, this article proposes the 
use of Deep Convolutional Neural Networks (DCNN) to discriminate between these 
2 classes of discontinuities. The well-known U-NET architecture was employed. The 
network was trained by manually outlining representative objects of the 2 classes in a 
few layers of the 3D image. After optimization of the training parameters, the network 
was applied to the full image, successfully discriminating between pores and cracks. 
The trained network was then applied to the images of different pellets with good 
results. However, some residual errors are present. These characteristics are analyzed 
and possible solutions are proposed.

Keywords: x-ray microtomography, image analysis, deep convolutional networks; 
porosity; cracks.
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1. Introduction

The pelletizing process consists of 
three main steps: preparation of the raw 
materials, formation of the green pellet, 
and heat treatment to harden the pellet. 
At the end of the process, the pellets are 
porous and may contain cracks. Pores 
originate in the preparation of the green 
pellets, when water fills the voids between 
the particles. As the burning starts, the 
water evaporates and is replaced by the air 
entering the system. (Meyer, 1980) Open 
pores connected to the surface facilitate 
the reactions and the heat exchange to 
which the pellets are submitted in the fur-
naces, while closed pores do not connect 
with the surface and exert influence on 
the macroscopic properties of the pellet. 
(Klobes et al., 2006) Cracks are discon-
tinuities that influence several character-
istics, such as the compressive strength, 
which affects the pellet integrity during 
transport and inside the loaded furnace. 

Two types of cracks can be found: thermal 
cracks, resulting from the sudden change 
of temperature during the heat treatment, 
which are usually found in the inner part 
of the pellets; and resilience cracks, formed 
by the handling and overlapping of the 
pellets, which cause mechanical ruptures, 
being generally larger and tending to ap-
pear at the surface. (Fonseca, 2019).

The characterization of iron ore 
pellets allows to evaluate the quality of 
the pellet from its chemical, physical and 
microstructural properties. Most of the 
studies use Optical Microscopy (OM) as 
the main characterization method. Wag-
ner et al. (2008) and Nellros and Thurley 
(2011) developed semi-automatic methods 
capable of creating a mosaic, covering 
the entire cross section of a pellet for 
analysis and classification of its different 
phases of composition. Castellanos et al. 
(2018) proposed a correlation between 

optical microscopy and scanning elec-
tron microscopy techniques to improve 
the identification of mineral phases and 
porosity. Iglesias et al. (2018) developed 
an automatic method for microstruc-
tural characterization of iron ore. In 
another study, it was possible to perform 
a quantitative analysis of the degree of 
sintering from images obtained.(Nellros 
et al., 2015) However this technique, be-
sides being destructive, provides only 2D 
information, limiting the study and the 
visualization of the internal and complete 
structure of the pellet. For this reason, 
x-ray microtomography (microCT) has 
been used with the advantage of being a 
non-destructive technique and having the 
ability to generate three-dimensional im-
ages (3D). (Augusto and Paciornik, 2018)

Differentiation between pores and 
cracks is important for the microstructural 
analysis of pellets because porosity is a 
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required feature, while cracks are detri-
mental to the mechanical properties. Im-
age analysis has been extensively used in 
this context. The usual sequence involves 
the following steps (Gomes et al., 2013):

• Pre-processing to reduce image 
defects, such as uneven background 
and noise.

• Segmentation, mostly by intensity 
thresholding, to discriminate the features 
of interest.

• Post-processing to correct errors 
from the segmentation step.

• Measurements of size, shape, tex-
ture, among others.

• Measurement-based separation of 
features into classes.

This sequence is successful in many 
cases but fails under certain conditions. 
In the case of microCT, pores and cracks 
have the same x-ray absorbance and 
share the same intensity range in the im-
ages. Thus, they cannot be discriminated 
by an intensity threshold. In 3D images, 
measurement-based classification does 
not work either, given the complexity 
of the size and shape distributions and, 
especially, due to the presence of many 

interconnections between pores and 
cracks. 

Recently there was a boom in the 
use of Machine Learning techniques that 
are able to mimic human recognition 
tasks. Importantly, once these algorithms 
are trained, they can learn from experi-
ence and make decisions upon new data. 
(Tacchella et al., 2019) In the domain 
of image recognition and classification, 
a great improvement was reached with 
the so-called Convolutional Neural 
Networks (CNN). These networks 
use as input the pixel/voxel intensities/
colors and automatically derive higher 
complexity features that can then be 
used for classification. (Goodfellow et 
al., 2016). This approach bypasses the 
traditional sequence outline above, as it 
does not require previous segmentation 
and measurements before classification.

With the evolution of hardware, 
especially Graphic Processing Units 
(GPU) that are extremely efficient in 
parallel processing of data, it has be-
come practical to train deeper networks 
– meaning networks with several layers 
between input (that receive pixel/voxel 

intensities) and output (that provide 
the desired object classes). This Deep 
Learning (DL) architecture is able to 
process the input pixels/voxels, and, as 
data propagates through the network 
layers, build ever more complex fea-
tures that correspond to the detection 
of edges, orientations and other high-
level descriptors of the objects. (Lecun 
et al., 2015)

The detailed description of DL net-
works is out of the scope of this article, 
but Figure 1 shows a typical architecture. 
(Cheng et al., 2018) The input image is 
scanned in sub-windows and its pixel in-
tensities are the input data for the first con-
volutional layer. This layer is composed of 
neurons responsible for applying a filter to 
a specific piece of the image, and this filter 
derives higher level characteristics of that 
group of pixels. The convolution results 
go through a pooling layer that is used 
to reduce the dimensionality of the data. 
As data moves to other convolution and 
pooling layers, more complex features are 
derived. In the last, fully connected layer, 
the data is finally processed and attributed 
to one of the desired classes.

Figure 1 - Structure of a Deep Learning network. (Cheng et al., 2018).

DL networks are supervised clas-
sification structures – they require the 
user to provide examples of objects of 
each class. As the data moves forward 
in the network, each connection has an 
initial random weight that multiplies the 
value at that point. As the weighed values 
reach the output, the results are compared 
to the known trained data and an error 
is calculated. This is then used to back 
propagate through the network and adjust 
the weights so that the error is reduced.  
This forward and back propagation pro-
cedure is repeated for a certain number of 

cycles – epochs – until the error reaches 
a predefined minimum value. (Haykin, 
1994; Yegnanarayana, 2009; Goodfellow 
et al., 2016)

The error minimization and weight 
adjustment steps are extremely com-
puter intensive as a very large number 
of parameters must be simultaneously 
optimized. The deeper the network, the 
larger the number of parameters. That is 
where the parallel computation capacity 
of the GPU’s is critical. Given the strong 
recognition capabilities of DL networks, 
they have become omnipresent in most 

image processing/analysis/classification 
applications, such as in face recognition, 
remote sensing, medical image diagnostic, 
among others. (Sun et al., 2015; Shen et 
al., 2017; Cheng et al., 2018)

Therefore, herein, we show the ap-
plication of DL networks to the discrimi-
nation between pores and cracks in iron 
ore pellets imaged by microCT. A specific 
DL architecture was selected, the network 
was trained with limited user defined 
examples, the training parameters were 
optimized, and the network was applied 
to other images.
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2. Materials and methods

2.1 Samples and microCT image acquisition

2.2 Digital image processing and Deep Learning

The pellets analyzed in the present 
study were provided by Vale. A Zeiss XRadia 
510 Versa microtomograph was used to ac-
quire the 3D images. The x-ray source was set 
to 150 kV, 10 W. Using the so-called macro 
lens of the equipment (0.4X), it was possible 
to image full pellets with ~1 cm diameter. 
With 360o rotation, 4000 projections and 
binning 1 for acquisition and reconstruc-

tion, a pixel size of 7 µm was reached, cor-
responding to approximately 14 µm spatial 
resolution. The acquisition conditions were 
the same for all pellets: total scan time of 10.6 
h followed by the reconstruction procedure, 
that took a few minutes. The scan time can 
be optimized by changing the number of 
projections and other parameters, but we 
found that the parameters used were a good 

compromise between time, spatial resolution 
and signal to noise ratio. Each 3D image 
contained 2008 slices with 2048 by 2004 
pixels and 16 bits. (Augusto and Paciornik, 
2018). Except for gluing to a support, no 
further specimen preparation was necessary.

The images were separated into 2 
groups: training and test, as described in 
the following.

Image processing and DL network 
development was carried out in Dragonfly 
4.0 (Object Research Systems, Montreal). 
To prepare the images for DL training and 
application, a few image processing steps 
were necessary.

Using traditional intensity threshold-
ing and logic operations, both the solid 
part of the pellet and the pores/cracks were 
segmented and treated as Regions of Interest 

(ROI’s). The procedure is depicted in Figure 
2. Figure 2a shows the segmented solid. The 
dark pores and cracks cannot be directly 
segmented because pixels external to the 
pellet share the same intensity range. Thus, 
first, inner voids were filled (Figure 2b). At 
this point pores and cracks connected to the 
pellet surface are not correctly detected. Then 
a morphological operation that closes open 
voids within a certain size range was used, 

leading to the image shown in Figure 2c. 
Finally, a logical subtraction was performed 
between the images corresponding to the 
solid and the filled solid. Thus, a new ROI 
was formed (Figure 2d) containing the voids, 
pores and cracks, present in the pellet. The 
mask from Figure 2c was also used to bring 
to zero the pixels outside of the pellet, thus 
avoiding any confusion with the intensities 
of pores or cracks.

As the objective of the training is to 
provide sufficient data to the model for au-
tomatic discrimination of pores and cracks, 
these ROIs were used as input data for the 
training and for this, 5 random layers were 
chosen within the layer set image, and part 

of the pores and cracks contained in the 
layers were segmented (Figure 3). The pores 
and cracks were obtained separately using 
a manual segmentation within the mask 
created in Figure 2c. The software has tools 
for this manual segmentation, which are 

found in the ROI painter function. The tool 
used acts as a brush, which can be adjusted 
within the desired region to be segmented. 
Thus, some pores and cracks were segmented 
(painted) in each of the 5 layers chosen, di-
versifying according to their shape and size.

Figure 2 - Segmented images: a) segmented solid; b) internal voids filled;
c) connected voids filled; d) pores and cracks, in blue, obtained subtracting a from c.

Figure 3 - Examples of layers chosen for segmentation containing parts
 of the segmented pores and cracks: blue corresponds to cracks and yellow to pores.

(a) (b) (c) (d)
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This input data was then provided 
to the network. The architecture used 
was based on the U-Net, defined by 
Ronneberger (2015), which is well-
known for producing good results with 
limited amount of data. The U-Net 
(Figure 4) is comprised of 2 branches: 

contraction or down-sampling, which 
consists of a typical convolutional 
network architecture, containing 
convolution layers and max pooling, 
gradually reducing the image size with 
increasing depth; and expansion or 
up-sampling, where transposed and 

regular convolutions are applied, so as 
to gradually increase the image size and 
decrease the depth. Besides, for more 
precise location of detected features, 
concatenation layers are used, which 
allow direct connections between the 
two branches.

The first model was based on the 
data described above and a preliminary 
result was obtained, in which discrimina-
tion between pores and cracks was already 
evidenced (Figure 5). However, many 
defects were found such as misclassifica-

tion of pores and cracks or incomplete 
segmentation of certain features. Then, 
starting from this preliminary result, 15 
layers were chosen, containing some of 
the most relevant errors and their varia-
tions, and these errors were corrected 

by manual segmentation, as described 
above. Figure 5 shows one of the chosen 
layers: the first presents the segmenta-
tion containing some highlighted faults 
in the green circles and the second, the 
corrected segmentation.

The corrected layers were then fed 
to the U-Net and training parameters 
were selected. Again, the details are 
out of the scope of the article, but the 
main numbers are shown in Table 1. 
The input size corresponds to the size 
of the analysis window that is scanned 
upon the image. It must be large enough 
to contain representative features to 

be detected but not too large as this 
increases the computational complex-
ity. The stride to input ratio represents 
the scanning step, 1 representing a step 
as large as the input size and smaller 
values meaning overlap between scan-
ning steps. The number of epochs is the 
number of forward and backward itera-
tions for weight adjustment and error 

minimization. It must be large enough 
to allow for error minimization, but not 
too large to avoid the phenomenon of 
overfitting, in which a network mode is 
optimized down to a very small error, 
losing its generalization capacity. Over-
fitted networks are very efficient for the 
same image used for training but fail for 
different test images.

Figure 4 - U-Net architecture of the DL model used.

Figure 5 - Preliminary result from the first model created: blue corresponds to cracks 
and red to pores in both images: a) Segmentation containing errors in segmentation. b) Manually corrected segmentation.

(a) (b)
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Parameters Value

Input size 256

Stride to input ratio 1

Number of Epochs 50

Table 1 - DL network training parameters

3. Results and discussion

Figure 6 shows the results of the 
application of the optimized network to 

3 different layers of the reference pellet, 
from which the training layers were se-

lected. Figure 7 depicts 3D renderings of 
this pellet showing pores and/or cracks.

Training is the most time- consum-
ing step in the application of DL. The 
manual preparation of training data is 
a lengthy and tedious operation. The 
training of the network can also take 
substantial time depending on the im-
age size and hardware capabilities. This 
training of the network lasted around 
50 minutes, using a dual Intel® Xeon® 
CPU E5-2660 v3 @ 2.60GHz and 4 
NVIDIA GeForce GTX 980 Ti GPU’s. 
However, once the network is trained, 
in principle it can be directly and effi-
ciently applied to similar images of oth-
er pellets. This generalization capability 

is, indeed, one of the main advantages 
of the neural network approach.

Thus, the DL model trained as 
described above was also applied to 4 
other pellets tomographed under the 
same conditions. The results are shown 
in Figure 8 and are very promising. 
Pores and cracks were successfully dis-
criminated, whereby even small pores 
and thin cracks were detected. In some 
cases, however, such as in Figure 8c, 
thicker parts of the cracks were not ac-
curately detected.

There are several possible explana-
tions for these errors. First, as the whole 

DL approach is based on pixel intensi-
ties, brightness/contrast variations be-
tween the training reference pellet and 
the tested ones would affect the result. 
Second, it is hard to establish how much 
training data is enough. Evidently, the 
less the better, as this minimizes the la-
bor-intensive step of manual segmenta-
tion, but a limited training dataset will 
miss some important features, especially 
for objects with complex shapes. Third, 
as briefly mentioned above, the network 
training involves many parameters that 
must also be optimized, and the strategy 
is not always well defined.

Figure 6 - Application of trained DL network to 3 different layers 
of the reference sample where red is pores, blue is cracks and grey corresponds to solid.

Figure 7 - 3D renderings. a) Pores (red); b) Cracks (blue); c) Both.

(a) (b) (c)
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