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Abstract

Blasting remains as an economical and reliable excavation technique, but there 
are some environmental shortcomings such as the control of blast-induced vibra-
tion. The impacts of vibration over surrounding communities in a blast area have 
been investigated for decades and researchers have been using a myriad of empirical 
predictive attenuation equations. These models, however, may not have satisfac-
tory accuracy, since parameters associated to geomechanical properties and geol-
ogy affect the propagation of seismic waves, making vibration modeling a complex 
process. This study aims for application of an Artificial Neural Network (ANN) 
method and Geomechanical parameter relationships to simulate the blast-induced 
vibration for a Brazilian mining site and then compare them to the traditional ap-
proach. ANN had the best performance for this mine despite having demanded 
large datasets (as much as for the traditional approach), while geomechanical pa-
rameters like RQD and GSI may be used to deliver a fair approach even without 
seismic data. Also, ANN methods may be useful in dealing with a large amount of 
information to facilitate the simulation process when combined with other methods. 
Therefore, alternative prediction methods may be helpful for small budget mining 
operations in planning and controlling blast-induced vibration and helping mining 
in urban areas becoming a more sustainable activity.

Keywords: blast-induced vibration; attenuation equation; Artificial Neural Network; 
geomechanical relationships.
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1. Introduction

Blasting is frequently the most cost 
effective technique for rock excavation. 
The use of explosives in mining and con-
struction activities is almost unanimous 
and the development of new products 
and new blast design studies will keep 
blasting as the favorite technique in the 
coming decades. Although reliable and 
economical, the use of explosives must 
deal with some environmental shortcom-
ings. Since many mining sites are sur-
rounded by people, some of the effects of 
blasting like noise and ground vibration 
may be considered as annoying or even 
a threat. In fact, blasting in urban areas 
has become a challenge, since regulations 
concerning blast-induced vibration have 
become more rigid and this situation 
could severely affect the sustainability 
of the mining operations or construc-

tion activity.  To avoid conflicts between 
communities and blasting areas, blast-
induced vibration should be controlled 
and monitored. Enhancements in blast 
design and the use of new products will 
only prove sustainable if there is a precise 
and reliable way of knowing the impacts 
of the ground vibration. Therefore, in the 
last decades, predictive attenuation mod-
els have been proposed. However, due 
to their empirical nature, these models, 
known as predictive attenuation equa-
tions, had low accuracy when several di-
rections needed to be studied. A general 
prediction equation is desired but with 
different parameters of the rock mass, 
such as geomechanical properties that 
affect the seismic wave propagation in 
different ways for different directions. 
Therefore, using a limited number of 

seismograph monitoring data may not 
be enough for a reliable characterization 
of the vibration behavior in one or more 
directions. The question is: is it possible 
to obtain a fair to good approach for 
predicting attenuation using a limited 
seismograph monitoring dataset? Is there 
any other approach?

This study aims for the applica-
tion of an Artificial Neural Network 
(ANN) and relationships based on 
geomechanical parameters to model the 
blast-induced vibration attenuation using 
blasting and rock mass parameters at a 
Brazilian mining operation. It is expected 
that the results may have better accuracy 
when compared to some empirical meth-
ods for feasibility purposes to help small 
budget mines and quarries in urban areas 
to become more sustainable.

2. Blast-induced ground vibration

Geology and geomechanical as-
pects of the rock mass affect the 
characteristics of ground vibration as 
waves move away from blasting area. 
This dissipation or "geometric spread" 
occurs when a finite amount of vibra-
tion energy needs to fill an increasing 
amount of the rock mass volume as 
it moves toward the farthest point of 
detonation. Thus, there is a decay in 
vibration amplitude with increasing 
distance from the source, similar to the 
inverse-square law. Other effects are the 
propagating energy losses by absorption 
and dispersion and the formation of 
surface waves. The great variation in 
geological conditions of rock masses 
presents difficulties in predicting vibra-
tion attenuation. Currently, most of the 
predictions were obtained by statistical-
empirical relationships (Attenuation 
Equations or AE) where vibration can 
be correlated with structural damage. 
The most used parameter to represent 
the ground vibration is the peak particle 

velocity (PPV) and it basically depends 
on two main variables: the mass of the 
detonated explosive charge and the dis-
tance between the detonation point and 
the measuring point. This relationship 
can be mathematically established from 
the data obtained by seismographic 
monitoring. Among the many empiri-
cal relationships, the most used is the 
one that correlates the peak particle 
velocity with “scaled distance” used 
to predict the effects of ground vibra-
tion on structures and humans. Scaled 
distance (SD) is defined as the distance 
from blast divided by the nth root of the 
weight (mass) of the explosive charge 
used in the blast.

The parameters that affect the 
characteristics of the vibrations are 
basically the same that influence the 
results of a blasting and they are gener-
ally classified into two groups: control-
lable and uncontrollable. Controllable 
parameters are those related to blast 
design and the uncontrollable param-

eters are features of the rock mass 
related to surrounding local geology 
and geomechanical characteristics that 
have a major influence on vibrations. In 
massive and homogenous rock vibra-
tion, the waves may propagate almost 
equally in all directions. However, in 
complex geological structures, the wave 
propagation may vary with the direc-
tion, therefore resulting in a different 
attenuation requiring representation 
by different propagation equations. In 
the last decades, several researchers 
established empirical equations to pre-
dict blast-induced vibrations. Some of 
the most important include those from 
USBM in 1959, Langefors–Kihlstrom 
in 1963, Ambraseys-Hendron in 1968, 
Nicholls et al. in 1971, Siskind et al. in 
1980, Pal Roy in 1991 and CMRI in 
1993. These and other equations were 
listed by authors such as Khandelwal 
and Singh (2009), Kamali and Ataei 
(2010), Wahyudi et al. (2011), Saadat 
et al. (2014) and Kumar et al. (2016).

3. Vibration attenuation modeling using the ANN method and relationships based on geomechanical parameters

3.1 Vibration attenuation and artificial neural network (ANN) simulation
According to Sansone et al . 

(2009), Artificial Neural Networks 
(ANN) constitute the mathematical 
expression of what is currently believed 
to be the way the human brain works. 
ANNs consist of processing units, 
called "neurons" connected to each 

other by synapses. The most common 
ANNs are formed by layers of neu-
rons (input, hidden or intermediate 
and output ones) and the information 
flow crosses the direction from the 
input layer to the output layer. The 
synapses are characterized by weights 

that are used to make the output values 
compatible with the input values. The 
algorithms that define the weights of 
ANNs are called training algorithms. 
An ANN, properly constructed, can 
represent arbitrary relationships be-
tween variables from the data used in 
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training and have proven generalization 
capability even when dealing with noisy 
input data. The operation of an already 
trained ANN is simple and can be eas-
ily incorporated into design methods.

Several algorithms can be used 
to train neural networks, but back-
propagation-based algorithm (BP) has 
had preference among researchers to 
solve predicting problems (Wahyudi 
et al., 2011; Monjezi et al., 2013; 
Kamali and Ataei, 2010 and Saadat 
et al., 2014). Saadat et al. (2014) have 
used, for function approximation, a 
feedforward ANN. These researchers 
recommend the use of a BP algorithm 

with sigmoid transfer functions in the 
hidden layers and a linear transfer 
function in the output layer. The BP 
training algorithm is applied to deter-
mine the set of weights of an ANN by 
using a corrective–repetitive process 
where the actual output is compared 
with the target output. The difference 
or error between both is processed 
back through the network, updating 
the individual weights of the synapses. 
These weights are adjusted by an error 
minimization technique so that a target 
output will be produced for a given 
input. The updating process is repeated 
until the network error converges to a 

threshold or reaches a desired number 
of iterations.

In the early 21st century, numer-
ous researchers tried to use ANNs to 
predict blast-induced ground vibration 
as an alternative method, since the Em-
pirical Attenuation Equation (AE) may 
not work well due to noise (Wahyudi 
et al., 2011). According to Kamali and 
Ataei (2010), ANN has been used in 
mining since 1990 and more specifi-
cally for blast-induced ground vibration 
studies since 2004. The prediction of 
PPV using up to four variables can be 
done effectively by a backpropagation 
algorithm with good performance.

3.2 Vibration attenuation prediction using geomechanical parameters
A rock mass may be rated using 

characteristics, such as the parameters 
of intact rock; characteristics of the 
discontinuities; in situ stress; presence of 
water; type of excavation (tunnel, slope, 
mining bench, etc.) and geometric char-
acteristics of the excavation. The purpose 
of this rating is to frame the rock mass 
according to predefined classes and to 
deliver safety and support guidelines for 
carrying out the mining or construction 
project (Wyllie et al, 2009).

RQD classification was proposed 
by Deere (Wyllie et al., 2009) to es-
timate the quality of rocks from the 
analysis of core samples. The rating is 
based on a single index (RQD - Rock 
Quality Designation), which is defined 
as the percentage of the total length 

of the fragments larger than 10 cm (4 
inches) in relation to the total length of 
the core with a diameter at least equal 
to NW (54.7 mm). It is a parameter that 
depends on the direction of the drilling 
(Wyllie et al., 2009).

The Geological Strength Index 
(GSI) provides a system to estimate 
the reduction in rock mass strength for 
different geological conditions. Values 
of GSI are related to both the degree of 
fracturing and the condition of fracture 
surfaces, as the strength of a jointed 
rock mass depends on the properties 
of the intact rock pieces. Such strength 
also depends on the freedom of the 
rock pieces to slide and rotate under 
different stress conditions. This free-
dom is controlled by the geometrical 

shape of the intact rock pieces and the 
condition of the surfaces separating the 
pieces. Angular rock pieces with clean, 
rough surfaces will result in a much 
stronger rock mass than one that con-
tains rounded particles surrounded by 
weathered and altered material (Wyllie 
et al, 2009). GSI improves geological 
logic and reduces engineering uncer-
tainty throughout the quantification of 
the many characteristics of a rock mass 
(Mesec et al., 2017).

Kumar at al. (2016) proposed an 
interesting approach by using two em-
pirical relationships: one between PPV 
and GSI (Geological Strength Index) 
and the other between PPV and RQD 
(Rock Quality Designation). Equation 
1 shows the relationship for GSI.

PPV =
(0.3396x1.02GSIGSI1.13)0.642SD-1.463

γ

where: PPV= Peak particle velocity in (m/s)
   GSI = Geological Strength Index

SD = Scaled Distance in (m/kg 0.5)
γ = Unit weight in (KN/m3)

(1)

(2)

(3)

And the second approach, using the RQD relationship, is quoted by Equations 2 and 3.

For RQD ≤ 75

For RQD > 75

PPV =
(0.5947RQD + 0.00893RQD2)0.642SD-1.463

γ

PPV =
(- 7.91562RQD + 0.12152RQD2)0.642SD-1.463

γ

where: PPV= Peak particle velocity in (m/s)
  RQD = Rock Quality Designation

SD = Scaled Distance in (m/kg 0.5)
γ = Unit weight in (KN/m3)
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4. Applying ANN and GSI/RQD relationships to a Brazilian mine site vibration attenuation study

A granite quarry, surrounded by 
communities located in São Paulo State 
(Brazil), was previously studied by the 
Laboratory of Environmental Control, 
Industrial Hygiene and Safety in Mining 
at the University of São Paulo, Brazil. 

A seismographic monitoring was per-
formed in this quarry and four blasts 
were recorded. All blasts had similar 
features and they were performed in 
the same bench. Several scaled-distance 
attenuation equations were estimated 

for different directions. Published field 
blast data (Ramirez Canedo 2013 and 
Ramirez Canedo et al., 2015) were used 
in this study. Figure 1 shows a satellite 
view of the mine and the distribution of 
the sensors in Ramirez Canedo’s study.

Figure 1
Blasting sites and 
distribution of sensors 
(modified from Ramirez Canedo et al, 2015).

4.1. Empirical Attenuation Equation (AE)
The square root scaled distance 

formula, proposed by the United 
States Bureau of Mines (USBM), is 
most commonly used and considers 
that the charge is distributed in a long 

cylinder (blasthole). The collection of 
data from several blasts and the use 
of an ordinary statistical analysis al-
low to determine the site constant k 
and site exponent b and replace them 

in the general equation shown by 
Equation 4. The result for the studied 
quarry, after processing 76 values, 
is the predictive formula quoted by 
Equation 5.

PPV = k[D/Q0.5]-b  

(5)

(4)

PPV = [D/Q0.5]-1.52  782.5

4.2. Applying ANN simulation
Setting the ANN architecture is 

a crucial aspect and since there is no 
general rule for selecting the proper 
architecture, many researchers have 
concluded that finding the best-fit 
network type is a trial and error (and 
also time consuming) process because 
each network has particular proper-
ties (Kamali and Ataei, 2010). This 
study applied the same method used 
by Monjezi et al. (2013) with 3 input 
parameters: Maximum charge per de-
lay (Q), Distance (D) and Total charge 
of explosives (Qtot).

A measurement database, also 
used to construct the AE, was used for 
training the network. As performed 

by Wahyudi et al. (2011) and other 
authors, the network was designed 
using the trial and error method to 
determine the optimum number of 
hidden layers as well as the number of 
neurons. The best training parameters 
such as learning rate and momentum 
coefficient were also discovered using 
the trial and error method. While the 
learning rate is required to control 
the speed of training, the momen-
tum coefficient is used to prevent the 
learning process from getting stuck 
in a local minima. To achieve the best 
network architecture, the network was 
validated and tested by using a new 
monitoring dataset, which was also 

used to validate the AE. As suggested 
by Monjezi et al (2013), the ANN 
testing and validation data should 
be considered separately, i.e., data 
employed for training should not be 
used for testing.

After various architectures trials 
and based on the best-obtained simu-
lation results, the characteristics of 
the ANN architecture are as follows:

• Number of input neurons: 1
• Number of output neurons: 1
• Number of hidden layers:2
• Number of nodes in the first 

hidden layer: 3
• Number of nodes in the second 

hidden layer: 3
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4.3 Applying GSI/RQD simulation
A Geomechanical survey report 

indicated an average value of 45 for GSI 
(“very blocky, interlocked, partially dis-
turbed mass with multi-faceted angular 

blocks formed by four or more joint sets”). 
The quarry’s rock mass is considered as 
homogenous and fairly to highly fractured 
(Bureau de Projetos e Consultoria, 2015). 

Eighteen core samples were analyzed 
to obtain the RQD, with values ranging 
from 65.5 to 100 with an average of 91 
(Bureau de Projetos e Consultoria, 2015).

5. Results and discussion

Empirical attenuation equation 
(AE), Artificial Neural Network method 
(ANN), GSI based relationship and 

RQD based relationship approaches 
were performed in this study. The use 
of recorded field data allowed to rank 

the best estimation. Figure 2 shows the 
performance for each method compared 
to real data.

Figure 2
Comparing AE, ANN, GSI and 

RQD performances for PPV prediction.

RMS errors for AE, ANN, RQD and 
GSI methods were computed and presented 
the respective values of 3.63, 3.25, 7.81 and 
4.36. These values indicate that ANN has 
the best estimation, followed by AE. This 
was expected considering that both methods 

use field data to deliver the vibration attenu-
ation while GSI and RQD only used mean 
values of rock mass to estimate vibration. 
Since there is a range of variation in both 
GSI and RQD values, it would be interest-
ing to know the influence of their variation 

along with the rock mass, as it may reflect 
differences in the direction of propagation.

Figure 3 shows the performances of 
GSI (left) and RQD (right) relationships 
for lowest and highest values obtained in 
field tests.

Figure 3
Comparing performances

 for lowest and highest field
 values of GSI (left) and RQD (right).

The analysis of the ranging values 
obtained for GSI and RQD show that 
there may be differences in the vibra-
tion propagation possibly related to rock 
mass properties of the quarry. However, 
comparing the prediction performance for 
the extremes in the scaled distance range 
suggests that there is a certain homoge-
neity in terms of vibration propagation. 
Therefore, in this case both GSI and RQD 
averages could be used to fit actual values 
when correlating vibration with rock 
mass properties.

If we could establish a relation-
ship between geomechanical parameters 

(GSI and/or RQD) for each direction, it 
is believed that the results could be even 
more accurate, and in addition, applying 
ANN to study geomechanical parameters 
accurately could be a more effective solu-
tion. For the particular directions elected 
by Ramirez Canedo (Ramirez Canedo, 
2013 and Ramirez Canedo et al., 2015) 
to obtain the attenuation, the resulting 
equations might be preferable over other 
solutions (ANN, GSI, etc.), despite the 
relatively few number of sensors used in 
the interpolation. The way the surveys 
were carried out make them reliable for 
predicting the attenuation for those specif-

ic directions. PPV prediction by Kumar et 
al.́ s model was limited to scaled distances 
up to 80 m/kg0.5 but for the studied quarry, 
it seems to be acceptable for values up to 
120 m/kg0.5. Near-field attenuation may 
also affect the prediction for small scaled 
distance since interactions in this field are 
not well known.

Not always ANN itself may be the 
best solution for an attenuation study. Its 
processing capacity relies on a large num-
ber of previously obtained recorded data 
that are sometimes very difficult to get, not 
to mention time spent and costs for col-
lecting them (years and tens of thousands 
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of dollars). Additionally, a large variety of 
input parameters may not result in better 
simulation, as distance and charge per 
delay are the most prevailing parameters 

when applying ANN. However, for far 
field attenuation, ANN may be a good 
solution. As new data are collected, ANN 
methods may be very useful to deal with 

a large amount of information. This 
facilitates the process itself, either for 
simulation purposes or for validation of 
AE methods.

6. Conclusions

A Brazilian mine was studied us-
ing an empirical attenuation equation, 
Artificial Neural Network and geome-
chanical parameters-based relationships, 
to obtain a more accurate blast-induced 
vibration attenuation model. The avail-
ability of input parameters, the size 
of the dataset and the purpose of the 
seismograph monitoring may affect the 
resulting simulations. 

Developing countries and small 
mines require the development of a suit-

able empirical model for PPV prediction 
since site-specific empirical models are 
available but they cannot be general-
ized for different sites. Mining is an 
important activity in many countries 
and mining in urban areas has become 
a challenge as complexities of rock sites 
demand accurate PPV models considering 
a number of effects. These effects are re-
lated to rock discontinuities, rock types, 
rock formation, rock joints and their ori-
entation, groundwater presence and soil-

rock interface. Seismograph monitoring 
in countries like Brazil is expensive and 
most of the time is performed by using 
few sensors (usually up to two sensors for 
each blast), which may affect the quality 
of the empirical attenuation equation and 
Artificial Neural Network approaches. 
On the other hand, using geomechanical 
based relationships could be a useful al-
ternative for a satisfactory estimation of 
vibration, helping mining in urban areas 
to become a more sustainable activity.
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