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Numerical fundamentals and 
interactive computer graphics 
system for the nonlinear 
analysis of planar frames
Abstract

Recent scientific and computational advances have facilitated the analysis of 
slender structural systems subject to instability. With the employment of more so-
phisticated numerical tools and algorithms, it is possible to accurately determine the 
critical points (limit and bifurcation loads) as well as the post-critical behavior of the 
structural system. In the computational context, efficient data structures are needed to 
enable code and graphic interface expansion for the generation of models and visual-
ization of the results obtained. Thus, an interactive object-orientated graphic compu-
tational system is presented herein. It has been developed using MATLAB/GUI, with 
pre-processing, analysis and post-processing capacities for planar structural frames. 
The nonlinear finite element developed and implemented for the structure modeling is 
formulated considering second order effects. Therefore, with the computational tool 
presented, the geometric nonlinear effects and stability of the structural system can be 
directly addressed, and the visualization of the numerical results are accessed through 
interactive controls that permit data inclusion and analysis verification. The engineer-
designer can see the structural model discretization, the equilibrium path, its deforma-
tion configuration, the force and bending moment diagrams at the moment that he 
runs the program and in each load step. It is also possible to export the images, videos 
or tables of the obtained numerical results. The example presented demonstrates the 
capacity of the developed graphic computational system.

Keywords: interactive computer graphics system, second order analysis, MATLAB/
GUI, OOP, corotational formulation.
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1. Introduction

The numerical analysis of struc-
tural systems is of computational nature 
due to the great number of operations 
needed for solution of the problem. This 
characteristic is extremely accentuated 
when nonlinear effects are considered 
in conjunction with the application 
of the finite element method (FEM). 
Therefore, the development of compu-
tational tools is of great importance for 
the practice of structural calculations 
and designs.

As the computational models are 
refined to consider the various character-
istics present in the actual structures, i.e. 
material plasticity, second order effects, 
and semi-rigid connections, the numerical 
solutions reached are closer to the actual 
behavior of the structure (Silva, 2009). 

This also implies that the computational 
implementations have also become more 
complex, together with a considerable 
increase in processing time and storage 
cost. Thus, matters such as the program’s 
paradigm choice (code organization 
strategy), efficiency, access, and memory 
usage become relevant and can determine 
the feasibility of the utilization of a given 
computational system.

The object-orientated programming 
paradigm (OOP; Stroustrup, 2013) has be-
come a tendency for developing complex 
and/or large-scale computational systems, 
since it offers great advantages for main-
tenance, productivity and higher-quality 
software, as well as for code usage and 
extensions when compared to the conven-
tional approach for programming struc-

tures. Thus, OOP has herein been used 
throughout the complete development 
of the computational system, from the 
structural problem solution to the graphic 
interface for insertion in the model, as well 
as for determining the analysis options 
and visualizing the results.

Structural modeling requires the 
insertion of a great number of parameters, 
such as nodal coordinates, external loads, 
cross section properties, materials, among 
others. In addition, there are various op-
tions for the analysis and visualization 
processes. Therefore, the use of iterative 
graphic interfaces is of great assistance to 
the analyst/engineer, since it permits better 
visualization, control and understanding 
of the process when compared to the use 
of standard data files.
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This article presents an interactive 
object-orientated graphic computational 
system, developed using MATLAB/GUI 
(Kwon and Bang, 1997; MATLAB, 2015), 
for the geometric nonlinear analysis of 
planar structural frames. This computa-
tional tool is enabled with pre-processing, 
analysis and post-processing capacities, 
and the nonlinear finite element devel-
oped and implemented for the structure 
modeling is formulated considering large 
displacements (second order effects). 
Therefore, the geometric nonlinear effects 
and stability of the structural system can 

be directly addressed, and the visualiza-
tion of the numerical results are accessed 
through interactive controls that permit 
data inclusion and analysis verification. 
The analyst/engineer can see the structural 
model discretization, the equilibrium path, 
its deformation configuration, the force 
and bending moment diagrams at the 
moment that he runs the program and in 
each load step. It is also possible to export 
the images, videos or tables of the obtained 
numerical results.

This article is organized as fol-
lows: Sections 2 and 3 show the finite 

element formulations according to 
the total Lagrangian and corotational 
reference systems, which deal with the 
non-linearity associated with the second 
order effects. Also presented are the 
internal force vector and the stiffness 
matrix of these formulations. Section 4 
discusses the nonlinear solver strategy 
adopted, and Section 5 presents the 
interactive graphic computational sys-
tem. The Section 6 brings a numerical 
application of the graphical tool and 
finally, some conclusions about the 
computational system are presented.

2. Total lagragian formulation

In the plane frame formulations, 
it is assumed that the cross sections of 
the bar undergo rigid body movement 
(Reissner, 1972). Thus, the movement of 
a point on the cross section is composed 
of a horizontal translation u, a vertical 
translation v and a rotation θ around the 

bending axis. In the following formula-
tions, it is considered that the axis of the 
element coincides with the structural 
axis. For a generic case of an arbitrarily 
positioned element in the plane, the 
transformation of the quantities must 
be performed, just as in linear analysis. 

In addition, (' ) denotes the derivatives 
in relation to the spatial variable along 
the axis of the element x0.

The displacement vector u of a 
point at distance y0 of a neutral line of 
the cross section of the element is given 
by (Reissner, 1972):

[ ] [ ]0 θ 1-cosθ 0 TT
u v y= −u (1)

(2)

(3)

(4)

(5)

(6)

The longitudinal εxx and transversal εxy components of the Green-Lagrange deformation tensor are:

εxx = ε - y0χ    and    εxy = g

in which the axial ε, shear γ and bending 
χ deformations, which form the section 

deformation vector ε = [ε  γ  χ]T, are defined 
according to:

The virtual deformations are found from:

∂ε
δε = δ = δ

∂
u B u

u

with the matrix B defined as the deforma-
tion-displacement matrix that incorporates 
the nonlinear geometric effects. It is as-

sumed that the deformations in the material 
are small, and as such, the St. Venant mate-
rial hypothesis is applied. Furthermore, it 

is assumed that the material behaves elasti-
cally in such a way that the normal stress σxx 
and the shearing stress  can be expressed as:

σxx = E εxx    and     τxy = Gεxy

where E and G are the longitudinal and 
shear modulus of elasticity, respectively. 

The resulting forces in a cross section are 
obtained as follows:

xxA
N d EA= = ; xyA

S d GA= = ;  and  0xxA
= =  

where , N, S  and M are the normal 
force, the shearing force, and the bend-
ing moment, respectively. In the model 
adopted, the transversal deformation is 
assumed to be constant in the section. 

To diminish the amount of errors gener-
ated with this hypothesis, a Timoshenko 
correction coefficient κ is introduced in 
the integration of the transversal stress 
of the section (Crisfield, 1991).

Applying FEM, the displacements 
are interpolated by linear functions, 
through the nodes values, as shown 
below: 
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where L
0
 is the element’s initial length, 

while the element internal forces vector is 
obtained according to (Zienkiewicz and 
Taylor, 1991):

(7)

(8)

(9)

(10)

(11)

(12)

(13)

[ ]0

00
=F B

L Te T
i N S M dx  

The tangent stiffness matrix of the 
element is calculated from the variation of 

the internal force vector with respect to the 
displacements, and is given by:

[ ]00

00 00

0 0

0 0

0 0

= +
B

K B B
u

T
LLe T

EA

GA dx N S M dx

EI

 

where the first one represents the material 
stiffness matrix regarding the deformation 

increments undergone by the element; the 
second one represents the geometric stiff-

ness matrix regarding the changes of the 
forces acting on the element.

3. Corotational formulation

The movement undergone by an 
element can be divided into two com-
ponents: one due to the movements of 
the rigid body, where the element is 
translated and rotated as a whole, with-
out its configuration being altered; the 

other parcel is related to the movements 
that generate deformations (Crisfield, 
1991). The second type of movement is 
of greater interest, since it generates the 
forces in the structure.

Thus, to filter the rigid body 

movement from the total movement of 
the element, a corotational referential 
is introduced, as in Figure 1. As this 
referential follows the element, only 
the movements that cause deformation 
are detected.

Figure 1
Corotational referential.

In this corotational system, the non-zero nodal displacements are given by:

where u
j
 is the longitudinal displace-

ment, θ
i
and θ

j
 are the rotational dis-

placements; the rigid body rotation 
is θ

r
 and the length of the deformed 

configuration L are defined according to:

In the corotational formulation, it 
is important to relate the local system 
with the global one in order to obtain 

the internal forces vector Fi and the 
tangent stiffness matrix K in the global 
system. This is achieved by taking the 

variation of the corotational displace-
ments with respect to the global ones, 
as follows:

/ /= = =
uu u T u a c b c b u
u

T

i jL L  

with a, b, ci and cj given by:

[ ]-cos -sen 0 cos sen 0=a
T

; [ ]sen -cos 0 -sen cos 0=b
T ; 

[ ]0 0 1 0 0 0
T

i =c ; and [ ]0 0 0 0 0 1
T

j =c



REM, Int. Eng. J., Ouro Preto, 72(2), 199-207, apr. jun. | 2019202

Numerical fundamentals and interactive computer graphics system for the nonlinear analysis of planar frames

The internal forces vector Fi and the 
stiffness matrix K in the global system can 

be related to the same in the local system 
following the expressions (Crisfield, 1991):

Fe
i
 = TT Fe

i

Ke = TT Ke
 T + (N

j
 / L) bbT + (M

i
 + M

i
) / L2 (abT + baT)

r ( u, l) = lF
r
 - Fi (u) ≅ 0

(14)

(15)

As the movements that cause defor-
mations are considered small, it is assumed 

that the behavior of the element is linear in 
the local system. Thus, in the local system, 

the Timoshenko (K
T
) and Euler-Bernoulli 

(K
EB

) element stiffness matrices are given by:

0000

0;0
4 4

00
4 4

ee
BET

AEAE

LL

L L L L

L L L L

=

+

KK  (16)

(17)

(18)

(19)

(20)

4. Solution of the nonlinear equations

With the FE discretization, a nonlinear algebraic equations system is obtained and can be written as:

where u is the system’s displacement 
nodal vector, F

r
 is the reference external 

forces vector, l is the load parameter, 
F

i
 is the internal forces vector and r is 

the residual forces vector. For solution 

of the nonlinear system, Eq. (17), an 
incremental process is applied together 
with an iterative method, generally the 
Newton-Raphson one, where given an 
equilibrium state (u

n
, l

n
)  and a predicted 

solution (Du0
n+1, Dl0

n+1) for the new 
state of equilibrium, a new estimate 
is obtained from the sub-increments  
δuk+1

n+1 and δlk+1
n+1 in iteration k accord-

ing to:

11
1 1 1

k k k
n n n

++
+ + += +u u u    and   11

1 1 1
k k k
n n n

++
+ + += +  

The sub-increment δuk+1
n+1 can be calculated using the expression below:

( ) ( )1 111
11111
+++
+++++ = + = + kkkkk  

4.1 Iteration strategies
To determine the sub-increment 

in Eq. 19 and the increments in Eq. 18, 
it is necessary to determine the sub-
increment of the load parameter δlk+1

n+1. 
The choice of this load parameter is 

done in such a way that the numerical 
process is able to pass through load and 
displacement limit points, as well as bi-
furcation ones (Pires, 2012). Among the 
various iteration strategies implemented 

are: linear, cylindrical and spherical 
arc-length (Crisfield, 1991); minimum 
residual displacement norm (Chan, 
1988); orthogonal residual procedure 
(Krenk, 2009).

4.2 Load increment strategies
Once the new estimate of the in-

crements is obtained, the system’s equi-
librium is tested. Various convergence 
criteria can be used (Crisfield, 1991). 

Generally, the force criteria is used, 
where the norm of r should be less than 
a previously stipulated tolerance. If the 
criteria is satisfied, a new equilibrium 

point is established and a new estimate 
for the displacement increments Du0

n+1 
becomes necessary. In general, this es-
timate is obtained as presented below:

0 0 1
1 1+ +=u K Fn n n r  

Various strategies can be used to 
determine this incremental estimate of the 
initial load parameter Dl0

n+1. Among those 

implemented are: direct load increment 
(Krenk, 2009); cylindrical and spherical 
arc-length (Crisfield, 1991); and constant 

external work (Silva, 2009). Figure 2 
shows, in flowchart form, the nonlinear 
solving strategy adopted in this study.
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Figure 2
The incremental-iterative strategy for 

solving the nonlinear structural equations.

5. Interactive graphic computational system

In this study, an interactive com-
puter graphics with capacity for pre-pro-
cessing, analyzing, and post-processing 

was developed using MATLAB/GUI 
(MATLAB, 2015), and employing the 
paradigm designated object-orientated 

programming (OOP), in order to help 
elaborated designs for planar frame  
structures under large displacements.

5.1 Object-orientated programming (OOP)
Object orientation is a program-

ming paradigm based on the composi-
tion and interaction of various units 
of the program called “objects”. In 
this programming paradigm, a set of 

classes defines the objects in the compu-
tational system. Each class determines 
the behavior and attributes of its objects 
(nodes, material, sections, elements), 
as well as their relationship with other 

objects (Farrell, 2009). Herein, the 
OOP paradigm was used because of 
its advantages, such as organization 
of the generated codes, inheritance,  
and polymorphism.

5.2 Pre-processing
The opening screen of the devel-

oped computational system is shown 
in Figure 3. With the embedded pre-
processing capacity, the user can insert 

all of the relevant parameters for the 
idealized structural model. As the 
structure is modified in the program, 
the structural design is updated in the 

principal canvas. Thus, the geometry, 
together with the boundary condi-
tions of the problem, can be visualized  
and exported.

Figure 3
Initial screen of the 

interactive graphics system.
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Figure 4 shows the menus avail-
able in the program. In the first group 
of menus, the user can administrate the 

database of the analysis; begin a new 
project; re-open an existing project; 
or save a current project. Besides these 

options, the user can obtain assistance 
about a given task. For more details, see 
Santana (2015).

Figure 4
nteractive graphics system menus.

In the second group of menus, the 
model parameters are inserted. In other 
words, the nodes, material, cross section of 
the bars, elements, support conditions and 
loads can be introduced. Once a determined 
menu is selected, a panel referent to the 

parameters that should be inserted is gener-
ated on the left side of the screen, as shown 
in Figure 5. In the nodes panel, besides the 
coordinates, the boundary conditions of 
each node can be inserted, such as loads, 
supports and prescribed displacements. 

Various material and sections types can be 
chosen in their respective interactive panels, 
including the concrete described in the NBR 
6118 (2003) and the steel described in the 
NBR 8800 (2008) standards, as well as 
common sections encountered in practice.

5.3 Structural analysis
In the third group of menus present-

ed in Figure 4, the referent parameters for 
the structural analysis are generated, as il-
lustrated in Figure 6. In this panel, options 

such as iteration strategy, load increment 
strategy, tolerance and number of desired 
iterations can be specified. This panel 
also has a “solve” key that initiates the 

solution process for the structural model. 
The numerical fundamentals presented 
in Sections 2, 3 and 4 are the bases of the 
Structural Analysis option.

5.4 Post-processing
With the last group of menus  

(Figure 4), the results obtained in the 
analysis can be visualized by means of 
graphics, animations and tables. In the 
first sub-menu of this group, it is possible 

to visualize the deformed configuration; 
in the second, the equilibrium path; in the 
third, the internal forces diagram; and in 
the fourth, the previous results combined, 
as can be seen in Figure 7. A control panel 

of the load step is also generated for each 
of the results visualized. In the fifth sub-
menu of this group, the results can be 
visualized as tables. These tables can be 
exported as database files.

Figure 5
Interactive panels of data input.

Figure 6
Analysis and results panels.
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Figure 7
Visualization of the numerical results.

6. Application example

The developed computational 
system was applied to analyze a pinned 
supported circular arch with a di-
ameter of L = 100, under a centrally 
concentrated (Fig. 8a) and eccentric  
(Fig. 8b) load. This structural system 
was initially studied by Harrison (1978) 
and later by Yang and Kuo (1994) and 

Galvão (2000). The arch was discretized 
with twenty-six elements, has material 
with elastic modulus E = 2000, cross 
section area A = 10 and inertia I = 1. 
The eccentric load is induced by means 
of a moment M = 0.001P, applied at the 
central node. The results obtained were 
compared with those present in Galvão 

(2000). The models were analyzed using 
the Total Lagrangian and Corotational 
beam formulations according to the 
Timoshenko theory, and as the non-
linear solution strategy, the cylindrical 
arc-length was adopted in the iterative 
process and in the load parameter  
increment strategy.

Figures 9a and 9b present the 
circular arch equilibrium paths for 
the two loading cases (central load, 
perfect system; and eccentric load, 
imperfect system), where the varia-
tion of the vertical displacement of 
the arch’s central node with respect 
to the load factor can be observed. 
See that these two load configurations 
provoke high nonlinear responses in 
the arch, characterized by the pres-
ence of various load and displacement 
limit points. However, in the case of 
the imperfect system, the stiffness 
of the structure is considerably less, 
characterizing the unstable behavior 
of the structure. The loops in the 
equilibrium paths also demonstrate 
the existence of various equilibrium 

configurations for a given value of 
the load parameter. These curves 
were obtained by considering load 
P to be equal to 0.4N to initiate the 
analysis and the standard Newton-
Raphson method was applied. The 
results obtained with the formulations 
implemented are in accordance with 
those of Galvão (2000), who adopted 
the classical beam theory. Figures 
9a and 9b present the circular arch 
equilibrium paths for the two loading 
cases (central load, perfect system; 
and eccentric load, imperfect system), 
where the variation of the vertical dis-
placement of the arch’s central node 
with respect to the load factor can be 
observed. See that these two load con-
figurations provoke high nonlinear 

responses in the arch, characterized 
by the presence of various load and 
displacement limit points. However, 
in the case of the imperfect system, the 
stiffness of the structure is consider-
ably less, characterizing the unstable 
behavior of the structure. The loops 
in the equilibrium paths also demon-
strate the existence of various equilib-
rium configurations for a given value 
of the load parameter. These curves 
were obtained by considering load 
P to be equal to 0.4N to initiate the 
analysis and the standard Newton-
Raphson method was applied. The 
results obtained with the formulations 
implemented are in accordance with 
those of Galvão (2000), who adopted 
the classical beam theory.

Figure 8
Pinned circular arch: 

FE discretization and loading conditions.

(a) (b)
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(a) (b)

Figure 9
Equilibrium paths 
of the pinned circular arch.

Figures 10a and 10b show the de-
formed configuration for the two load cas-
es during the same load step, highlighting 
both the symmetrical and asymmetrical 

deformation modes, respectively. While 
in Figures 11a and 11b, there can be seen 
the bending moment diagram of the arch 
under the two different load conditions. It 

is possible to note how the loss of symme-
try, even provoked by a small instability, 
can considerably affect the distribution 
of the forces.

(a) (b)

Figure 10
Deformed configurations
of the pinned circular arch.

(a) (b)

Figure 11
Bending moment diagram
of the pinned circular arch.

Finely, as main advantages of the 
numerical modeling system, there can be 
highlighted: the ease and straight modeling 
process (user interactive controls which al-
lows for the inclusion and removal of data); 

the user different options of nonlinear solv-
ers (analyzes); the resulting visualization, 
such as the nonlinear equilibrium paths; 
and it can also serve as an educational 
tool. The limitations of the tool are: no 

consideration of the inelastic and semi-
rigid connection effects; it is based on plane 
truss and beam-column elements and just 
permits 2D visualization not addressing 
nonlinear transient structural problems.

7. Concluding remarks

This work presented an interactive 
object-orientated graphic computational 
system for second order analysis of planar 
structural frames. The computational 
system developed with MATLAB/GUI 
proved to be very useful in the modeling 
process and evaluation of the numerical 
results. With pre-processing, analysis and 
post-processing capacities, and nonlinear 
finite element formulations implemented, 
this computational tool offers to the 

analyst/engineer a direct access to the 
geometric nonlinear effects and stability 
of the structural system. The visualiza-
tion of the numerical results is accessed 
through interactive controls that permit 
data inclusion and analysis verification. 
The structural model discretization, equi-
librium paths, deformation configurations 
and resultant force diagrams can easily be 
seen at the moment that the analyst runs 
the program and in each load step.

Additionally, the computational pro-
gram developed here can be used as an ed-
ucational graphic tool for undergraduate 
and graduate students from architecture, 
civil and mechanical engineering courses.

The choice of the OOP paradigm, 
as previously emphasized, facilitated the 
organization, maintenance and expansion 
of the computational system’s code. The 
Total Lagrangian and Corotational beam 
formulations have shown to be adequate 
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in the analysis of planar frame systems 
subject to instability.

Other numerical structural analyses 

using the developed computational system 
are presented in Santana (2015). Future 
research will incorporate the issues of ma-

terial inelasticity, semi-rigid connections, 
and their dynamic effects in the structural 
analysis (Batelo, 2014).
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