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Abstract

One of the basic factors in mine operational optimization is knowledge regard-
ing mineral deposit features, which allows to predict its behavior. This could be 
achieved by conditional geostatistical simulation, which allows to evaluate depos-
it variability (uncertainty band) and its impacts on project economics. However, 
a large number of realizations could be computationally expensive when applied 
in a transfer function. The transfer function that was used in this study was the 
NPV net present value. Hence, there arises a necessity to reduce the number of 
realizations obtained by conditional geostatistical simulation in order to make 
the process more dynamic and yet maintain the uncertainty band. This study 
made use of machine-learning techniques, such as multidimensional scaling and 
hierarchical cluster analysis to reduce the number of realizations, based on the 
Euclidean distance between simulation grids. This approach was tested, generat-
ing 100 realizations by the sequential Gaussian simulation method in a database. 
Proving that similar uncertainty analysis results can be obtained from a smaller 
number of simulations previously selected by the methodology described in this 
study, when compared to all simulations.

keywords: geostatistical simulation; scenario reduction; machine learning; net present 
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1. Introduction

The minerals used by mankind come 
from deposits scattered around the world, 
and just as always, commodity prices are 
defined by world supply and demand. 
Thus, for the mineral to be considered 
as ore, it depends on the costs that will 
be applied in the planning, implementa-
tion and production phases. In order to 
turn an enterprise into a profitable one, 
in a long-term perspective, planners must 
continually examine and evaluate more 
efficient and specific methods to stream-
line processes and reduce costs. To do so, 
it is necessary to know and understand 
the deposits’s behavior, in addition to 
mastering the tools / techniques used in 
estimation and mining processes. Cost 
savings through efficient and environ-
mentally sustainable mining practices are 
and will be even more important in the 
future because of increasing underground 
mining depths and increasingly stringent 
regulations (HUSTRULID; KUCHTA; 

MARTIN, 2013).
Monkhouse and Yeates (2018) 

define the practice currently employed in 
the mine planning industry as determin-
istic; that is, done considering a single 
estimate, generated by using a unique 
set of mining assumptions along with 
pre-defined external economic factors 
to create a mathematical optimized pit, 
which will be used as references for sub-
sequent optimization processes, such as 
mine scheduling. Among the most used 
and known interpolation algorithms are: 
kriging, polygons, inverse square distance 
among others. The optimization process 
can be applied to several mining variables. 
However it is most commonly used in Net 
Present Value (NPV) evaluation, which is 
the difference between the present value 
of the cash inflows and the present value 
of the outputs in a period of time. NPV is 
used in the capital budget to analyze the 
profitability of an investment or project.

One of the interpolation algorithm 
characteristics is the tendency to smooth 
the local spatial variation details of the 
attribute of interest being modeled (usu-
ally grades), which constitutes a method 
disadvantage especially in cases with high 
variation coefficient deposits. Normally, 
small values are overestimated, while 
large values are underestimated. In addi-
tion, another aggravating factor is the fact 
that smoothing is not uniform because it 
is dependent on local data configuration: 
smoothing is minimal near the places 
where there is data and increases where 
the estimated location has little data. The 
results of kriging could be more variable 
in densely sampled areas than in poorly 
sampled ones, thefore may exhibit unde-
sirable artifacts (GOOVAERTS, 1997).

A key factor to understand, and even 
to predict the deposit’s grade behavior is 
to know the uncertainty associated with 
it. Uncertainty measurement is performed 
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using simulations and comparison of the 
value range obtained at the same location. 
This type of uncertainty is measured gen-
erating multiple realizations of the variable 
value’s joint distribution in space. This 
process is known as stochastic simulation 
(GOOVAERTS, 1997).

Stochastic simulation provides a 
way to incorporate various types of un-
certainty into the prediction of a complex 
system response. Usually, some informa-
tion is available in a parameter of interest, 
but the transfer function (a groundwater 
flow model, for example) may require a 
detailed spatial mapping of this parameter. 
The exhaustive sampling required to ob-
tain this map is generally not feasible. An 
alternative is to generate realizations from 
a random field that shares the information 
available in the parameter of interest. 
These outputs serve as input to a transfer 
function that calculates a system response 
for each simulation. If the performances 
characterize the spatial uncertainty of 
the parameter of interest, the resulting 
value distribution of the expected system 
response will reflect this uncertainty 
(ARMSTROG; DOWN, 2013).

Goovaerts (1997) makes a com-
parison between kriging and conditional 
geostatistical simulation, and Journel 
(1974) states that maps generated by in-
terpolation (kriging) provide a single value 
when applied to a transfer function; in the 
case of this article, the NPV. On the other 
hand, with the conditional geostatisti-
cal simulation, it is possible to generate 
several realizations that respect mineral 
deposit statistical characteristics, such as 
histograms and spatial continuity, besides 
honoring the sampling points. The set of 
generated outputs provides a visual and 
quantitative measure (indeed, a model) of 
spatial uncertainty.

Stochastic spatial simulations are 
widely used to generate multiple and equi-
provable realizations of a spatial process 
and to evaluate related uncertainties. Un-
certainty is the result of our lack of knowl-
edge of the mineral deposit. Therefore, it 

is an inherent characteristic of geological 
models. This stems essentially from the 
fact that it is impossible to characterize the 
true distribution of the studied property 
among the data sets. Thus, uncertainty is 
not an attribute of the studied process itself 
and, unlike error, cannot be measured in 
an absolute way (JAKAB, 2016).

Although currently computational 
technology allows an increased number 
of geostatistical simulation realizations, in 
addition to automating it, human inspec-
tion is still required to control and analyze 
the results and its validations. However, 
post-processing capability for a transfer 
function (NPV) did not accompany the 
ability to create the outputs. Processing 
and analyzing large numbers of outputs in 
a qualitative and productive way is quite 
costly even in computational terms. It is 
difficult to recognize and understand the 
variations that occur between multiple 
realizations generated by geostatistical 
simulation methods. Generally, only a few 
outputs are displayed and analyzed satis-
factorily (ARMSTRONG et al., 2014).

Several challenges need to be ad-
dressed when considering reduction of 
the number of simulation realizations 
to obtain a minimum number of out-
puts which characterizes the uncer-
tainty band in the same way, i.e. that 
are enough to describe the variable’s 
behavior. The first challenge is to define 
a distance measure between pairs of 
realizations. This measurement distance 
is specifically developed for mining, al-
though it may be also suitable for other 
applications. The second challenge is to 
improve the procedure for selecting a 
subset of the exhaustive set of available 
simulated realizations (ARMSTROG et 
al., 2013). This subset must satisfacto-
rily aproximate the uncertainty of the 
NPVs dispersion.

Multidimensional scheduling is a 
good method to explain these three basic 
steps. In the first step, a range of distances 
between all pairs of data is obtained. The 
second step involves estimating an additive 

constant and using this estimate to convert 
the comparative distances to absolute 
distances. In the third step, the dimension-
ality of the space needed to explain these 
absolute distances is determined, and data 
projections in the axes of that space are 
obtained (Torgerson, 1952).

Multidimensional Scaling (MDS) 
has become popular as a technique for 
analyzing multivariate data. MDS is a 
method for dimensionality reduction 
analysis. MDS results in measurements 
of similarity or dissimilarity of input data 
under investigation. The primary result of 
an MDS analysis is a 2D plot\. This new 
spatial configuration has a lower dimen-
sion than the original space. The points in 
this spatial representation are organized 
in such a way that their distances corre-
spond to the similarities of objects: similar 
objects are represented by points close to 
each other, different objects by distant 
points (WICKELMAIER, 2003).

Hierarchical cluster analysis (HCA) 
is a method which seeks to build a hierar-
chy of clusters, one by one, until clustering 
all points in a single group. One of the 
HCA features is to display the data in a 
two-dimensional space in order to dis-
play the groupings, the dendrogram. The 
distance between the points reflects the 
similarity of its properties, being useful to 
determine the similarity between objects. 
The method relates samples in a way that 
the most similar are grouped together. The 
results are presented as a dendrogram, in 
which it groups the objects in function 
of similarity (KOHN; HUBERT, 2006).

Thus, this article aims to inves-
tigate machine learning techniques 
(MDS and HCA) to select representative 
realizations, i.e. reduction in order to 
calculate economic value (NPV). The 
goal is to reduce the number of realiza-
tions to be postprocessed, maintaining 
the representativity of the exhaustive set 
of realizations, ensuring greater agility 
and lower computational costs. The 
MDS and HCA techniques were used 
for this purpose.

Scenery reduction approach
In the reduction stage scenario, 

the size of the final subset is deter-
mined by the user at the beginning of 
the process. This subset corresponds to 
the maximum number of outputs that 
can be conveniently postprocessed. To 
illustrate the problem, in the case of 
petroleum deposits, post-processing 
involves fluid flow simulation using 

specialized software, while in mining 
it corresponds to NPV optimization.

The three main components of any 
reduction method scenario applied to 
geostatistical simulations are: (i) to de-
fine the distance between two simulated 
realizations. This depends on the goal of 
the study. In mining, a better knowledge 
of the mineral deposit or quantification 

of the uncertainties associated with it 
can lead to risk reduction, while in the 
oil industry, the fluid flow properties are 
crucial; (ii) define the metric to measure 
similarity / dissimilarity between all 
pairs of realizations; and (iii) select the 
algorithm that generates the best subset 
of predetermined number of simulation 
at the end.
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2. Material and methods

Making use of a two-dimensional 
synthetic database containing the vari-
able Copper (Cu), the Walker Lake data-
base (ISAAKS; SRIVASTAVA, 1989), the 
geological uncertainty model was built 
using the variable Cu with a determined 
number of equiprovable scenarios, with 
the geostatistical simulation technique. 
A hundred simulated scenarios were 
generated using the Gaussian sequen-
tial simulation methodology. After the 
methodology was carried out, the nec-
essary checks of reproducibility of first 
and second order and of accuracy were 
made. It was verified that the results were 
satisfactory in the reproducibility of the 
spatial phenomenon.

The simulations where divided 
into pairs and, each pair of realizations 
received a similarity value. Armstrong et 
al. (2013) used as a measure of similarity, 
the amount of metal in each panel above 
a set of 16 cut-off points. Another possible 
option would be to use both tonnage or 
metal content above the cutoff point. De-
fined the distance measurement method 
between pairs of realizations, a distance 
matrix B of size N × N is constructed, 
where N is the total number of realiza-
tions. Once the distance matrix B was 

built, the realizations will be mapped into 
a smaller dimension Euclidean space using 
multidimensional scaling (MDS). As result 
from comparison between realizations, 
the smaller the values the more similar 
are the realizations, and the larger, the 
more distinct.

The next step consists of Hierar-
chical Cluster Analyzes (HCA), where 
each object is initially considered as a 
single-element group. At each step of the 
algorithm, the two most similar groups 
are combined into a new larger group. 
This procedure is iterated until all points 
are members of only a single large group. 
The result is a tree that can be plotted as 
a dendrogram. In this way, it is possible 
to select as many roots as necessary ac-
cording to the user's demands. In this 
study, the number chosen was ten; that 
is, the total number of realizarions was 
divided into 10 groups (not necessarily 
of the same size), and from each group a 
representative realization of the respective 
group was chosen.

To select one realization per group, 
a Python language script was built, which 
measures the distance of one point against 
all others in the same group. This process 
is repeated for all points in the same 

group. Thus, the point that has the low-
est distances sum will be the one chosen 
to represent its group. Initially, the idea 
was do the same step of Armstrong et al. 
(2013). However, there have been cases 
where more than one point was given as 
optimal, and as only one can be selected 
per group, the technique mentioned above 
was developed.

After selecting the 10 representative 
realizations, a profit function was applied 
to assign economic values to the blocks 
in all realizations. The NPV values of the 
selected realizations using the proposed 
methodology were compared with the 
NPV values of the exhaustive simulation. 
In this way, it was possible to verify if 
the proposed methodology satisfactorily 
reproduced the simulation statistics.

In this study, used was NPV as the 
transference function, and according to 
the mine scheduling, all 3120 blocks will 
be mined along the y direction, starting 
at the northern end of the deposit and 
advanceing from left to right.

To calculate the NPV for all realiza-
tions, an economic value is assigned for 
all blocks of each realization, using the 
copper grade of each block. Equation 1 
shows the logical procedure used.

Cu%  x (rec) x (sp -rc)] - [mc - bc]} x bm     if evb > - (mc x bm){[( )  
100

- (mc x bm) otherwise

evb = { (1)

(2)

• evb - economic value of the  
block (US $);

• Cu% - grade (%) of copper for  
the block;

• rec - metal recoveringmetal during 
mining and processing (until the end of the 
concentration stage) = 94%;

• sp - long-term sales price per ton 
of metal = US $ 5600 / t;

• rc - refining cost per ton of  
metal = US $ 200 / t;

• mc - mining cost (outsourced) per 
ton of ore = US $ 2.98 / t;

• bc - beneficiation cost per ton of 

ore = US $ 6.5 / t;
• bm - block mass = 62.5 t, consid-

ering the density of all blocks equal to  
2.5 t / m3.

The values used in equation 2 were 
updated to today's values, obtained from 
an active copper mining.

3. Results and discussion

Since post-processing of all real-
izations is time consuming, it has been 
defined that the realizations subset must 
contain a number that representes 10% of 
the total generated by the simulation. Since 
these tests were run with a set containing 
one hundred realizations, while the gener-

ated subsets contain 10 realizations.
One hundred realizations were 

generated by the Gaussian sequential 
simulation method (SGSim) in point 
support. After the production and valida-
tion of the simulation, a support change 
from points to blocks with dimensions of  

5 x 5 x 1 m (x, y and z respectively) was 
made. The dimensions of the final grid are 
60 blocks in the North-South direction, 52 
in the East-West direction.

To generate the distance matrix all 
pairs of grids (block support) were com-
pared according to Equation 2.

D ( G
1
, G

2
) = 

∑N

i = 1
abs ( G1i , G2

i)
N



66 REM, Int. Eng. J., Special Supplement 1, Ouro Preto, 72(1), 63-68, jan. mar. | 2019

Scenario reduction using machine learning techniques applied to conditional geostatistical simulation

Where D is the distance between pairs 
of grids, G are the grids, N is the num-
ber of blocks in each grid and i is the 
grid block under study.

A 100x100 transposed matrix 
was constructed containing the dis-
tances of each pair of grids. Through 
the script described above, the distance 

matrix is incorporated into a two-
dimensional map using the sklearn.
manifold.MDS (Pedregosa et al., 2011) 
library (Figure 1).

Figure 1
MDS graph with non defined groups.

With the same Python script, the 
realizations, which after the MDS in-
corporation are in the form of points, 
were grouped in 10 sets represented in 
a dendogram (Jones et al., 2001). This 
was performed with the HCA technique 
looking for homogeneous clustered items 
represented by points in an n-dimension-
al space in 10 groups, relating them with 
similarity coefficients. The number of 

points in each group ranges from 6 to 14 
realizations, since regions in space that 
are more densely occupied will have a 
greater number of realizations than those 
with sparse occupation.

After the realization cluster, one 
realization (the most representative of 
each group) was selected using script 
in python programming language. The 
selection of a realization from each 

group was performed with the distance 
sum of a realization to all others in the 
same group. The realization with the 
lowest sum resultant value was chosen 
according to the stability theory. Figure 
2 below shows the realization grouping 
in the 10 different clusters (each color 
represents a cluster) and indicates the 
number of the selected realization to 
represent each group.

Figure 2
MDS graph separating 
each cluster of realization by color. 
Most representative realizations, 
from each cluster, are indicated by arrows 
along with their respective numbers.

For each block of each realization, 
a profit function was applied to obtain 
its economic value and proceed with the 
NPV evaluation.

Table 1 shows the maximum and 
minimum NPV values, the difference 
between the maximum and minimum, 
and the amplitude that this difference 
represents. These values were calcu-

lated for the following situations: all 
100 realizations; the 10 realizations 
selected with the method developed in 
this work; the mean of the maximums 
and minimums of 10 randomly chosen 
realizations 50 times; and for 10 ran-
domly selected realizations from the 
clustering method (HCAR) used in this 
work, that is, selected without taking 

into account the sum of the distances. 
There are interesting parallels with 
standard practice in the oil industry, se-
lecting only three realizations: the P10, 
P50 and P90 realizations. As the average 
does not interest at this moment, only 2 
realizations, P10 and P90 (chosen from 
the amount of metal above the cut-off 
point) were selected.
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NPV

Number of simulations Maximum Minimum Difference Uncertainty band

Simulation 100 $ 32,125,674 $ 25,904,490 $ 6,221,184 100,00%

Scenario Reduction 10 $ 32,125,674 $ 26,586,308 $ 5,539,366 89,04%

Random (50x) 10 $ 30,907,346 $ 27,108,542 $ 3,798,704 61,06%

P10/P90 10 $ 30,678,148 $ 27,557,455 $ 3,120,693 50,16%

HCAR (50x) 10 $ 31,534,771 $ 27,529,480 $ 4.005,291 64,38%

Table 1
Resultant values for each scenario evaluated (methods) with maximum, minimum, number of scenarios used by each methodology, 

difference and their representativeness in relation to the base scenario (all realizations). (Amounts in US dollars).

The analysis evaluating all 100 
realizations (exhaustive case), was con-
sidered as the base case for comparison 
with the other evaluated methods, con-
sidering that this case provides the best 
and the worst case. After applying the 
profit function and NPV calculation, 
the minimum and maximum values 
obtained are US$ 25,904,490 and US$ 
32,125,674, respectively.

In the scenario of ten realizations 
selected from the methodology devel-
oped in this study, the minimum and 

maximum values were very similar to 
those obtained in the base case, corre-
sponding to 89.04% of its uncertainty 
band, which indicates good representa-
tiveness of the exhaustive case

The three other evaluated cases 
were less representative, with better 
results obtained by the HCAR method, 
reproducing a 64.38% of uncertainty 
band. These results demonstrate that 
selecting 10 realizations with the 
method of distances between realiza-
tions is quite efficient, considering that 

it satisfactorily reproduced the variabil-
ity of the exhaustive case with a lower 
computational cost.

The database used in this study 
is not extensive, and the processing 
time is small both in the exhaustive 
case and in the cases with selection 
of 10 realizations, making it difficult 
to detect the benefit of the selection. 
However, in extensive databases, the 
benefit will be apparent, making simu-
lated post-processing much faster and 
more dynamic.

4. Conclusions

This article proposed a method 
for selecting a representative subset of 
geostatically simulated realizations of a 
mineral deposit from a larger set, based 
on the reduction method scenario devel-
oped in the field of stochastic optimiza-
tion. Three main parameters were vital 
in the process of selecting representative 
subsets of realizations:

1. The distance between two real-
izations (or scenarios);

2. The metric to measure the 
similarity / dissimilarity between the 
simulated set (or scenarios) and a subset 

of their realizations;
3. The algorithm used to find the 

"best" subset.
The approach used as a basis to 

develop the methodology presented 
herein, proposes a new way of mea-
suring the distance between pairs of 
geostatistical realizations, focused on 
mining, through usage of the distance 
between grids. The innovation in this 
study relies on the development and use 
of a non-random search algorithm to 
find a representative realization subset 
of the total set of realizations, allowing 

greater agility in the post-processing of 
simulated models.

The proposed method was tested 
in a synthetic copper database. Using 
only 10 selected realizations, from 
a universe of 100, it was possible to 
obtain very similar and representative 
results of the exhaustive case (ap-
proximately 90% of the uncertainty 
band). This result demonstrates the 
efficiency of the proposed method, 
which is representative of the simula-
tion as a whole, but at a much lower 
computational cost.
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