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Abstract

A two-dimensional interface finite element capable of associating flat shell ele-
ments positioned one above the other was developed. The implemented interface ele-
ment can physically simulate the contact between the flat shell elements and connect 
the reference planes of the shell elements above and below it. The formulation pre-
sented allows consideration of nonlinear behavior for the deformable connection as 
well as for the concrete and steel materials that make up the shell structure. One of the 
practical applications analyzed in this research is the numerical simulation of compos-
ite floors formed by a reinforced concrete slab connected to steel beams through a de-
formable connection. In this case, the concrete slab and the steel beams are discretized 
by flat shell elements and the deformable connection is discretized by two-dimensional 
interface elements. Experimental and numerical results from literature were used to 
validate the implemented elements. In the two examples analyzed, the results obtained 
for the displacements were close, with the difference, in the first case, being associated 
with uncertainties during the experimental test and in the second, the difference in 
theories used in the formulation of the implemented elements.
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1. Introduction

A formulation of a two-dimensional 
interface finite element that can numeri-
cally simulate a deformable connection 
between structural elements and be ana-
lyzed by flat shell elements is presented. 
Practical civil construction components, 
such as composite floors, beams, and 
pillars, have a deformable connection 
between different materials. Among these, 
composite floors formed by a reinforced 
concrete slab connected to steel beams by 
shear connectors are the most common. In 
general, the structural analysis and design 
for this element are based on simplified 
models that can generate significant errors 
(e.g., by using bar elements to represent 
the elements). Therefore, the effect of the 
variation of the normal stress along the 
width of the concrete slab or shear lag is 
not considered, and if torsion effects on 
the beam are significant, it is necessary 
to accurately represent the warping. One 

way to better represent the mechanical 
behavior of this structural element and an 
optimized design is to model the concrete 
slab and steel beams by flat shell elements 
and to model the deformable connection 
by interface elements.

The interface element was initially 
developed to work in conjunction with 
two- and three-dimensional elements that 
represent a thin layer of material or the 
contact between two distinct materials, 
such as the case of soil–structure interac-
tion. The first study on interface elements 
was by Goodman et al. (1968). In that 
study, the interface element was used to 
simulate the slip and separation between 
two bodies in contact.

To represent two distinct materi-
als, Kalikin and Li, (1995) used two-
dimensional interface elements with 
zero thickness to model the problem of 
contact between the soil and a shallow 

foundation. Subsequently, Carol et al. 
(2001) used an interface element of zero 
thickness to analyze the cracking process 
in concrete elements.

For the analysis of the ultimate 
capacity of a composite beam with a 
deformable connection, Sousa and Silva 
(2007) developed an interface element 
capable of simulating longitudinal slip 
and vertical uplift at the contact between 
materials of a composite section. The 
implemented interface element works in 
conjunction with one-dimensional beam 
elements implemented by considering 
Euler–Bernoulli beam theory, the physical 
nonlinearity of materials, and the possibil-
ity of generic cross sections.

Sousa and Silva (2009) presented 
a family of interface elements for the 
numerical analysis of composite beams 
with longitudinal deformable connec-
tions. The proposal of these elements 
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includes formulations to be employed 
with Euler–Bernoulli beam theory, 
Tymoshenko's beam theory, different 
numbers of nodes in the elements, and 
different integration processes for the 
displacements along the element.

Sousa and Silva (2010) presented an 
analytical solution for composite beams 
with multiple layers. This solution was 
used to verify the ability of the interface 
element to simulate composite beam 
problems with more than one shear plane.

The interface element implemented 
in the present study is associated with flat 
shell elements above and below it. Accord-
ing to Batoz et al. (2010), the first analysis 
of a shell structure using the finite element 
method was performed using a set of flat 
shell elements to approximate the true 
shell shape. Owing to the simplicity of 
the formulation. computational efficiency, 
and application flexibility, shell elements 
are extensively used in practice.

According to Hughes (1987), Reiss-
ner–Mindlin's plate theory, which includes 
transverse shear strain, has promoted 
the development of several interpolation 
schemes of nodal displacements, because, 
in this case, translations and rotations 
are interpolated independently. Because 
of this, shell elements have recently been 
obtained based on Reissner–Mindlin’s 
theory, and these are superior to the ele-
ments obtained according to Kirchhoff's 

classic plate theory in the numerical 
analyses of thick shells. In the case of thin 
shells, shear strain tends to be very small 
and may lead to problems in the evalua-
tion of these elements in the analysis using 
Reissner–Mindlin’s theory (the shear lock-
ing effect). To avoid this, a slightly higher 
discretization is recommended when thin 
shells are obtained, as well as reduced 
numerical integration of the shear strain.

One of the practical applications 
analyzed in this study is the numerical 
simulation of composite floors formed by a 
reinforced concrete slab connected to steel 
beams through a deformable connection. 
Despite the prodigious use of composite 
floors in construction, few numerical and 
experimental studies on composite floors 
can be found in literature. A vast majority 
of studies focus on simplification of the 
problem, modeling the floor as a compos-
ite beam. One of the most relevant articles 
for the study of composite floors is that of 
Nie et al. (2008), which introduces a new 
definition of the effective width for the 
final resistance calculations of composite 
beams subjected to a bending moment 
using a commonly accepted rectangular 
stress distribution.

Izzuddin et al. (2004) developed a 
shell element to simulate concrete slabs 
reinforced by cold-rolled steel sheets. The 
formulation, as in the present article, 
is based on Reissner–Mindlin’s plate 

theory, but with a modification that 
makes the proposed element capable of 
simulating orthotropic geometry and the 
discontinuity of the material between the 
adjacent ribs.

In this study, a two-dimensional 
interface finite element capable of associat-
ing flat shell elements positioned one above 
the other was developed. The implemented 
interface element can physically simulate 
the contact between the flat shell elements 
and connect the reference planes of the 
shell elements above and below it or side 
by side. The formulation presented allows 
consideration of nonlinear behavior for 
the deformable connection as well as for 
the concrete and steel materials that make 
up the shell structure.

One of the practical applications 
analyzed herein is the numerical simula-
tion of composite floors formed by a re-
inforced concrete slab connected to steel 
beams through a deformable connection. 
In this case, the concrete slab and the 
steel beams are discretized by flat shell 
elements and the deformable connec-
tion is discretized by two-dimensional 
interface elements.

Experimental and numerical re-
sults from the literature were used to 
validate the implemented elements. 
Two examples were analyzed, and their 
results demonstrated the efficiency of the 
implemented element.

2. Materials and methods

2.1 Flat shell element

Figure 1 shows a composite floor 
formed by a concrete slab connected to 
two steel beams. In the discretization of 

the composite floor, a two-dimensional 
interface element is used to make the con-
nection between the flat shell elements and 

to simulate a possible deformable connec-
tion in the contact between the concrete 
slab and the steel beams.

Figure 1 - Composite floor discretized by flat shell and interface elements.

The flat shell finite element im-
plemented for the nonlinear analysis 
of a steel and reinforced concrete 
shell has nine nodes and five degrees 
of freedom per node, as shown in  

Figure 2. Because of the independence 
between translation and rotational 
degrees of freedom, the formulation 
described in this section accounts for 
shear deformation; therefore, it is ap-

plicable to thick shells. In the case of 
thin shells, attention should be given 
to possible numerical errors resulting 
from shear locking. To avoid this, we 
can refine the finite element mesh and 
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Using the kinematic assumptions 
of Reissner–Mindlin's plate theory, 

we obtain the displacement equations 
given by:

where u0, v0, and w0 represent the transla-
tions of the reference plane of the flat 
shell element in the x, y, and z directions, 
respectively; θ

x
 and θ

y
 are the rotations 

of the sections in relation to the  x and   
axes, respectively; and z is the position 

of the fiber along the thickness of the flat 
shell element. To simplify the notation, 
the zero superscript is omitted in the fol-
lowing equations.

In the definition of the strain–dis-
placement equations, the Green–La-

grange relations were used by consid-
ering Von Karman’s hypothesis, which 
implies that the derivatives of u and v in 
relation to  y, and z are small and can be 
neglected, while the variation of w can 
be also be neglected:

Geometric nonlinearity is ob-
served in Eqs. (4) and (5): Another 
nonlinearity of the problem is defined 
by the stress–strain relationship of steel 

and concrete for a uniaxial stress state. 
For concrete under compression, the 
curve defined by the CEB-FIP model 
code (2010) was used. For the concrete 

under tension, the stress–strain curve 
of Figure 3 was adopted, as suggested 
by Rots et al. (1984) and also used by 
Huang et al. (1999, 2003a).

Figure 2 - Nine-node multilayer flat shell element.

Figure 3 - Stress–strain relationship for concrete in tension.

use reduced integration in the evalua-
tion of shear strain.

In the analysis of physical nonlin-
earity, a multilayer element is used and 

specific characteristics are considered 
for each layer. These include, for ex-
ample, different mechanical properties 
and independent stress–strain relation-

ships. For other characteristics and 
more details of the flat shell element, 
consult Huang et al. (1999, 2003a, 
2003b) and Silva and Dias (2018a).

(1)

(2)

(4)

(5)

(6)

(7)

(8)

(3)
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For the particular case of isotropic 
material, observed when the principal 
strain is outside the failure region, we have 
E1 = E2 = E and G1 = G2 = G, and the Dxy ma-
trix of Eq. (10) reduces to the traditional 

form of Reissner–Mindlin’s plate theory.
In the definition of the internal 

force vector and tangent stiffness ma-
trix, it is assumed that the displacements 
and rotations have quadratic variations 

along the element and can be written in 
terms of the nodal displacements. For 
details on how to obtain the numerical 
formulation of this element, consult 
Silva and Dias (2018a).

where E1 and E2 are given by tangents 
to the material stress–strain curve at 
points ε = ε

α
 and G

α
 = 0.5E

α
 / (1+v) for 

α =1, 2. The stiffness matrix in the 
direction of the x–y axes (Dxy) can be 
obtained from D12 and the angle φ of 

rotation of the principal axes in relation 
to the x–y axes:

d11 = E1 cos4φ + E2 sin4φ +1/2 (G1 + G2) sin2 (2φ)

d22 = E1 sin4φ + E2 cos4φ + 1/2 (G1 + G2) sin2 (2φ)

d12 = 1/4 sin2 (2φ) (E1 + E2 - 4 (G1 + G2))

d44 = G1 cos2φ  + G2sin2φ

d45 = 1/2 (G1 - G2) sin(2φ)

d55 = G1 sin2φ + G2 cos2φ

d13 = 1/2 sin2φ (E1 cos2φ - E2 sin2φ  - (G1 + G2) cos (2φ))

d23 = 1/2 sin2φ (E1 sin2φ  - E2 cos2φ  + (G1 + G2) cos (2φ))

d33 = 1/4 sin2 (2φ) (E1 + E2) +1/2 (G1 + G2) cos2 (2φ)

where

Herein, e
tu
 = 10etr was adopted, and, 

for the concrete tension strength, the rela-
tionship f

t
 = 0.3321 √ f

c
 (ASCE, 1982) was 

used, where f
c
 is the concrete compressive 

strength in MPa. For the steel, the stress–
strain curve defined by linear segments 
was adopted, where values of the limits 
of stresses and strain are presented in the 
application examples.

For the physical and geometric 
nonlinear analysis, an incremental 
method with displacement control was 
used. At each step of the incremental 

method, a linear material with a modulus 
of elasticity given by the tangent to the 
strain–strain curve was considered. In 
this manner, the stress–strain relation-
ship can be obtained by using Hooke's 
law for the problem analyzed. Follow-
ing the constitutive matrix for materials 
under stress levels inside and outside, the 
failure region was defined.

The materials exhibited ortho-
tropic behavior inside the failure region 
(after cracking or crushing of concrete 
and after yielding of the steel); that is, 

they exhibited different characteristics 
for each principal direction. By consid-
ering the layers in the plane stress state, 
the principal directions were calculated, 
as indicated herein by subscripts 1 and 
2, where 1 indicates the direction of the 
greater principal strain. If the principal 
strains (e1 and e2) are within the failure 
region, the materials are considered 
orthotropic with the stress–strain re-
lationship decoupled to the principal 
directions; in this way, the constitutive 
matrix of the material is given by:

D12 = 

E1

E2

0 0 0 0
0 0 0

0 0
0
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1
2

G1

G2
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In Eqs. (20)–(22), u0
a
 , v0

a
, and w0

a
  

represent the translational displace-
ments of the midplane (or any reference 
plane) of the flat shell elements; θxa and 
θya represent the rotations with respect 
to the x and y axes, which are indepen-
dent of the position along the thickness, 
the hypothesis of the maintenance of 

the plane section; and h1 and h2 are the 
thicknesses of the flat shell elements 
below and above, respectively, the inter-
face element. In the following equations, 
the index 0 will be omitted to simplify 
the notation.

Because E
Sb
 , E

Vb
 , and E

Nb
 are the 

deformable connection stiffnesses of 

the interface element in the direction 
of the relative displacements s

l
 , s

t
 , and 

s
v
, the forces per unit area that emerge 

at this interface are S
b
 = E

Sb 
s

l
 , V

b
 = E

Vb 
s

t
, 

and N
b
 = E

Nb 
s

v
. Applying a compatible 

virtual deformation field to an interface 
element of Figure 4, we have, through 
the principle of virtual work,

In the finite element approxima-
tion based on displacements, the dis-
placement equations are approximated 
by the shape functions associated with 
the nodal displacements (q). Because 
the lower and upper degrees of freedom 
are independently interpolated and the 

order of these followed the same order 
as that for the flat shell element shown 
in Section 2.1, the shape functions for 
the two-dimensional interface element 
are the same as those adopted for the 
flat shell element.

Analogous to the flat shell element, 

we arrive at the internal force vector and 
stiffness matrix of the two-dimensional 
interface element given by Eq. (25). For 
the element in question, shape functions 
given by quadratic polynomials repre-
sented by the column vector Φ of nine 
terms were adopted:

Substituting the variation of the relative displacements in Eq. (23) of the principle of virtual work, we have

s
l
 (x, y) = u0

2 (x, y) - u0
1 (x, y) - h2 /2 θy2(x, y) - h1/2 θy1(x, y)

s
t
 (x, y) = v0

1 (x, y) - v0
2 (x, y) - h2 /2 θx2(x, y) + h1/2 θx1(x, y)

δW
int

 = ∫
A 
[S

b
 (δu2 - δu1) + V

b
 (δv1 - δv2) + N

b
 (δw2 - δw1) - h2 /2 S

b
δθy2 - h1 /2 S

b
δθy1+ h1 /2 V

b
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b
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b
δst + N

b
 δs2) dA

s
v
 (x, y) = w0

2 (x, y) - w0
1 (x, y) (22)

(20)

(21)

(23)

(24)

The two-dimensional interface ele-
ment has, in addition to the function of 
physically simulating the contact between 
the flat shell elements, the function of 
connecting the reference surfaces of the 
flat shell elements above and below it. For 
this, reference surfaces are defined, which 
in this case are taken as the mid-plane of 
the element to be discretized into flat shell 

elements. In this way, the thickness or dis-
tance between the upper and lower nodes 
of the two-dimensional element is taken 
as the sum of half of the upper and lower 
thickness of the elements connected by the 
two-dimensional element. Although this 
thickness is not zero, its actual physical 
thickness is always zero.

The interface element physically  

represents only the contact between the flat 
shell elements. The relative displacement 
equations in this contact can be obtained 
from the displacement equations for the 
shell elements below (α = 1) and above  
(α = 2) the interface element. The equations 
of longitudinal (s

l
) , transversal (s

t
) , and  

vertical (s
v
) relative displacement in direc-

tions x, y, and z shown in Figure 4 are given as

Figure - 4 Two-dimensional interface element associated with flat shell elements.

The 18-node two-dimensional 
interface element is responsible for 
simulating the deformable connection 

and making the connection between 
9-node flat shell elements, as shown 
in Figure 4. The orientation of the 

degrees of freedom follows analo-
gously to that of the flat shell element 
of Section 2.1.

2.2 Two-dimensional interface element
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S
b
, V

b
 , and N

b
 can be obtained 

directly from the force per unit area 
versus the relative displacement curve. 
The derivatives of these force terms 

in relation to nodal displacements are 
given by

where O is a column vector with nine null terms.

(25)

(26)
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3. Results

3.1 Steel–concrete composite floor
Nie et al. (2008) numerically and 

experimentally evaluated a floor formed 
by a reinforced concrete slab connected 
by shear connectors to five steel beams. 
In their model, the load was applied 

through three hydraulic jacks in incre-
ments of 2 kN until rupture. During 
the test, displacements, strain, and 
slip were monitored. Figure 5 shows 
the composite floor with the geometric 

parameters of the slab, steel beams, 
reinforcing bars, and shear connector. 
Load P is applied to the three longitudi-
nal beams and divided into four points 
on each beam.

Figure 5 - Composite steel–concrete slab (in units of mm) (Nie et al. 2008).

Figure 6 - Steel–concrete composite slab discretized in flat shell and interface elements.

In this work, the slab and the  
I-shaped steel profile were simulated by 

a nine-node flat shell element, and the 
deformable connection was represented 

by a two-dimensional interface element 
of 18 nodes, as shown in Figure 6.

Among the results provided by 
Nie et al. (2008), the numerical and 
experimental load–displacement curves 
of the composite floor are shown. In the 
analysis using the elements implemented 
in this study, f

c
 = 30.3 MPa, ε

c2
 = 0.2%,  

ε
cu
 = 0.35%, and v = 0.17 for the concrete. 

For the reinforcement bars and steel 
beam, a stress–strain curve defined by 
elastic-perfectly plastic-hardening tri-

linear model was used. The four points 
that define the tensioned part of the 
curve are: (0;0), (0.1432%; 295 MPa), 
(0.23%; 295 MPa) e (2%; 448 MPa) 
(steel beams), and (0;0), (0.1845%; 380 
MPa), (0.2%; 380 MPa) e (4.5%; 478 
MPa) (reinforcement bars). For both steels  
E

s
 = 206000 MPa, v = 0.30, and com-

pression behavior equal in traction 
was admitted. For the longitudinal and 

transverse stiffness of the deformable 
connection between the steel beams and 
the concrete slab, the equation of Ollgaard 
et al. (1971) or Aribert (1992) was used:   
S

b
 = S

bu
 (1 - eC1Sl)C2, with C1 = 0.7 mm-1 

and  C2 = 0.4. The ultimate strength 
of the connector can be obtained 
through the equations described in 
the technical norms and textbooks 
on the subject. For stud connectors 
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Figure 9 shows the discretization 
of the composite beam in flat shell 
elements and a two-dimensional inter-
face. From the figure, it is observed that 

the concrete slab was discretized by 
20 flat shell elements. The steel beam 
had four divisions in the longitudinal 
direction, and, for each division, there 

were two flat shell elements for the 
flange and one for the web. For the 
two-dimensional interface elements, 
four elements were used.

It is observed that the result 
obtained by using the implemented 

elements is relatively close to that 
obtained from the experimental test, 

demonstrating the effectiveness of the 
implemented elements.

In this example, the elastic line of a 
fixed composite beam with a 10 m span was 
subjected to a concentrated force of 50 kN 

at the midspan is analyzed. The cross section 
of the composite beam was composed of a 
concrete slab, with E

c
 = 13 GPa and v = 0.2, 

connected to an I-shaped steel profile (IPE 
300), with E

s
 = 200 GPa  and v = 0.30. Figure 8 

shows the cross section with the dimensions.

3.2 Elastic line

Figure - 7 Load–displacement curve for midspan vertical displacement.

Figure 8 - Cross section of the mixed section (in units of mm).

Figure 9 - Discretization of the fixed composite beam.

of 6 mm in diameter, spaced every  
60 mm, with f

eu
 = 450 MPa  surrounded 

by concrete of f
c k

 = 30.3 MPa  we have  
F

u
 = 13434 N (connector ultimate load) 

and S
bu
 = 2239 kPa (connection stiffness 

in the contact area). For the vertical 
stiffness at the contact interface, a high 
stiffness (E

Nb
 = 109 kPa ) was considered, 

that is, the total interaction for the verti-
cal uplift.

Figure 7 illustrates the results 
obtained from the numerical analyses 
using the elements developed in the pres-
ent study and results of the experimental 
model of Nie et al. (2008).
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The influence of longitudinal stiff-
ness variation on vertical displacement 
along the length of the beam was evalu-
ated. The values of longitudinal stiffness 
used were E

Sb
 = 103 kPa and E

Sb
 = 107 kPa  

Because transverse and vertical displace-
ments at the contact interface were not 
allowed, values for the stiffnesses of  
E

Vb
 = 107 kPa and E

Nb
 = 107 kPa respectively, 

were adopted.
In the following figures, Shell9+int6 

is the result for the composite beam 
analyzed by using the nine-node flat 
shell element and the six-node inter-
face element implemented by Silva 
and Dias (2018b). Shell9+Int18 is 
the result obtained by simulating the 
composite beam through the 9-node 
shell element and the 18-node interface 
element implemented in this study. 
BeamTQ+IntTQ is the result obtained 
by simulating the steel beam with the 

three-node beam element (BeamTQ) 
and the six-node interface element 
(IntTQ); both are elements presented 
in Sousa and Silva (2007), wherein the 
beam theory of Timoshenko was used 
in the formulation and quadratic inter-
polation for translation and rotation. 
REF is the result obtained by Brighenti 
and Bottoli (2014), which simulates 
the beam with beam elements based on 
Euler–Bernoulli beam theory.

The responses for the three anal-
yses (Shell9+Int18, Shell9+Int6, and 
BeamTQ+IntTQ) are shown in Figure 10, 
and they are practically the same. The dif-
ference observed when compared with the 
response indicated by REF in Figure 10 is 
due to the difference between the theories 
used in the simulation of the problem, 
because Shell9+Int6, Shell9+Int18, and 
BeamTQ+IntTQ account for the shear 
strain, which is not considered in the 
REF analysis. The effects of shear lag 
(normal stress variation along the slab 

width) and poisson, which are verified 
when simulating the problem using flat 
shell elements and do not appear in the 
beam analysis, do not cause this difference 
because the responses are practically iden-
tical for the Timoshenko beam analysis 
(BeamTQ+IntTQ) and for the Reisner–
Mindlin’s plate analysis (Shell9+Int6 or 
Shell9+Int18).

Figure 11 shows the variation along 
the width of the concrete slab of normal 
stress obtained in the most compressed 
fiber. It can be seen from the figure that 

the results obtained by Shell9+Int6 and 
Shell9+Int18 analyses are very close to 
each other. The response obtained from the 
BeamTQ+IntTQ analysis does not exhibit 
normal stress variation along the width 
because it simulates the problem by consid-
ering beam theory with flexion in only one 
plane. Figure 11 shows that, although the 
plate analysis reveals a shear lag effect, the 
areas bound by the curves and the horizon-
tal axis are close together, generating the 
same contribution for the concrete slab in 
the beam and plate analyses.

Similar to Figure 10, it can be seen 
from Figure 12 that both the 6- and 

18-node interface elements give almost 
identical results, but they present a 

different relationship from that of the 
BeamTQ+IntTQ analyses. In this case, 

Figure 10 - Elastic line of composite fixed–fixed beam with E
Sb

 = 103 kPa.

Figure 11 - Stress variation in the most compressed fiber along the concrete slab width for E
Sb

 = 103 kPa.
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the shear lag and poisson effect were 
significant and caused this difference, 

as evidenced by studying the variation 
of the normal stress along the width of 

the concrete slab in the analyses using 
flat shell and beam elements.

Figure 12 - Elastic line of fixed composite beam with  E
Sb

 = 107 kPa.

Figure 13 - Stress variation in the most compressed fiber along the concrete slab width for   E
Sb

 = 107 kPa.

Figure 13 shows that the area 
bound by the curves and the horizon-
tal axis for the plate analysis is larger 
than the area found using Timosh-
enko beam analysis (for the same 
load). Therefore, greater stiffness is 
found when the problem is simulated 
through the beam theory of Timosh-
enko, which generated a smaller 

displacement, as shown in Figure 12. 
This effect, which also manifests when 
using Euler–Bernoulli beam theory, 
generated a smaller displacement in 
the REF analysis to compensate for the 
difference in the response between the 
flat shell elements and the Euler–Ber-
noulli beam element shown in Figure 
10. That is, a reduction of the concrete 

slab width should be made so that the 
displacement and the area defined 
by the region bound by the beam 
theory curve and the horizontal axis 
are the same as in the plate analysis. 
Therefore, it is concluded that beam 
analysis may generate an overestima-
tion of the bending stiffness of the  
composite beam.

4. Conclusions
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